OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include "webrtc/test/gtest.h" | 11 #include "webrtc/test/gtest.h" |
12 #include "webrtc/base/random.h" | 12 #include "webrtc/base/random.h" |
13 #include "webrtc/modules/congestion_controller/median_slope_estimator.h" | 13 #include "webrtc/modules/congestion_controller/median_slope_estimator.h" |
14 | 14 |
15 namespace webrtc { | 15 namespace webrtc { |
16 | 16 |
17 namespace { | 17 namespace { |
18 constexpr size_t kWindowSize = 20; | 18 constexpr size_t kWindowSize = 20; |
19 constexpr double kGain = 1; | 19 constexpr double kGain = 1; |
20 constexpr int64_t kAvgTimeBetweenPackets = 10; | 20 constexpr int64_t kAvgTimeBetweenPackets = 10; |
21 constexpr size_t kPacketCount = 2 * kWindowSize + 1; | |
21 } // namespace | 22 } // namespace |
22 | 23 |
23 TEST(MedianSlopeEstimator, PerfectLineSlopeOneHalf) { | 24 void TestEstimator(double slope, double jitter_stddev, double tolerance) { |
24 MedianSlopeEstimator estimator(kWindowSize, kGain); | 25 MedianSlopeEstimator estimator(kWindowSize, kGain); |
25 Random rand(0x1234567); | 26 Random random(0x1234567); |
26 double now_ms = rand.Rand<double>() * 10000; | 27 int64_t send_times[kPacketCount]; |
27 for (size_t i = 1; i < 2 * kWindowSize; i++) { | 28 int64_t recv_times[kPacketCount]; |
28 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | 29 int64_t send_start_time = random.Rand(1000000); |
29 double recv_delta = 2 * send_delta; | 30 int64_t recv_start_time = random.Rand(1000000); |
30 now_ms += recv_delta; | 31 for (size_t i = 0; i < kPacketCount; i++) { |
brandtr
2016/12/15 12:25:35
++i
terelius
2016/12/15 13:42:17
Done.
| |
31 estimator.Update(recv_delta, send_delta, now_ms); | 32 send_times[i] = send_start_time + i * kAvgTimeBetweenPackets; |
33 double latency = i * kAvgTimeBetweenPackets / (1 - slope); | |
34 double jitter = random.Gaussian(0, jitter_stddev); | |
35 recv_times[i] = recv_start_time + latency + jitter; | |
36 } | |
37 for (size_t i = 1; i < kPacketCount; i++) { | |
brandtr
2016/12/15 12:25:35
..
terelius
2016/12/15 13:42:17
Done.
| |
38 double recv_delta = recv_times[i] - recv_times[i - 1]; | |
39 double send_delta = send_times[i] - send_times[i - 1]; | |
40 estimator.Update(recv_delta, send_delta, recv_times[i]); | |
32 if (i < kWindowSize) | 41 if (i < kWindowSize) |
33 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | 42 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
34 else | 43 else |
35 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001); | 44 EXPECT_NEAR(estimator.trendline_slope(), slope, tolerance); |
36 } | 45 } |
37 } | 46 } |
38 | 47 |
48 TEST(MedianSlopeEstimator, PerfectLineSlopeOneHalf) { | |
49 TestEstimator(0.5, 0, 0.001); | |
50 } | |
51 | |
39 TEST(MedianSlopeEstimator, PerfectLineSlopeMinusOne) { | 52 TEST(MedianSlopeEstimator, PerfectLineSlopeMinusOne) { |
40 MedianSlopeEstimator estimator(kWindowSize, kGain); | 53 TestEstimator(-1, 0, 0.001); |
41 Random rand(0x1234567); | |
42 double now_ms = rand.Rand<double>() * 10000; | |
43 for (size_t i = 1; i < 2 * kWindowSize; i++) { | |
44 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | |
45 double recv_delta = 0.5 * send_delta; | |
46 now_ms += recv_delta; | |
47 estimator.Update(recv_delta, send_delta, now_ms); | |
48 if (i < kWindowSize) | |
49 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | |
50 else | |
51 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001); | |
52 } | |
53 } | 54 } |
54 | 55 |
55 TEST(MedianSlopeEstimator, PerfectLineSlopeZero) { | 56 TEST(MedianSlopeEstimator, PerfectLineSlopeZero) { |
56 MedianSlopeEstimator estimator(kWindowSize, kGain); | 57 TestEstimator(0, 0, 0.001); |
57 Random rand(0x1234567); | |
58 double now_ms = rand.Rand<double>() * 10000; | |
59 for (size_t i = 1; i < 2 * kWindowSize; i++) { | |
60 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | |
61 double recv_delta = send_delta; | |
62 now_ms += recv_delta; | |
63 estimator.Update(recv_delta, send_delta, now_ms); | |
64 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | |
65 } | |
66 } | 58 } |
67 | 59 |
68 TEST(MedianSlopeEstimator, JitteryLineSlopeOneHalf) { | 60 TEST(MedianSlopeEstimator, JitteryLineSlopeOneHalf) { |
69 MedianSlopeEstimator estimator(kWindowSize, kGain); | 61 TestEstimator(0.5, kAvgTimeBetweenPackets / 3.0, 0.01); |
70 Random rand(0x1234567); | |
71 double now_ms = rand.Rand<double>() * 10000; | |
72 for (size_t i = 1; i < 2 * kWindowSize; i++) { | |
73 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | |
74 double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3); | |
75 now_ms += recv_delta; | |
76 estimator.Update(recv_delta, send_delta, now_ms); | |
77 if (i < kWindowSize) | |
78 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | |
79 else | |
80 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1); | |
81 } | |
82 } | 62 } |
83 | 63 |
84 TEST(MedianSlopeEstimator, JitteryLineSlopeMinusOne) { | 64 TEST(MedianSlopeEstimator, JitteryLineSlopeMinusOne) { |
85 MedianSlopeEstimator estimator(kWindowSize, kGain); | 65 TestEstimator(-1, kAvgTimeBetweenPackets / 3.0, 0.05); |
86 Random rand(0x1234567); | |
87 double now_ms = rand.Rand<double>() * 10000; | |
88 for (size_t i = 1; i < 2 * kWindowSize; i++) { | |
89 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | |
90 double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 20); | |
91 now_ms += recv_delta; | |
92 estimator.Update(recv_delta, send_delta, now_ms); | |
93 if (i < kWindowSize) | |
94 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | |
95 else | |
96 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1); | |
97 } | |
98 } | 66 } |
99 | 67 |
100 TEST(MedianSlopeEstimator, JitteryLineSlopeZero) { | 68 TEST(MedianSlopeEstimator, JitteryLineSlopeZero) { |
101 MedianSlopeEstimator estimator(kWindowSize, kGain); | 69 TestEstimator(0, kAvgTimeBetweenPackets / 3.0, 0.02); |
102 Random rand(0x1234567); | |
103 double now_ms = rand.Rand<double>() * 10000; | |
104 for (size_t i = 1; i < 2 * kWindowSize; i++) { | |
105 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | |
106 double recv_delta = send_delta + rand.Gaussian(0, send_delta / 5); | |
107 now_ms += recv_delta; | |
108 estimator.Update(recv_delta, send_delta, now_ms); | |
109 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1); | |
110 } | |
111 } | 70 } |
112 | 71 |
113 } // namespace webrtc | 72 } // namespace webrtc |
OLD | NEW |