| Index: webrtc/modules/audio_processing/residual_echo_detector_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/residual_echo_detector_unittest.cc b/webrtc/modules/audio_processing/residual_echo_detector_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..7f6cf16abd57af5c7e5bb33db4c9efd6541eab97
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/residual_echo_detector_unittest.cc
|
| @@ -0,0 +1,124 @@
|
| +/*
|
| + * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include <vector>
|
| +
|
| +#include "webrtc/modules/audio_processing/residual_echo_detector.h"
|
| +#include "webrtc/test/gtest.h"
|
| +
|
| +namespace webrtc {
|
| +
|
| +TEST(ResidualEchoDetectorTests, Echo) {
|
| + ResidualEchoDetector echo_detector;
|
| + std::vector<float> ones(160, 1.f);
|
| + std::vector<float> zeros(160, 0.f);
|
| +
|
| + // In this test the capture signal has a delay of 10 frames w.r.t. the render
|
| + // signal, but is otherwise identical. Both signals are periodic with a 20
|
| + // frame interval.
|
| + for (int i = 0; i < 1000; i++) {
|
| + if (i % 20 == 0) {
|
| + echo_detector.AnalyzeRenderAudio(ones);
|
| + echo_detector.AnalyzeCaptureAudio(zeros);
|
| + } else if (i % 20 == 10) {
|
| + echo_detector.AnalyzeRenderAudio(zeros);
|
| + echo_detector.AnalyzeCaptureAudio(ones);
|
| + } else {
|
| + echo_detector.AnalyzeRenderAudio(zeros);
|
| + echo_detector.AnalyzeCaptureAudio(zeros);
|
| + }
|
| + }
|
| + // We expect to detect echo with near certain likelihood.
|
| + EXPECT_NEAR(1.f, echo_detector.echo_likelihood(), 0.01f);
|
| +}
|
| +
|
| +TEST(ResidualEchoDetectorTests, NoEcho) {
|
| + ResidualEchoDetector echo_detector;
|
| + std::vector<float> ones(160, 1.f);
|
| + std::vector<float> zeros(160, 0.f);
|
| +
|
| + // In this test the capture signal is always zero, so no echo should be
|
| + // detected.
|
| + for (int i = 0; i < 1000; i++) {
|
| + if (i % 20 == 0) {
|
| + echo_detector.AnalyzeRenderAudio(ones);
|
| + } else {
|
| + echo_detector.AnalyzeRenderAudio(zeros);
|
| + }
|
| + echo_detector.AnalyzeCaptureAudio(zeros);
|
| + }
|
| + // We expect to not detect any echo.
|
| + EXPECT_NEAR(0.f, echo_detector.echo_likelihood(), 0.01f);
|
| +}
|
| +
|
| +TEST(ResidualEchoDetectorTests, EchoWithRenderClockDrift) {
|
| + ResidualEchoDetector echo_detector;
|
| + std::vector<float> ones(160, 1.f);
|
| + std::vector<float> zeros(160, 0.f);
|
| +
|
| + // In this test the capture signal has a delay of 10 frames w.r.t. the render
|
| + // signal, but is otherwise identical. Both signals are periodic with a 20
|
| + // frame interval. There is a simulated clock drift of 1% in this test, with
|
| + // the render side producing data slightly faster.
|
| + for (int i = 0; i < 1000; i++) {
|
| + if (i % 20 == 0) {
|
| + echo_detector.AnalyzeRenderAudio(ones);
|
| + echo_detector.AnalyzeCaptureAudio(zeros);
|
| + } else if (i % 20 == 10) {
|
| + echo_detector.AnalyzeRenderAudio(zeros);
|
| + echo_detector.AnalyzeCaptureAudio(ones);
|
| + } else {
|
| + echo_detector.AnalyzeRenderAudio(zeros);
|
| + echo_detector.AnalyzeCaptureAudio(zeros);
|
| + }
|
| + if (i % 100 == 0) {
|
| + // This is causing the simulated clock drift.
|
| + echo_detector.AnalyzeRenderAudio(zeros);
|
| + }
|
| + }
|
| + // We expect to detect echo with high likelihood. Clock drift is harder to
|
| + // correct on the render side than on the capture side. This is due to the
|
| + // render buffer, clock drift can only be discovered after a certain delay.
|
| + // A growing buffer can be caused by jitter or clock drift and it's not
|
| + // possible to make this decision right away. For this reason we only expect
|
| + // an echo likelihood of 80% in this test.
|
| + EXPECT_GT(echo_detector.echo_likelihood(), 0.8f);
|
| +}
|
| +
|
| +TEST(ResidualEchoDetectorTests, EchoWithCaptureClockDrift) {
|
| + ResidualEchoDetector echo_detector;
|
| + std::vector<float> ones(160, 1.f);
|
| + std::vector<float> zeros(160, 0.f);
|
| +
|
| + // In this test the capture signal has a delay of 10 frames w.r.t. the render
|
| + // signal, but is otherwise identical. Both signals are periodic with a 20
|
| + // frame interval. There is a simulated clock drift of 1% in this test, with
|
| + // the capture side producing data slightly faster.
|
| + for (int i = 0; i < 1000; i++) {
|
| + if (i % 20 == 0) {
|
| + echo_detector.AnalyzeRenderAudio(ones);
|
| + echo_detector.AnalyzeCaptureAudio(zeros);
|
| + } else if (i % 20 == 10) {
|
| + echo_detector.AnalyzeRenderAudio(zeros);
|
| + echo_detector.AnalyzeCaptureAudio(ones);
|
| + } else {
|
| + echo_detector.AnalyzeRenderAudio(zeros);
|
| + echo_detector.AnalyzeCaptureAudio(zeros);
|
| + }
|
| + if (i % 100 == 0) {
|
| + // This is causing the simulated clock drift.
|
| + echo_detector.AnalyzeCaptureAudio(zeros);
|
| + }
|
| + }
|
| + // We expect to detect echo with near certain likelihood.
|
| + EXPECT_NEAR(1.f, echo_detector.echo_likelihood(), 0.01f);
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|