OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include "webrtc/modules/congestion_controller/trendline_estimator.h" | 11 #include "webrtc/modules/congestion_controller/trendline_estimator.h" |
12 | 12 |
13 #include <algorithm> | 13 #include <algorithm> |
14 | 14 |
15 #include "webrtc/base/checks.h" | 15 #include "webrtc/base/checks.h" |
| 16 #include "webrtc/base/optional.h" |
16 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" | 17 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" |
17 | 18 |
18 namespace webrtc { | 19 namespace webrtc { |
19 | 20 |
20 namespace { | 21 namespace { |
21 double LinearFitSlope(const std::list<std::pair<double, double>> points) { | 22 rtc::Optional<double> LinearFitSlope( |
| 23 const std::list<std::pair<double, double>> points) { |
22 RTC_DCHECK(points.size() >= 2); | 24 RTC_DCHECK(points.size() >= 2); |
23 // Compute the "center of mass". | 25 // Compute the "center of mass". |
24 double sum_x = 0; | 26 double sum_x = 0; |
25 double sum_y = 0; | 27 double sum_y = 0; |
26 for (const auto& point : points) { | 28 for (const auto& point : points) { |
27 sum_x += point.first; | 29 sum_x += point.first; |
28 sum_y += point.second; | 30 sum_y += point.second; |
29 } | 31 } |
30 double x_avg = sum_x / points.size(); | 32 double x_avg = sum_x / points.size(); |
31 double y_avg = sum_y / points.size(); | 33 double y_avg = sum_y / points.size(); |
32 // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 | 34 // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 |
33 double numerator = 0; | 35 double numerator = 0; |
34 double denominator = 0; | 36 double denominator = 0; |
35 for (const auto& point : points) { | 37 for (const auto& point : points) { |
36 numerator += (point.first - x_avg) * (point.second - y_avg); | 38 numerator += (point.first - x_avg) * (point.second - y_avg); |
37 denominator += (point.first - x_avg) * (point.first - x_avg); | 39 denominator += (point.first - x_avg) * (point.first - x_avg); |
38 } | 40 } |
39 return numerator / denominator; | 41 if (denominator == 0) |
| 42 return rtc::Optional<double>(); |
| 43 return rtc::Optional<double>(numerator / denominator); |
40 } | 44 } |
41 } // namespace | 45 } // namespace |
42 | 46 |
43 enum { kDeltaCounterMax = 1000 }; | 47 enum { kDeltaCounterMax = 1000 }; |
44 | 48 |
45 TrendlineEstimator::TrendlineEstimator(size_t window_size, | 49 TrendlineEstimator::TrendlineEstimator(size_t window_size, |
46 double smoothing_coef, | 50 double smoothing_coef, |
47 double threshold_gain) | 51 double threshold_gain) |
48 : window_size_(window_size), | 52 : window_size_(window_size), |
49 smoothing_coef_(smoothing_coef), | 53 smoothing_coef_(smoothing_coef), |
50 threshold_gain_(threshold_gain), | 54 threshold_gain_(threshold_gain), |
51 num_of_deltas_(0), | 55 num_of_deltas_(0), |
| 56 first_arrival_time_ms(-1), |
52 accumulated_delay_(0), | 57 accumulated_delay_(0), |
53 smoothed_delay_(0), | 58 smoothed_delay_(0), |
54 delay_hist_(), | 59 delay_hist_(), |
55 trendline_(0) {} | 60 trendline_(0) {} |
56 | 61 |
57 TrendlineEstimator::~TrendlineEstimator() {} | 62 TrendlineEstimator::~TrendlineEstimator() {} |
58 | 63 |
59 void TrendlineEstimator::Update(double recv_delta_ms, | 64 void TrendlineEstimator::Update(double recv_delta_ms, |
60 double send_delta_ms, | 65 double send_delta_ms, |
61 double now_ms) { | 66 int64_t arrival_time_ms) { |
62 const double delta_ms = recv_delta_ms - send_delta_ms; | 67 const double delta_ms = recv_delta_ms - send_delta_ms; |
63 ++num_of_deltas_; | 68 ++num_of_deltas_; |
64 if (num_of_deltas_ > kDeltaCounterMax) { | 69 if (num_of_deltas_ > kDeltaCounterMax) |
65 num_of_deltas_ = kDeltaCounterMax; | 70 num_of_deltas_ = kDeltaCounterMax; |
66 } | 71 if (first_arrival_time_ms == -1) |
| 72 first_arrival_time_ms = arrival_time_ms; |
67 | 73 |
68 // Exponential backoff filter. | 74 // Exponential backoff filter. |
69 accumulated_delay_ += delta_ms; | 75 accumulated_delay_ += delta_ms; |
70 BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_); | 76 BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms, |
| 77 accumulated_delay_); |
71 smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + | 78 smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + |
72 (1 - smoothing_coef_) * accumulated_delay_; | 79 (1 - smoothing_coef_) * accumulated_delay_; |
73 BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_); | 80 BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms, |
| 81 smoothed_delay_); |
74 | 82 |
75 // Simple linear regression. | 83 // Simple linear regression. |
76 delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_)); | 84 delay_hist_.push_back(std::make_pair( |
77 if (delay_hist_.size() > window_size_) { | 85 static_cast<double>(arrival_time_ms - first_arrival_time_ms), |
| 86 smoothed_delay_)); |
| 87 if (delay_hist_.size() > window_size_) |
78 delay_hist_.pop_front(); | 88 delay_hist_.pop_front(); |
79 } | |
80 if (delay_hist_.size() == window_size_) { | 89 if (delay_hist_.size() == window_size_) { |
81 trendline_ = LinearFitSlope(delay_hist_); | 90 // Only update trendline_ if it is possible to fit a line to the data. |
| 91 trendline_ = LinearFitSlope(delay_hist_).value_or(trendline_); |
82 } | 92 } |
83 | 93 |
84 BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_); | 94 BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trendline_); |
85 } | 95 } |
86 | 96 |
87 } // namespace webrtc | 97 } // namespace webrtc |
OLD | NEW |