OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include "webrtc/test/gtest.h" | 11 #include "webrtc/test/gtest.h" |
12 #include "webrtc/base/random.h" | 12 #include "webrtc/base/random.h" |
13 #include "webrtc/modules/congestion_controller/trendline_estimator.h" | 13 #include "webrtc/modules/congestion_controller/trendline_estimator.h" |
14 | 14 |
15 namespace webrtc { | 15 namespace webrtc { |
16 | 16 |
17 namespace { | 17 namespace { |
18 constexpr size_t kWindowSize = 15; | 18 constexpr size_t kWindowSize = 15; |
19 constexpr double kSmoothing = 0.0; | 19 constexpr double kSmoothing = 0.0; |
20 constexpr double kGain = 1; | 20 constexpr double kGain = 1; |
21 constexpr int64_t kAvgTimeBetweenPackets = 10; | 21 constexpr int64_t kAvgTimeBetweenPackets = 10; |
22 } // namespace | 22 } // namespace |
23 | 23 |
24 TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) { | 24 TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) { |
25 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); | 25 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
26 Random rand(0x1234567); | 26 Random rand(0x1234567); |
27 double now_ms = rand.Rand<double>() * 10000; | 27 int64_t arrival_time_ms = rand.Rand(1, 1000000); |
28 for (size_t i = 1; i < 2 * kWindowSize; i++) { | 28 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
29 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | 29 int64_t send_delta = rand.Rand(2 * kAvgTimeBetweenPackets); |
30 double recv_delta = 2 * send_delta; | 30 int64_t recv_delta = 2 * send_delta; |
31 now_ms += recv_delta; | 31 arrival_time_ms += recv_delta; |
32 estimator.Update(recv_delta, send_delta, now_ms); | 32 estimator.Update(recv_delta, send_delta, arrival_time_ms); |
33 if (i < kWindowSize) | 33 if (i < kWindowSize) |
34 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | 34 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
35 else | 35 else |
36 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001); | 36 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001); |
37 } | 37 } |
38 } | 38 } |
39 | 39 |
40 TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) { | 40 TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) { |
41 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); | 41 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
42 Random rand(0x1234567); | 42 Random rand(0x1234567); |
43 double now_ms = rand.Rand<double>() * 10000; | 43 int64_t arrival_time_ms = rand.Rand(1, 1000000); |
44 for (size_t i = 1; i < 2 * kWindowSize; i++) { | 44 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
45 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | 45 int64_t send_delta = 2 * rand.Rand(kAvgTimeBetweenPackets); |
46 double recv_delta = 0.5 * send_delta; | 46 int64_t recv_delta = send_delta / 2; // This division is always exact. |
47 now_ms += recv_delta; | 47 arrival_time_ms += recv_delta; |
48 estimator.Update(recv_delta, send_delta, now_ms); | 48 estimator.Update(recv_delta, send_delta, arrival_time_ms); |
49 if (i < kWindowSize) | 49 if (i < kWindowSize) |
50 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | 50 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
51 else | 51 else |
52 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001); | 52 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001); |
53 } | 53 } |
54 } | 54 } |
55 | 55 |
56 TEST(TrendlineEstimator, PerfectLineSlopeZero) { | 56 TEST(TrendlineEstimator, PerfectLineSlopeZero) { |
57 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); | 57 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
58 Random rand(0x1234567); | 58 Random rand(0x1234567); |
59 double now_ms = rand.Rand<double>() * 10000; | 59 int64_t arrival_time_ms = rand.Rand(1, 1000000); |
60 for (size_t i = 1; i < 2 * kWindowSize; i++) { | 60 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
61 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | 61 int64_t send_delta = rand.Rand(2 * kAvgTimeBetweenPackets); |
62 double recv_delta = send_delta; | 62 int64_t recv_delta = send_delta; |
63 now_ms += recv_delta; | 63 arrival_time_ms += recv_delta; |
64 estimator.Update(recv_delta, send_delta, now_ms); | 64 estimator.Update(recv_delta, send_delta, arrival_time_ms); |
65 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | 65 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
66 } | 66 } |
67 } | 67 } |
68 | 68 |
69 TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) { | 69 TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) { |
70 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); | 70 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
71 Random rand(0x1234567); | 71 Random rand(0x1234567); |
72 double now_ms = rand.Rand<double>() * 10000; | 72 int64_t arrival_time_ms = rand.Rand(1, 1000000); |
73 for (size_t i = 1; i < 2 * kWindowSize; i++) { | 73 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
74 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | 74 int64_t send_delta = rand.Rand(2 * kAvgTimeBetweenPackets); |
75 double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3); | 75 int64_t recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3); |
76 now_ms += recv_delta; | 76 arrival_time_ms += recv_delta; |
77 estimator.Update(recv_delta, send_delta, now_ms); | 77 estimator.Update(recv_delta, send_delta, arrival_time_ms); |
78 if (i < kWindowSize) | 78 if (i < kWindowSize) |
79 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | 79 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
80 else | 80 else |
81 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1); | 81 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1); |
82 } | 82 } |
83 } | 83 } |
84 | 84 |
85 TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) { | 85 TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) { |
86 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); | 86 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
87 Random rand(0x1234567); | 87 Random rand(0x1234567); |
88 double now_ms = rand.Rand<double>() * 10000; | 88 int64_t arrival_time_ms = rand.Rand(1000000); |
89 for (size_t i = 1; i < 2 * kWindowSize; i++) { | 89 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
90 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | 90 int64_t send_delta = 2 * rand.Rand(kAvgTimeBetweenPackets); |
91 double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25); | 91 int64_t recv_delta = send_delta / 2 + rand.Gaussian(0, send_delta / 25); |
92 now_ms += recv_delta; | 92 arrival_time_ms += recv_delta; |
93 estimator.Update(recv_delta, send_delta, now_ms); | 93 estimator.Update(recv_delta, send_delta, arrival_time_ms); |
94 if (i < kWindowSize) | 94 if (i < kWindowSize) |
95 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); | 95 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
96 else | 96 else |
97 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1); | 97 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1); |
98 } | 98 } |
99 } | 99 } |
100 | 100 |
101 TEST(TrendlineEstimator, JitteryLineSlopeZero) { | 101 TEST(TrendlineEstimator, JitteryLineSlopeZero) { |
102 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); | 102 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
103 Random rand(0x1234567); | 103 Random rand(0x1234567); |
104 double now_ms = rand.Rand<double>() * 10000; | 104 int64_t arrival_time_ms = rand.Rand(1, 1000000); |
105 for (size_t i = 1; i < 2 * kWindowSize; i++) { | 105 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
106 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; | 106 int64_t send_delta = rand.Rand(2 * kAvgTimeBetweenPackets); |
107 double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8); | 107 int64_t recv_delta = send_delta + rand.Gaussian(0, send_delta / 8); |
108 now_ms += recv_delta; | 108 arrival_time_ms += recv_delta; |
109 estimator.Update(recv_delta, send_delta, now_ms); | 109 estimator.Update(recv_delta, send_delta, arrival_time_ms); |
110 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1); | 110 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1); |
111 } | 111 } |
112 } | 112 } |
113 | 113 |
114 } // namespace webrtc | 114 } // namespace webrtc |
OLD | NEW |