Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(451)

Unified Diff: src/mips64/simulator-mips64.cc

Issue 2375673002: MIPS64: Improve performance of simulator in debug mode. (Closed)
Patch Set: Created 4 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« src/mips64/constants-mips64.h ('K') | « src/mips64/simulator-mips64.h ('k') | no next file » | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/mips64/simulator-mips64.cc
diff --git a/src/mips64/simulator-mips64.cc b/src/mips64/simulator-mips64.cc
index 082950d3933078b695e9cfd1000250a08a90753d..248031606fd10bc8a157ce9beced8910bcad8fd0 100644
--- a/src/mips64/simulator-mips64.cc
+++ b/src/mips64/simulator-mips64.cc
@@ -96,7 +96,7 @@ class MipsDebugger {
void RedoBreakpoints();
};
-#define UNSUPPORTED() printf("Sim: Unsupported instruction.\n");
+inline void UNSUPPORTED() { printf("Sim: Unsupported instruction.\n"); }
void MipsDebugger::Stop(Instruction* instr) {
// Get the stop code.
@@ -1935,15 +1935,15 @@ typedef void (*SimulatorRuntimeProfilingGetterCall)(
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime. They are also used for debugging with simulator.
-void Simulator::SoftwareInterrupt(Instruction* instr) {
+void Simulator::SoftwareInterrupt() {
// There are several instructions that could get us here,
// the break_ instruction, or several variants of traps. All
// Are "SPECIAL" class opcode, and are distinuished by function.
- int32_t func = instr->FunctionFieldRaw();
- uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;
+ int32_t func = instr_.FunctionFieldRaw();
+ uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1;
// We first check if we met a call_rt_redirected.
- if (instr->InstructionBits() == rtCallRedirInstr) {
- Redirection* redirection = Redirection::FromSwiInstruction(instr);
+ if (instr_.InstructionBits() == rtCallRedirInstr) {
+ Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr());
int64_t arg0 = get_register(a0);
int64_t arg1 = get_register(a1);
int64_t arg2 = get_register(a2);
@@ -2169,7 +2169,7 @@ void Simulator::SoftwareInterrupt(Instruction* instr) {
PrintWatchpoint(code);
} else {
IncreaseStopCounter(code);
- HandleStop(code, instr);
+ HandleStop(code, instr_.instr());
}
} else {
// All remaining break_ codes, and all traps are handled here.
@@ -2417,9 +2417,9 @@ void Simulator::DecodeTypeRegisterSRsType() {
int32_t ft_int = bit_cast<int32_t>(ft);
int32_t fd_int = bit_cast<int32_t>(fd);
uint32_t cc, fcsr_cc;
- cc = get_instr()->FCccValue();
+ cc = instr_.FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
- switch (get_instr()->FunctionFieldRaw()) {
+ switch (instr_.FunctionFieldRaw()) {
case RINT: {
DCHECK(kArchVariant == kMips64r6);
float result, temp_result;
@@ -2763,7 +2763,7 @@ void Simulator::DecodeTypeRegisterSRsType() {
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
- if (get_instr()->Bit(16)) { // Read Tf bit.
+ if (instr_.Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
} else {
@@ -2784,15 +2784,14 @@ void Simulator::DecodeTypeRegisterDRsType() {
double ft, fs, fd;
uint32_t cc, fcsr_cc;
fs = get_fpu_register_double(fs_reg());
- ft = (get_instr()->FunctionFieldRaw() != MOVF)
- ? get_fpu_register_double(ft_reg())
- : 0.0;
+ ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg())
+ : 0.0;
fd = get_fpu_register_double(fd_reg());
- cc = get_instr()->FCccValue();
+ cc = instr_.FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
int64_t ft_int = bit_cast<int64_t>(ft);
int64_t fd_int = bit_cast<int64_t>(fd);
- switch (get_instr()->FunctionFieldRaw()) {
+ switch (instr_.FunctionFieldRaw()) {
case RINT: {
DCHECK(kArchVariant == kMips64r6);
double result, temp, temp_result;
@@ -2860,7 +2859,7 @@ void Simulator::DecodeTypeRegisterDRsType() {
// Same function field for MOVT.D and MOVF.D
uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
ft_cc = get_fcsr_condition_bit(ft_cc);
- if (get_instr()->Bit(16)) { // Read Tf bit.
+ if (instr_.Bit(16)) { // Read Tf bit.
// MOVT.D
if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
} else {
@@ -3151,7 +3150,7 @@ void Simulator::DecodeTypeRegisterWRsType() {
float fs = get_fpu_register_float(fs_reg());
float ft = get_fpu_register_float(ft_reg());
int64_t alu_out = 0x12345678;
- switch (get_instr()->FunctionFieldRaw()) {
+ switch (instr_.FunctionFieldRaw()) {
case CVT_S_W: // Convert word to float (single).
alu_out = get_fpu_register_signed_word(fs_reg());
set_fpu_register_float(fd_reg(), static_cast<float>(alu_out));
@@ -3243,7 +3242,7 @@ void Simulator::DecodeTypeRegisterLRsType() {
double fs = get_fpu_register_double(fs_reg());
double ft = get_fpu_register_double(ft_reg());
int64_t i64;
- switch (get_instr()->FunctionFieldRaw()) {
+ switch (instr_.FunctionFieldRaw()) {
case CVT_D_L: // Mips32r2 instruction.
i64 = get_fpu_register(fs_reg());
set_fpu_register_double(fd_reg(), static_cast<double>(i64));
@@ -3332,7 +3331,7 @@ void Simulator::DecodeTypeRegisterLRsType() {
void Simulator::DecodeTypeRegisterCOP1() {
- switch (get_instr()->RsFieldRaw()) {
+ switch (instr_.RsFieldRaw()) {
case BC1: // Branch on coprocessor condition.
case BC1EQZ:
case BC1NEZ:
@@ -3395,7 +3394,7 @@ void Simulator::DecodeTypeRegisterCOP1() {
void Simulator::DecodeTypeRegisterCOP1X() {
- switch (get_instr()->FunctionFieldRaw()) {
+ switch (instr_.FunctionFieldRaw()) {
case MADD_S: {
DCHECK(kArchVariant == kMips64r2);
float fr, ft, fs;
@@ -3444,7 +3443,7 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
int64_t alu_out;
bool do_interrupt = false;
- switch (get_instr()->FunctionFieldRaw()) {
+ switch (instr_.FunctionFieldRaw()) {
case SELEQZ_S:
DCHECK(kArchVariant == kMips64r6);
set_register(rd_reg(), rt() == 0 ? rs() : 0);
@@ -3690,7 +3689,7 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
case DIV:
case DDIV: {
const int64_t int_min_value =
- get_instr()->FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN;
+ instr_.FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN;
switch (kArchVariant) {
case kMips64r2:
// Divide by zero and overflow was not checked in the
@@ -3736,7 +3735,7 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
case kMips64r6: {
uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
- switch (get_instr()->SaValue()) {
+ switch (sa()) {
case DIV_OP:
if (rt_u_32 != 0) {
set_register(rd_reg(), rs_u_32 / rt_u_32);
@@ -3765,7 +3764,7 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
case DDIVU:
switch (kArchVariant) {
case kMips64r6: {
- switch (get_instr()->SaValue()) {
+ switch (instr_.SaValue()) {
case DIV_OP:
if (rt_u() != 0) {
set_register(rd_reg(), rs_u() / rt_u());
@@ -3887,9 +3886,9 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
}
break;
case MOVCI: {
- uint32_t cc = get_instr()->FBccValue();
+ uint32_t cc = instr_.FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
- if (get_instr()->Bit(16)) { // Read Tf bit.
+ if (instr_.Bit(16)) { // Read Tf bit.
if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
} else {
if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
@@ -3905,14 +3904,14 @@ void Simulator::DecodeTypeRegisterSPECIAL() {
UNREACHABLE();
}
if (do_interrupt) {
- SoftwareInterrupt(get_instr());
+ SoftwareInterrupt();
}
}
void Simulator::DecodeTypeRegisterSPECIAL2() {
int64_t alu_out;
- switch (get_instr()->FunctionFieldRaw()) {
+ switch (instr_.FunctionFieldRaw()) {
case MUL:
alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u());
SetResult(rd_reg(), alu_out);
@@ -3941,7 +3940,7 @@ void Simulator::DecodeTypeRegisterSPECIAL2() {
void Simulator::DecodeTypeRegisterSPECIAL3() {
int64_t alu_out;
- switch (get_instr()->FunctionFieldRaw()) {
+ switch (instr_.FunctionFieldRaw()) {
case INS: { // Mips64r2 instruction.
// Interpret rd field as 5-bit msb of insert.
uint16_t msb = rd_reg();
@@ -4010,7 +4009,7 @@ void Simulator::DecodeTypeRegisterSPECIAL3() {
break;
}
case BSHFL: {
- int32_t sa = get_instr()->SaFieldRaw() >> kSaShift;
+ int32_t sa = instr_.SaFieldRaw() >> kSaShift;
switch (sa) {
case BITSWAP: {
uint32_t input = static_cast<uint32_t>(rt());
@@ -4088,7 +4087,7 @@ void Simulator::DecodeTypeRegisterSPECIAL3() {
break;
}
default: {
- const uint8_t bp2 = get_instr()->Bp2Value();
+ const uint8_t bp2 = instr_.Bp2Value();
sa >>= kBp2Bits;
switch (sa) {
case ALIGN: {
@@ -4113,7 +4112,7 @@ void Simulator::DecodeTypeRegisterSPECIAL3() {
break;
}
case DBSHFL: {
- int32_t sa = get_instr()->SaFieldRaw() >> kSaShift;
+ int32_t sa = instr_.SaFieldRaw() >> kSaShift;
switch (sa) {
case DBITSWAP: {
switch (sa) {
@@ -4187,7 +4186,7 @@ void Simulator::DecodeTypeRegisterSPECIAL3() {
break;
}
default: {
- const uint8_t bp3 = get_instr()->Bp3Value();
+ const uint8_t bp3 = instr_.Bp3Value();
sa >>= kBp3Bits;
switch (sa) {
case DALIGN: {
@@ -4216,12 +4215,9 @@ void Simulator::DecodeTypeRegisterSPECIAL3() {
}
}
-
-void Simulator::DecodeTypeRegister(Instruction* instr) {
- set_instr(instr);
-
+void Simulator::DecodeTypeRegister() {
// ---------- Execution.
- switch (instr->OpcodeFieldRaw()) {
+ switch (instr_.OpcodeFieldRaw()) {
case COP1:
DecodeTypeRegisterCOP1();
break;
@@ -4247,18 +4243,18 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
// Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc).
-void Simulator::DecodeTypeImmediate(Instruction* instr) {
+void Simulator::DecodeTypeImmediate() {
// Instruction fields.
- Opcode op = instr->OpcodeFieldRaw();
- int32_t rs_reg = instr->RsValue();
- int64_t rs = get_register(instr->RsValue());
+ Opcode op = instr_.OpcodeFieldRaw();
+ int32_t rs_reg = instr_.RsValue();
+ int64_t rs = get_register(instr_.RsValue());
uint64_t rs_u = static_cast<uint64_t>(rs);
- int32_t rt_reg = instr->RtValue(); // Destination register.
+ int32_t rt_reg = instr_.RtValue(); // Destination register.
int64_t rt = get_register(rt_reg);
- int16_t imm16 = instr->Imm16Value();
- int32_t imm18 = instr->Imm18Value();
+ int16_t imm16 = instr_.Imm16Value();
+ int32_t imm18 = instr_.Imm18Value();
- int32_t ft_reg = instr->FtValue(); // Destination register.
+ int32_t ft_reg = instr_.FtValue(); // Destination register.
// Zero extended immediate.
uint64_t oe_imm16 = 0xffff & imm16;
@@ -4283,38 +4279,36 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
const int kInt64AlignmentMask = sizeof(uint64_t) - 1;
// Branch instructions common part.
- auto BranchAndLinkHelper = [this, instr, &next_pc,
- &execute_branch_delay_instruction](
- bool do_branch) {
- execute_branch_delay_instruction = true;
- int64_t current_pc = get_pc();
- if (do_branch) {
- int16_t imm16 = instr->Imm16Value();
- next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
- set_register(31, current_pc + 2 * Instruction::kInstrSize);
- } else {
- next_pc = current_pc + 2 * Instruction::kInstrSize;
- }
- };
+ auto BranchAndLinkHelper =
+ [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) {
+ execute_branch_delay_instruction = true;
+ int64_t current_pc = get_pc();
+ if (do_branch) {
+ int16_t imm16 = instr_.Imm16Value();
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
+ set_register(31, current_pc + 2 * Instruction::kInstrSize);
+ } else {
+ next_pc = current_pc + 2 * Instruction::kInstrSize;
+ }
+ };
- auto BranchHelper = [this, instr, &next_pc,
+ auto BranchHelper = [this, &next_pc,
&execute_branch_delay_instruction](bool do_branch) {
execute_branch_delay_instruction = true;
int64_t current_pc = get_pc();
if (do_branch) {
- int16_t imm16 = instr->Imm16Value();
+ int16_t imm16 = instr_.Imm16Value();
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
};
- auto BranchAndLinkCompactHelper = [this, instr, &next_pc](bool do_branch,
- int bits) {
+ auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) {
int64_t current_pc = get_pc();
CheckForbiddenSlot(current_pc);
if (do_branch) {
- int32_t imm = instr->ImmValue(bits);
+ int32_t imm = instr_.ImmValue(bits);
imm <<= 32 - bits;
imm >>= 32 - bits;
next_pc = current_pc + (imm << 2) + Instruction::kInstrSize;
@@ -4322,11 +4316,11 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
}
};
- auto BranchCompactHelper = [&next_pc, this, instr](bool do_branch, int bits) {
+ auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) {
int64_t current_pc = get_pc();
CheckForbiddenSlot(current_pc);
if (do_branch) {
- int32_t imm = instr->ImmValue(bits);
+ int32_t imm = instr_.ImmValue(bits);
imm <<= 32 - bits;
imm >>= 32 - bits;
next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize;
@@ -4336,12 +4330,12 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
switch (op) {
// ------------- COP1. Coprocessor instructions.
case COP1:
- switch (instr->RsFieldRaw()) {
+ switch (instr_.RsFieldRaw()) {
case BC1: { // Branch on coprocessor condition.
- uint32_t cc = instr->FBccValue();
+ uint32_t cc = instr_.FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
uint32_t cc_value = test_fcsr_bit(fcsr_cc);
- bool do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
+ bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value;
BranchHelper(do_branch);
break;
}
@@ -4357,7 +4351,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
break;
// ------------- REGIMM class.
case REGIMM:
- switch (instr->RtFieldRaw()) {
+ switch (instr_.RtFieldRaw()) {
case BLTZ:
BranchHelper(rs < 0);
break;
@@ -4575,7 +4569,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
set_register(rt_reg, ReadB(rs + se_imm16));
break;
case LH:
- set_register(rt_reg, ReadH(rs + se_imm16, instr));
+ set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr()));
break;
case LWL: {
// al_offset is offset of the effective address within an aligned word.
@@ -4583,26 +4577,26 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
uint8_t byte_shift = kInt32AlignmentMask - al_offset;
uint32_t mask = (1 << byte_shift * 8) - 1;
addr = rs + se_imm16 - al_offset;
- int32_t val = ReadW(addr, instr);
+ int32_t val = ReadW(addr, instr_.instr());
val <<= byte_shift * 8;
val |= rt & mask;
set_register(rt_reg, static_cast<int64_t>(val));
break;
}
case LW:
- set_register(rt_reg, ReadW(rs + se_imm16, instr));
+ set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr()));
break;
case LWU:
- set_register(rt_reg, ReadWU(rs + se_imm16, instr));
+ set_register(rt_reg, ReadWU(rs + se_imm16, instr_.instr()));
break;
case LD:
- set_register(rt_reg, Read2W(rs + se_imm16, instr));
+ set_register(rt_reg, Read2W(rs + se_imm16, instr_.instr()));
break;
case LBU:
set_register(rt_reg, ReadBU(rs + se_imm16));
break;
case LHU:
- set_register(rt_reg, ReadHU(rs + se_imm16, instr));
+ set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr()));
break;
case LWR: {
// al_offset is offset of the effective address within an aligned word.
@@ -4610,7 +4604,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
uint8_t byte_shift = kInt32AlignmentMask - al_offset;
uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
- alu_out = ReadW(addr, instr);
+ alu_out = ReadW(addr, instr_.instr());
alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
@@ -4622,7 +4616,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
uint8_t byte_shift = kInt64AlignmentMask - al_offset;
uint64_t mask = (1UL << byte_shift * 8) - 1;
addr = rs + se_imm16 - al_offset;
- alu_out = Read2W(addr, instr);
+ alu_out = Read2W(addr, instr_.instr());
alu_out <<= byte_shift * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
@@ -4634,7 +4628,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
uint8_t byte_shift = kInt64AlignmentMask - al_offset;
uint64_t mask = al_offset ? (~0UL << (byte_shift + 1) * 8) : 0UL;
addr = rs + se_imm16 - al_offset;
- alu_out = Read2W(addr, instr);
+ alu_out = Read2W(addr, instr_.instr());
alu_out = alu_out >> al_offset * 8;
alu_out |= rt & mask;
set_register(rt_reg, alu_out);
@@ -4644,31 +4638,31 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
WriteB(rs + se_imm16, static_cast<int8_t>(rt));
break;
case SH:
- WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr);
+ WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr());
break;
case SWL: {
uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
uint8_t byte_shift = kInt32AlignmentMask - al_offset;
uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
- uint64_t mem_value = ReadW(addr, instr) & mask;
+ uint64_t mem_value = ReadW(addr, instr_.instr()) & mask;
mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
- WriteW(addr, static_cast<int32_t>(mem_value), instr);
+ WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr());
break;
}
case SW:
- WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr);
+ WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr_.instr());
break;
case SD:
- Write2W(rs + se_imm16, rt, instr);
+ Write2W(rs + se_imm16, rt, instr_.instr());
break;
case SWR: {
uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
uint32_t mask = (1 << al_offset * 8) - 1;
addr = rs + se_imm16 - al_offset;
- uint64_t mem_value = ReadW(addr, instr);
+ uint64_t mem_value = ReadW(addr, instr_.instr());
mem_value = (rt << al_offset * 8) | (mem_value & mask);
- WriteW(addr, static_cast<int32_t>(mem_value), instr);
+ WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr());
break;
}
case SDL: {
@@ -4676,39 +4670,39 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
uint8_t byte_shift = kInt64AlignmentMask - al_offset;
uint64_t mask = byte_shift ? (~0UL << (al_offset + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
- uint64_t mem_value = Read2W(addr, instr) & mask;
+ uint64_t mem_value = Read2W(addr, instr_.instr()) & mask;
mem_value |= rt >> byte_shift * 8;
- Write2W(addr, mem_value, instr);
+ Write2W(addr, mem_value, instr_.instr());
break;
}
case SDR: {
uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
uint64_t mask = (1UL << al_offset * 8) - 1;
addr = rs + se_imm16 - al_offset;
- uint64_t mem_value = Read2W(addr, instr);
+ uint64_t mem_value = Read2W(addr, instr_.instr());
mem_value = (rt << al_offset * 8) | (mem_value & mask);
- Write2W(addr, mem_value, instr);
+ Write2W(addr, mem_value, instr_.instr());
break;
}
case LWC1:
set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits.
- set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr));
+ set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr_.instr()));
break;
case LDC1:
- set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr));
+ set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr()));
break;
case SWC1: {
int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg));
- WriteW(rs + se_imm16, alu_out_32, instr);
+ WriteW(rs + se_imm16, alu_out_32, instr_.instr());
break;
}
case SDC1:
- WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr);
+ WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr());
break;
// ------------- PC-Relative instructions.
case PCREL: {
// rt field: checking 5-bits.
- int32_t imm21 = instr->Imm21Value();
+ int32_t imm21 = instr_.Imm21Value();
int64_t current_pc = get_pc();
uint8_t rt = (imm21 >> kImm16Bits);
switch (rt) {
@@ -4720,14 +4714,14 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
alu_out = current_pc + (se_imm16 << 16);
break;
default: {
- int32_t imm19 = instr->Imm19Value();
+ int32_t imm19 = instr_.Imm19Value();
// rt field: checking the most significant 3-bits.
rt = (imm21 >> kImm18Bits);
switch (rt) {
case LDPC:
addr =
(current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3);
- alu_out = Read2W(addr, instr);
+ alu_out = Read2W(addr, instr_.instr());
break;
default: {
// rt field: checking the most significant 2-bits.
@@ -4791,13 +4785,14 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
-void Simulator::DecodeTypeJump(Instruction* instr) {
+void Simulator::DecodeTypeJump() {
+ SimInstruction simInstr = instr_;
Ilija.Pavlovic1 2016/09/29 10:13:40 Why this variable is defined? instr_ is the same t
balazs.kilvady 2016/09/29 10:57:41 A copy of the current instruction is needed here a
Ilija.Pavlovic1 2016/09/29 13:15:33 Acknowledged.
// Get current pc.
int64_t current_pc = get_pc();
// Get unchanged bits of pc.
int64_t pc_high_bits = current_pc & 0xfffffffff0000000;
// Next pc.
- int64_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);
+ int64_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2);
// Execute branch delay slot.
// We don't check for end_sim_pc. First it should not be met as the current pc
@@ -4808,7 +4803,7 @@ void Simulator::DecodeTypeJump(Instruction* instr) {
// Update pc and ra if necessary.
// Do this after the branch delay execution.
- if (instr->IsLinkingInstruction()) {
+ if (simInstr.IsLinkingInstruction()) {
set_register(31, current_pc + 2 * Instruction::kInstrSize);
}
set_pc(next_pc);
@@ -4833,15 +4828,16 @@ void Simulator::InstructionDecode(Instruction* instr) {
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
}
- switch (instr->InstructionType(Instruction::TypeChecks::EXTRA)) {
+ instr_ = instr;
Ilija.Pavlovic1 2016/09/29 10:13:39 Was it possible to do the same thing as for Decode
balazs.kilvady 2016/09/29 10:57:41 No, this function is the main entry point for proc
Ilija.Pavlovic1 2016/09/29 13:15:33 Acknowledged.
+ switch (instr_.InstructionType()) {
case Instruction::kRegisterType:
- DecodeTypeRegister(instr);
+ DecodeTypeRegister();
break;
case Instruction::kImmediateType:
- DecodeTypeImmediate(instr);
+ DecodeTypeImmediate();
break;
case Instruction::kJumpType:
- DecodeTypeJump(instr);
+ DecodeTypeJump();
break;
default:
UNSUPPORTED();
« src/mips64/constants-mips64.h ('K') | « src/mips64/simulator-mips64.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698