OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ |
| 10 |
| 11 #include "webrtc/test/gtest.h" |
| 12 #include "webrtc/base/random.h" |
| 13 #include "webrtc/modules/congestion_controller/trendline_estimator.h" |
| 14 |
| 15 namespace webrtc { |
| 16 |
| 17 namespace { |
| 18 constexpr size_t kWindowSize = 15; |
| 19 constexpr double kSmoothing = 0.0; |
| 20 constexpr double kGain = 1; |
| 21 constexpr int64_t kAvgTimeBetweenPackets = 10; |
| 22 } // namespace |
| 23 |
| 24 TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) { |
| 25 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| 26 Random rand(0x1234567); |
| 27 double now_ms = rand.Rand<double>() * 10000; |
| 28 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 29 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 30 double recv_delta = 2 * send_delta; |
| 31 now_ms += recv_delta; |
| 32 estimator.Update(recv_delta, send_delta, now_ms); |
| 33 if (i < kWindowSize) |
| 34 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 35 else |
| 36 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001); |
| 37 } |
| 38 } |
| 39 |
| 40 TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) { |
| 41 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| 42 Random rand(0x1234567); |
| 43 double now_ms = rand.Rand<double>() * 10000; |
| 44 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 45 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 46 double recv_delta = 0.5 * send_delta; |
| 47 now_ms += recv_delta; |
| 48 estimator.Update(recv_delta, send_delta, now_ms); |
| 49 if (i < kWindowSize) |
| 50 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 51 else |
| 52 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001); |
| 53 } |
| 54 } |
| 55 |
| 56 TEST(TrendlineEstimator, PerfectLineSlopeZero) { |
| 57 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| 58 Random rand(0x1234567); |
| 59 double now_ms = rand.Rand<double>() * 10000; |
| 60 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 61 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 62 double recv_delta = send_delta; |
| 63 now_ms += recv_delta; |
| 64 estimator.Update(recv_delta, send_delta, now_ms); |
| 65 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 66 } |
| 67 } |
| 68 |
| 69 TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) { |
| 70 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| 71 Random rand(0x1234567); |
| 72 double now_ms = rand.Rand<double>() * 10000; |
| 73 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 74 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 75 double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3); |
| 76 now_ms += recv_delta; |
| 77 estimator.Update(recv_delta, send_delta, now_ms); |
| 78 if (i < kWindowSize) |
| 79 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 80 else |
| 81 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1); |
| 82 } |
| 83 } |
| 84 |
| 85 TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) { |
| 86 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| 87 Random rand(0x1234567); |
| 88 double now_ms = rand.Rand<double>() * 10000; |
| 89 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 90 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 91 double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25); |
| 92 now_ms += recv_delta; |
| 93 estimator.Update(recv_delta, send_delta, now_ms); |
| 94 if (i < kWindowSize) |
| 95 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 96 else |
| 97 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1); |
| 98 } |
| 99 } |
| 100 |
| 101 TEST(TrendlineEstimator, JitteryLineSlopeZero) { |
| 102 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| 103 Random rand(0x1234567); |
| 104 double now_ms = rand.Rand<double>() * 10000; |
| 105 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 106 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 107 double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8); |
| 108 now_ms += recv_delta; |
| 109 estimator.Update(recv_delta, send_delta, now_ms); |
| 110 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1); |
| 111 } |
| 112 } |
| 113 |
| 114 } // namespace webrtc |
OLD | NEW |