Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(170)

Side by Side Diff: webrtc/modules/audio_processing/aec3/comfort_noise_generator.cc

Issue 2678423005: Finalization of the first version of EchoCanceller 3 (Closed)
Patch Set: Fixed failing unittest Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/aec3/comfort_noise_generator.h"
12
13 #include "webrtc/typedefs.h"
14 #if defined(WEBRTC_ARCH_X86_FAMILY)
15 #include <emmintrin.h>
16 #endif
17 #include <math.h>
18 #include <algorithm>
19 #include <array>
20 #include <functional>
21 #include <numeric>
22
23 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h"
24
25 namespace webrtc {
26
27 namespace {
28
29 // Creates an array of uniformly distributed variables.
30 void TableRandomValue(int16_t* vector, int16_t vector_length, uint32_t* seed) {
31 for (int i = 0; i < vector_length; i++) {
32 seed[0] = (seed[0] * ((int32_t)69069) + 1) & (0x80000000 - 1);
33 vector[i] = (int16_t)(seed[0] >> 16);
34 }
35 }
36
37 } // namespace
38
39 #if defined(WEBRTC_ARCH_X86_FAMILY)
40
41 void EstimateComfortNoise_SSE2(const std::array<float, kFftLengthBy2Plus1>& N2,
42 uint32_t* seed,
43 FftData* lower_band_noise,
44 FftData* upper_band_noise) {
45 FftData* N_low = lower_band_noise;
46 FftData* N_high = upper_band_noise;
47
48 // Compute square root spectrum.
49 std::array<float, kFftLengthBy2Plus1> N;
50 for (size_t k = 0; k < kFftLengthBy2; k += 4) {
51 __m128 v = _mm_loadu_ps(&N2[k]);
52 v = _mm_sqrt_ps(v);
53 _mm_storeu_ps(&N[k], v);
54 }
55
56 N[kFftLengthBy2] = sqrtf(N2[kFftLengthBy2]);
57
58 // Compute the noise level for the upper bands.
59 constexpr float kOneByNumBands = 1.f / (kFftLengthBy2Plus1 / 2 + 1);
60 constexpr int kFftLengthBy2Plus1By2 = kFftLengthBy2Plus1 / 2;
61 const float high_band_noise_level =
62 std::accumulate(N.begin() + kFftLengthBy2Plus1By2, N.end(), 0.f) *
63 kOneByNumBands;
64
65 // Generate complex noise.
66 std::array<int16_t, kFftLengthBy2 - 1> random_values_int;
67 TableRandomValue(random_values_int.data(), random_values_int.size(), seed);
68
69 std::array<float, kFftLengthBy2 - 1> sin;
70 std::array<float, kFftLengthBy2 - 1> cos;
71 constexpr float kScale = 6.28318530717959f / 32768.0f;
72 std::transform(random_values_int.begin(), random_values_int.end(),
73 sin.begin(), [&](int16_t a) { return -sinf(kScale * a); });
74 std::transform(random_values_int.begin(), random_values_int.end(),
75 cos.begin(), [&](int16_t a) { return cosf(kScale * a); });
76
77 // Form low-frequency noise via spectral shaping.
78 N_low->re[0] = N_low->re[kFftLengthBy2] = N_high->re[0] =
79 N_high->re[kFftLengthBy2] = 0.f;
80 std::transform(cos.begin(), cos.end(), N.begin() + 1, N_low->re.begin() + 1,
81 std::multiplies<float>());
82 std::transform(sin.begin(), sin.end(), N.begin() + 1, N_low->im.begin() + 1,
83 std::multiplies<float>());
84
85 // Form the high-frequency noise via simple levelling.
86 std::transform(cos.begin(), cos.end(), N_high->re.begin() + 1,
87 [&](float a) { return high_band_noise_level * a; });
88 std::transform(sin.begin(), sin.end(), N_high->im.begin() + 1,
89 [&](float a) { return high_band_noise_level * a; });
90 }
91
92 #endif
93
94 void EstimateComfortNoise(const std::array<float, kFftLengthBy2Plus1>& N2,
95 uint32_t* seed,
96 FftData* lower_band_noise,
97 FftData* upper_band_noise) {
98 FftData* N_low = lower_band_noise;
99 FftData* N_high = upper_band_noise;
100
101 // Compute square root spectrum.
102 std::array<float, kFftLengthBy2Plus1> N;
103 std::transform(N2.begin(), N2.end(), N.begin(),
104 [](float a) { return sqrtf(a); });
105
106 // Compute the noise level for the upper bands.
107 constexpr float kOneByNumBands = 1.f / (kFftLengthBy2Plus1 / 2 + 1);
108 constexpr int kFftLengthBy2Plus1By2 = kFftLengthBy2Plus1 / 2;
109 const float high_band_noise_level =
110 std::accumulate(N.begin() + kFftLengthBy2Plus1By2, N.end(), 0.f) *
111 kOneByNumBands;
112
113 // Generate complex noise.
114 std::array<int16_t, kFftLengthBy2 - 1> random_values_int;
115 TableRandomValue(random_values_int.data(), random_values_int.size(), seed);
116
117 std::array<float, kFftLengthBy2 - 1> sin;
118 std::array<float, kFftLengthBy2 - 1> cos;
119 constexpr float kScale = 6.28318530717959f / 32768.0f;
120 std::transform(random_values_int.begin(), random_values_int.end(),
121 sin.begin(), [&](int16_t a) { return -sinf(kScale * a); });
122 std::transform(random_values_int.begin(), random_values_int.end(),
123 cos.begin(), [&](int16_t a) { return cosf(kScale * a); });
124
125 // Form low-frequency noise via spectral shaping.
126 N_low->re[0] = N_low->re[kFftLengthBy2] = N_high->re[0] =
127 N_high->re[kFftLengthBy2] = 0.f;
128 std::transform(cos.begin(), cos.end(), N.begin() + 1, N_low->re.begin() + 1,
129 std::multiplies<float>());
130 std::transform(sin.begin(), sin.end(), N.begin() + 1, N_low->im.begin() + 1,
131 std::multiplies<float>());
132
133 // Form the high-frequency noise via simple levelling.
134 std::transform(cos.begin(), cos.end(), N_high->re.begin() + 1,
135 [&](float a) { return high_band_noise_level * a; });
136 std::transform(sin.begin(), sin.end(), N_high->im.begin() + 1,
137 [&](float a) { return high_band_noise_level * a; });
138 }
139
140 ComfortNoiseGenerator::ComfortNoiseGenerator(Aec3Optimization optimization)
141 : optimization_(optimization),
142 seed_(42),
143 N2_initial_(new std::array<float, kFftLengthBy2Plus1>()) {
144 N2_initial_->fill(0.f);
145 Y2_smoothed_.fill(0.f);
146 N2_.fill(1.0e6f);
147 }
148
149 ComfortNoiseGenerator::~ComfortNoiseGenerator() = default;
150
151 void ComfortNoiseGenerator::Compute(
152 const AecState& aec_state,
153 const std::array<float, kFftLengthBy2Plus1>& capture_spectrum,
154 FftData* lower_band_noise,
155 FftData* upper_band_noise) {
156 RTC_DCHECK(lower_band_noise);
157 RTC_DCHECK(upper_band_noise);
158 const auto& Y2 = capture_spectrum;
159
160 if (!aec_state.SaturatedCapture()) {
161 // Smooth Y2.
162 std::transform(Y2_smoothed_.begin(), Y2_smoothed_.end(), Y2.begin(),
163 Y2_smoothed_.begin(),
164 [](float a, float b) { return a + 0.1f * (b - a); });
165
166 if (N2_counter_ > 50) {
167 // Update N2 from Y2_smoothed.
168 std::transform(N2_.begin(), N2_.end(), Y2_smoothed_.begin(), N2_.begin(),
169 [](float a, float b) {
170 return b < a ? (0.9f * b + 0.1f * a) * 1.0002f
171 : a * 1.0002f;
172 });
173 }
174
175 if (N2_initial_) {
176 if (++N2_counter_ == 1000) {
177 N2_initial_.reset();
178 } else {
179 // Compute the N2_initial from N2.
180 std::transform(
181 N2_.begin(), N2_.end(), N2_initial_->begin(), N2_initial_->begin(),
182 [](float a, float b) { return a > b ? b + 0.001f * (a - b) : a; });
183 }
184 }
185 }
186
187 // Choose N2 estimate to use.
188 const std::array<float, kFftLengthBy2Plus1>& N2 =
189 N2_initial_ ? *N2_initial_ : N2_;
190
191 if (optimization_ == Aec3Optimization::kNone) {
192 EstimateComfortNoise(N2, &seed_, lower_band_noise, upper_band_noise);
193 }
194 #if defined(WEBRTC_ARCH_X86_FAMILY)
195 if (optimization_ == Aec3Optimization::kSse2) {
196 EstimateComfortNoise_SSE2(N2, &seed_, lower_band_noise, upper_band_noise);
197 }
198 #endif
199 }
200
201 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698