| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 * | |
| 10 */ | |
| 11 | |
| 12 #include "webrtc/sdk/objc/Framework/Classes/h264_video_toolbox_nalu.h" | |
| 13 | |
| 14 #include <CoreFoundation/CoreFoundation.h> | |
| 15 #include <memory> | |
| 16 #include <vector> | |
| 17 | |
| 18 #include "webrtc/base/checks.h" | |
| 19 #include "webrtc/base/logging.h" | |
| 20 #include "webrtc/common_video/h264/h264_common.h" | |
| 21 | |
| 22 namespace webrtc { | |
| 23 | |
| 24 using H264::NaluType; | |
| 25 using H264::kAud; | |
| 26 using H264::kSps; | |
| 27 using H264::ParseNaluType; | |
| 28 | |
| 29 const char kAnnexBHeaderBytes[4] = {0, 0, 0, 1}; | |
| 30 const size_t kAvccHeaderByteSize = sizeof(uint32_t); | |
| 31 | |
| 32 bool H264CMSampleBufferToAnnexBBuffer( | |
| 33 CMSampleBufferRef avcc_sample_buffer, | |
| 34 bool is_keyframe, | |
| 35 rtc::Buffer* annexb_buffer, | |
| 36 webrtc::RTPFragmentationHeader** out_header) { | |
| 37 RTC_DCHECK(avcc_sample_buffer); | |
| 38 RTC_DCHECK(out_header); | |
| 39 *out_header = nullptr; | |
| 40 | |
| 41 // Get format description from the sample buffer. | |
| 42 CMVideoFormatDescriptionRef description = | |
| 43 CMSampleBufferGetFormatDescription(avcc_sample_buffer); | |
| 44 if (description == nullptr) { | |
| 45 LOG(LS_ERROR) << "Failed to get sample buffer's description."; | |
| 46 return false; | |
| 47 } | |
| 48 | |
| 49 // Get parameter set information. | |
| 50 int nalu_header_size = 0; | |
| 51 size_t param_set_count = 0; | |
| 52 OSStatus status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex( | |
| 53 description, 0, nullptr, nullptr, ¶m_set_count, &nalu_header_size); | |
| 54 if (status != noErr) { | |
| 55 LOG(LS_ERROR) << "Failed to get parameter set."; | |
| 56 return false; | |
| 57 } | |
| 58 // TODO(tkchin): handle other potential sizes. | |
| 59 RTC_DCHECK_EQ(nalu_header_size, 4); | |
| 60 RTC_DCHECK_EQ(param_set_count, 2u); | |
| 61 | |
| 62 // Truncate any previous data in the buffer without changing its capacity. | |
| 63 annexb_buffer->SetSize(0); | |
| 64 | |
| 65 size_t nalu_offset = 0; | |
| 66 std::vector<size_t> frag_offsets; | |
| 67 std::vector<size_t> frag_lengths; | |
| 68 | |
| 69 // Place all parameter sets at the front of buffer. | |
| 70 if (is_keyframe) { | |
| 71 size_t param_set_size = 0; | |
| 72 const uint8_t* param_set = nullptr; | |
| 73 for (size_t i = 0; i < param_set_count; ++i) { | |
| 74 status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex( | |
| 75 description, i, ¶m_set, ¶m_set_size, nullptr, nullptr); | |
| 76 if (status != noErr) { | |
| 77 LOG(LS_ERROR) << "Failed to get parameter set."; | |
| 78 return false; | |
| 79 } | |
| 80 // Update buffer. | |
| 81 annexb_buffer->AppendData(kAnnexBHeaderBytes, sizeof(kAnnexBHeaderBytes)); | |
| 82 annexb_buffer->AppendData(reinterpret_cast<const char*>(param_set), | |
| 83 param_set_size); | |
| 84 // Update fragmentation. | |
| 85 frag_offsets.push_back(nalu_offset + sizeof(kAnnexBHeaderBytes)); | |
| 86 frag_lengths.push_back(param_set_size); | |
| 87 nalu_offset += sizeof(kAnnexBHeaderBytes) + param_set_size; | |
| 88 } | |
| 89 } | |
| 90 | |
| 91 // Get block buffer from the sample buffer. | |
| 92 CMBlockBufferRef block_buffer = | |
| 93 CMSampleBufferGetDataBuffer(avcc_sample_buffer); | |
| 94 if (block_buffer == nullptr) { | |
| 95 LOG(LS_ERROR) << "Failed to get sample buffer's block buffer."; | |
| 96 return false; | |
| 97 } | |
| 98 CMBlockBufferRef contiguous_buffer = nullptr; | |
| 99 // Make sure block buffer is contiguous. | |
| 100 if (!CMBlockBufferIsRangeContiguous(block_buffer, 0, 0)) { | |
| 101 status = CMBlockBufferCreateContiguous( | |
| 102 nullptr, block_buffer, nullptr, nullptr, 0, 0, 0, &contiguous_buffer); | |
| 103 if (status != noErr) { | |
| 104 LOG(LS_ERROR) << "Failed to flatten non-contiguous block buffer: " | |
| 105 << status; | |
| 106 return false; | |
| 107 } | |
| 108 } else { | |
| 109 contiguous_buffer = block_buffer; | |
| 110 // Retain to make cleanup easier. | |
| 111 CFRetain(contiguous_buffer); | |
| 112 block_buffer = nullptr; | |
| 113 } | |
| 114 | |
| 115 // Now copy the actual data. | |
| 116 char* data_ptr = nullptr; | |
| 117 size_t block_buffer_size = CMBlockBufferGetDataLength(contiguous_buffer); | |
| 118 status = CMBlockBufferGetDataPointer(contiguous_buffer, 0, nullptr, nullptr, | |
| 119 &data_ptr); | |
| 120 if (status != noErr) { | |
| 121 LOG(LS_ERROR) << "Failed to get block buffer data."; | |
| 122 CFRelease(contiguous_buffer); | |
| 123 return false; | |
| 124 } | |
| 125 size_t bytes_remaining = block_buffer_size; | |
| 126 while (bytes_remaining > 0) { | |
| 127 // The size type here must match |nalu_header_size|, we expect 4 bytes. | |
| 128 // Read the length of the next packet of data. Must convert from big endian | |
| 129 // to host endian. | |
| 130 RTC_DCHECK_GE(bytes_remaining, (size_t)nalu_header_size); | |
| 131 uint32_t* uint32_data_ptr = reinterpret_cast<uint32_t*>(data_ptr); | |
| 132 uint32_t packet_size = CFSwapInt32BigToHost(*uint32_data_ptr); | |
| 133 // Update buffer. | |
| 134 annexb_buffer->AppendData(kAnnexBHeaderBytes, sizeof(kAnnexBHeaderBytes)); | |
| 135 annexb_buffer->AppendData(data_ptr + nalu_header_size, packet_size); | |
| 136 // Update fragmentation. | |
| 137 frag_offsets.push_back(nalu_offset + sizeof(kAnnexBHeaderBytes)); | |
| 138 frag_lengths.push_back(packet_size); | |
| 139 nalu_offset += sizeof(kAnnexBHeaderBytes) + packet_size; | |
| 140 | |
| 141 size_t bytes_written = packet_size + nalu_header_size; | |
| 142 bytes_remaining -= bytes_written; | |
| 143 data_ptr += bytes_written; | |
| 144 } | |
| 145 RTC_DCHECK_EQ(bytes_remaining, (size_t)0); | |
| 146 | |
| 147 std::unique_ptr<webrtc::RTPFragmentationHeader> header; | |
| 148 header.reset(new webrtc::RTPFragmentationHeader()); | |
| 149 header->VerifyAndAllocateFragmentationHeader(frag_offsets.size()); | |
| 150 RTC_DCHECK_EQ(frag_lengths.size(), frag_offsets.size()); | |
| 151 for (size_t i = 0; i < frag_offsets.size(); ++i) { | |
| 152 header->fragmentationOffset[i] = frag_offsets[i]; | |
| 153 header->fragmentationLength[i] = frag_lengths[i]; | |
| 154 header->fragmentationPlType[i] = 0; | |
| 155 header->fragmentationTimeDiff[i] = 0; | |
| 156 } | |
| 157 *out_header = header.release(); | |
| 158 CFRelease(contiguous_buffer); | |
| 159 return true; | |
| 160 } | |
| 161 | |
| 162 bool H264AnnexBBufferToCMSampleBuffer(const uint8_t* annexb_buffer, | |
| 163 size_t annexb_buffer_size, | |
| 164 CMVideoFormatDescriptionRef video_format, | |
| 165 CMSampleBufferRef* out_sample_buffer) { | |
| 166 RTC_DCHECK(annexb_buffer); | |
| 167 RTC_DCHECK(out_sample_buffer); | |
| 168 RTC_DCHECK(video_format); | |
| 169 *out_sample_buffer = nullptr; | |
| 170 | |
| 171 AnnexBBufferReader reader(annexb_buffer, annexb_buffer_size); | |
| 172 if (H264AnnexBBufferHasVideoFormatDescription(annexb_buffer, | |
| 173 annexb_buffer_size)) { | |
| 174 // Advance past the SPS and PPS. | |
| 175 const uint8_t* data = nullptr; | |
| 176 size_t data_len = 0; | |
| 177 if (!reader.ReadNalu(&data, &data_len)) { | |
| 178 LOG(LS_ERROR) << "Failed to read SPS"; | |
| 179 return false; | |
| 180 } | |
| 181 if (!reader.ReadNalu(&data, &data_len)) { | |
| 182 LOG(LS_ERROR) << "Failed to read PPS"; | |
| 183 return false; | |
| 184 } | |
| 185 } | |
| 186 | |
| 187 // Allocate memory as a block buffer. | |
| 188 // TODO(tkchin): figure out how to use a pool. | |
| 189 CMBlockBufferRef block_buffer = nullptr; | |
| 190 OSStatus status = CMBlockBufferCreateWithMemoryBlock( | |
| 191 nullptr, nullptr, reader.BytesRemaining(), nullptr, nullptr, 0, | |
| 192 reader.BytesRemaining(), kCMBlockBufferAssureMemoryNowFlag, | |
| 193 &block_buffer); | |
| 194 if (status != kCMBlockBufferNoErr) { | |
| 195 LOG(LS_ERROR) << "Failed to create block buffer."; | |
| 196 return false; | |
| 197 } | |
| 198 | |
| 199 // Make sure block buffer is contiguous. | |
| 200 CMBlockBufferRef contiguous_buffer = nullptr; | |
| 201 if (!CMBlockBufferIsRangeContiguous(block_buffer, 0, 0)) { | |
| 202 status = CMBlockBufferCreateContiguous( | |
| 203 nullptr, block_buffer, nullptr, nullptr, 0, 0, 0, &contiguous_buffer); | |
| 204 if (status != noErr) { | |
| 205 LOG(LS_ERROR) << "Failed to flatten non-contiguous block buffer: " | |
| 206 << status; | |
| 207 CFRelease(block_buffer); | |
| 208 return false; | |
| 209 } | |
| 210 } else { | |
| 211 contiguous_buffer = block_buffer; | |
| 212 block_buffer = nullptr; | |
| 213 } | |
| 214 | |
| 215 // Get a raw pointer into allocated memory. | |
| 216 size_t block_buffer_size = 0; | |
| 217 char* data_ptr = nullptr; | |
| 218 status = CMBlockBufferGetDataPointer(contiguous_buffer, 0, nullptr, | |
| 219 &block_buffer_size, &data_ptr); | |
| 220 if (status != kCMBlockBufferNoErr) { | |
| 221 LOG(LS_ERROR) << "Failed to get block buffer data pointer."; | |
| 222 CFRelease(contiguous_buffer); | |
| 223 return false; | |
| 224 } | |
| 225 RTC_DCHECK(block_buffer_size == reader.BytesRemaining()); | |
| 226 | |
| 227 // Write Avcc NALUs into block buffer memory. | |
| 228 AvccBufferWriter writer(reinterpret_cast<uint8_t*>(data_ptr), | |
| 229 block_buffer_size); | |
| 230 while (reader.BytesRemaining() > 0) { | |
| 231 const uint8_t* nalu_data_ptr = nullptr; | |
| 232 size_t nalu_data_size = 0; | |
| 233 if (reader.ReadNalu(&nalu_data_ptr, &nalu_data_size)) { | |
| 234 writer.WriteNalu(nalu_data_ptr, nalu_data_size); | |
| 235 } | |
| 236 } | |
| 237 | |
| 238 // Create sample buffer. | |
| 239 status = CMSampleBufferCreate(nullptr, contiguous_buffer, true, nullptr, | |
| 240 nullptr, video_format, 1, 0, nullptr, 0, | |
| 241 nullptr, out_sample_buffer); | |
| 242 if (status != noErr) { | |
| 243 LOG(LS_ERROR) << "Failed to create sample buffer."; | |
| 244 CFRelease(contiguous_buffer); | |
| 245 return false; | |
| 246 } | |
| 247 CFRelease(contiguous_buffer); | |
| 248 return true; | |
| 249 } | |
| 250 | |
| 251 bool H264AnnexBBufferHasVideoFormatDescription(const uint8_t* annexb_buffer, | |
| 252 size_t annexb_buffer_size) { | |
| 253 RTC_DCHECK(annexb_buffer); | |
| 254 RTC_DCHECK_GT(annexb_buffer_size, 4u); | |
| 255 | |
| 256 // The buffer we receive via RTP has 00 00 00 01 start code artifically | |
| 257 // embedded by the RTP depacketizer. Extract NALU information. | |
| 258 // TODO(tkchin): handle potential case where sps and pps are delivered | |
| 259 // separately. | |
| 260 NaluType first_nalu_type = ParseNaluType(annexb_buffer[4]); | |
| 261 bool is_first_nalu_type_sps = first_nalu_type == kSps; | |
| 262 if (is_first_nalu_type_sps) | |
| 263 return true; | |
| 264 bool is_first_nalu_type_aud = first_nalu_type == kAud; | |
| 265 // Start code + access unit delimiter + start code = 4 + 2 + 4 = 10. | |
| 266 if (!is_first_nalu_type_aud || annexb_buffer_size <= 10u) | |
| 267 return false; | |
| 268 NaluType second_nalu_type = ParseNaluType(annexb_buffer[10]); | |
| 269 bool is_second_nalu_type_sps = second_nalu_type == kSps; | |
| 270 return is_second_nalu_type_sps; | |
| 271 } | |
| 272 | |
| 273 CMVideoFormatDescriptionRef CreateVideoFormatDescription( | |
| 274 const uint8_t* annexb_buffer, | |
| 275 size_t annexb_buffer_size) { | |
| 276 if (!H264AnnexBBufferHasVideoFormatDescription(annexb_buffer, | |
| 277 annexb_buffer_size)) { | |
| 278 return nullptr; | |
| 279 } | |
| 280 AnnexBBufferReader reader(annexb_buffer, annexb_buffer_size); | |
| 281 CMVideoFormatDescriptionRef description = nullptr; | |
| 282 OSStatus status = noErr; | |
| 283 // Parse the SPS and PPS into a CMVideoFormatDescription. | |
| 284 const uint8_t* param_set_ptrs[2] = {}; | |
| 285 size_t param_set_sizes[2] = {}; | |
| 286 // Skip AUD. | |
| 287 if (ParseNaluType(annexb_buffer[4]) == kAud) { | |
| 288 if (!reader.ReadNalu(¶m_set_ptrs[0], ¶m_set_sizes[0])) { | |
| 289 LOG(LS_ERROR) << "Failed to read AUD"; | |
| 290 return nullptr; | |
| 291 } | |
| 292 } | |
| 293 if (!reader.ReadNalu(¶m_set_ptrs[0], ¶m_set_sizes[0])) { | |
| 294 LOG(LS_ERROR) << "Failed to read SPS"; | |
| 295 return nullptr; | |
| 296 } | |
| 297 if (!reader.ReadNalu(¶m_set_ptrs[1], ¶m_set_sizes[1])) { | |
| 298 LOG(LS_ERROR) << "Failed to read PPS"; | |
| 299 return nullptr; | |
| 300 } | |
| 301 status = CMVideoFormatDescriptionCreateFromH264ParameterSets( | |
| 302 kCFAllocatorDefault, 2, param_set_ptrs, param_set_sizes, 4, | |
| 303 &description); | |
| 304 if (status != noErr) { | |
| 305 LOG(LS_ERROR) << "Failed to create video format description."; | |
| 306 return nullptr; | |
| 307 } | |
| 308 return description; | |
| 309 } | |
| 310 | |
| 311 AnnexBBufferReader::AnnexBBufferReader(const uint8_t* annexb_buffer, | |
| 312 size_t length) | |
| 313 : start_(annexb_buffer), offset_(0), next_offset_(0), length_(length) { | |
| 314 RTC_DCHECK(annexb_buffer); | |
| 315 offset_ = FindNextNaluHeader(start_, length_, 0); | |
| 316 next_offset_ = | |
| 317 FindNextNaluHeader(start_, length_, offset_ + sizeof(kAnnexBHeaderBytes)); | |
| 318 } | |
| 319 | |
| 320 bool AnnexBBufferReader::ReadNalu(const uint8_t** out_nalu, | |
| 321 size_t* out_length) { | |
| 322 RTC_DCHECK(out_nalu); | |
| 323 RTC_DCHECK(out_length); | |
| 324 *out_nalu = nullptr; | |
| 325 *out_length = 0; | |
| 326 | |
| 327 size_t data_offset = offset_ + sizeof(kAnnexBHeaderBytes); | |
| 328 if (data_offset > length_) { | |
| 329 return false; | |
| 330 } | |
| 331 *out_nalu = start_ + data_offset; | |
| 332 *out_length = next_offset_ - data_offset; | |
| 333 offset_ = next_offset_; | |
| 334 next_offset_ = | |
| 335 FindNextNaluHeader(start_, length_, offset_ + sizeof(kAnnexBHeaderBytes)); | |
| 336 return true; | |
| 337 } | |
| 338 | |
| 339 size_t AnnexBBufferReader::BytesRemaining() const { | |
| 340 return length_ - offset_; | |
| 341 } | |
| 342 | |
| 343 size_t AnnexBBufferReader::FindNextNaluHeader(const uint8_t* start, | |
| 344 size_t length, | |
| 345 size_t offset) const { | |
| 346 RTC_DCHECK(start); | |
| 347 if (offset + sizeof(kAnnexBHeaderBytes) > length) { | |
| 348 return length; | |
| 349 } | |
| 350 // NALUs are separated by an 00 00 00 01 header. Scan the byte stream | |
| 351 // starting from the offset for the next such sequence. | |
| 352 const uint8_t* current = start + offset; | |
| 353 // The loop reads sizeof(kAnnexBHeaderBytes) at a time, so stop when there | |
| 354 // aren't enough bytes remaining. | |
| 355 const uint8_t* const end = start + length - sizeof(kAnnexBHeaderBytes); | |
| 356 while (current < end) { | |
| 357 if (current[3] > 1) { | |
| 358 current += 4; | |
| 359 } else if (current[3] == 1 && current[2] == 0 && current[1] == 0 && | |
| 360 current[0] == 0) { | |
| 361 return current - start; | |
| 362 } else { | |
| 363 ++current; | |
| 364 } | |
| 365 } | |
| 366 return length; | |
| 367 } | |
| 368 | |
| 369 AvccBufferWriter::AvccBufferWriter(uint8_t* const avcc_buffer, size_t length) | |
| 370 : start_(avcc_buffer), offset_(0), length_(length) { | |
| 371 RTC_DCHECK(avcc_buffer); | |
| 372 } | |
| 373 | |
| 374 bool AvccBufferWriter::WriteNalu(const uint8_t* data, size_t data_size) { | |
| 375 // Check if we can write this length of data. | |
| 376 if (data_size + kAvccHeaderByteSize > BytesRemaining()) { | |
| 377 return false; | |
| 378 } | |
| 379 // Write length header, which needs to be big endian. | |
| 380 uint32_t big_endian_length = CFSwapInt32HostToBig(data_size); | |
| 381 memcpy(start_ + offset_, &big_endian_length, sizeof(big_endian_length)); | |
| 382 offset_ += sizeof(big_endian_length); | |
| 383 // Write data. | |
| 384 memcpy(start_ + offset_, data, data_size); | |
| 385 offset_ += data_size; | |
| 386 return true; | |
| 387 } | |
| 388 | |
| 389 size_t AvccBufferWriter::BytesRemaining() const { | |
| 390 return length_ - offset_; | |
| 391 } | |
| 392 | |
| 393 } // namespace webrtc | |
| OLD | NEW |