OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ |
| 10 |
| 11 #ifndef WEBRTC_BASE_WEAK_PTR_H_ |
| 12 #define WEBRTC_BASE_WEAK_PTR_H_ |
| 13 |
| 14 #include <memory> |
| 15 |
| 16 #include <utility> |
| 17 |
| 18 #include "webrtc/base/refcount.h" |
| 19 #include "webrtc/base/scoped_ref_ptr.h" |
| 20 #include "webrtc/base/sequenced_task_checker.h" |
| 21 |
| 22 // The implementation is borrowed from chromium except that it does not |
| 23 // implement SupportsWeakPtr. |
| 24 |
| 25 // Weak pointers are pointers to an object that do not affect its lifetime, |
| 26 // and which may be invalidated (i.e. reset to nullptr) by the object, or its |
| 27 // owner, at any time, most commonly when the object is about to be deleted. |
| 28 |
| 29 // Weak pointers are useful when an object needs to be accessed safely by one |
| 30 // or more objects other than its owner, and those callers can cope with the |
| 31 // object vanishing and e.g. tasks posted to it being silently dropped. |
| 32 // Reference-counting such an object would complicate the ownership graph and |
| 33 // make it harder to reason about the object's lifetime. |
| 34 |
| 35 // EXAMPLE: |
| 36 // |
| 37 // class Controller { |
| 38 // public: |
| 39 // Controller() : weak_factory_(this) {} |
| 40 // void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); } |
| 41 // void WorkComplete(const Result& result) { ... } |
| 42 // private: |
| 43 // // Member variables should appear before the WeakPtrFactory, to ensure |
| 44 // // that any WeakPtrs to Controller are invalidated before its members |
| 45 // // variable's destructors are executed, rendering them invalid. |
| 46 // WeakPtrFactory<Controller> weak_factory_; |
| 47 // }; |
| 48 // |
| 49 // class Worker { |
| 50 // public: |
| 51 // static void StartNew(const WeakPtr<Controller>& controller) { |
| 52 // Worker* worker = new Worker(controller); |
| 53 // // Kick off asynchronous processing... |
| 54 // } |
| 55 // private: |
| 56 // Worker(const WeakPtr<Controller>& controller) |
| 57 // : controller_(controller) {} |
| 58 // void DidCompleteAsynchronousProcessing(const Result& result) { |
| 59 // if (controller_) |
| 60 // controller_->WorkComplete(result); |
| 61 // } |
| 62 // WeakPtr<Controller> controller_; |
| 63 // }; |
| 64 // |
| 65 // With this implementation a caller may use SpawnWorker() to dispatch multiple |
| 66 // Workers and subsequently delete the Controller, without waiting for all |
| 67 // Workers to have completed. |
| 68 |
| 69 // ------------------------- IMPORTANT: Thread-safety ------------------------- |
| 70 |
| 71 // Weak pointers may be passed safely between threads, but must always be |
| 72 // dereferenced and invalidated on the same TaskQueue or thread, otherwise |
| 73 // checking the pointer would be racey. |
| 74 // |
| 75 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory |
| 76 // is dereferenced, the factory and its WeakPtrs become bound to the calling |
| 77 // TaskQueue/thread, and cannot be dereferenced or |
| 78 // invalidated on any other TaskQueue/thread. Bound WeakPtrs can still be handed |
| 79 // off to other TaskQueues, e.g. to use to post tasks back to object on the |
| 80 // bound sequence. |
| 81 // |
| 82 // Thus, at least one WeakPtr object must exist and have been dereferenced on |
| 83 // the correct thread to enforce that other WeakPtr objects will enforce they |
| 84 // are used on the desired thread. |
| 85 |
| 86 namespace rtc { |
| 87 |
| 88 namespace internal { |
| 89 |
| 90 class WeakReference { |
| 91 public: |
| 92 // Although Flag is bound to a specific sequence, it may be |
| 93 // deleted from another via base::WeakPtr::~WeakPtr(). |
| 94 class Flag : public RefCountInterface { |
| 95 public: |
| 96 Flag(); |
| 97 |
| 98 void Invalidate(); |
| 99 bool IsValid() const; |
| 100 |
| 101 private: |
| 102 friend class RefCountedObject<Flag>; |
| 103 |
| 104 ~Flag() override; |
| 105 |
| 106 SequencedTaskChecker checker_; |
| 107 bool is_valid_; |
| 108 }; |
| 109 |
| 110 WeakReference(); |
| 111 explicit WeakReference(const Flag* flag); |
| 112 ~WeakReference(); |
| 113 |
| 114 WeakReference(WeakReference&& other); |
| 115 WeakReference(const WeakReference& other); |
| 116 WeakReference& operator=(WeakReference&& other) = default; |
| 117 WeakReference& operator=(const WeakReference& other) = default; |
| 118 |
| 119 bool is_valid() const; |
| 120 |
| 121 private: |
| 122 scoped_refptr<const Flag> flag_; |
| 123 }; |
| 124 |
| 125 class WeakReferenceOwner { |
| 126 public: |
| 127 WeakReferenceOwner(); |
| 128 ~WeakReferenceOwner(); |
| 129 |
| 130 WeakReference GetRef() const; |
| 131 |
| 132 bool HasRefs() const { return flag_.get() && !flag_->HasOneRef(); } |
| 133 |
| 134 void Invalidate(); |
| 135 |
| 136 private: |
| 137 SequencedTaskChecker checker_; |
| 138 mutable scoped_refptr<RefCountedObject<WeakReference::Flag>> flag_; |
| 139 }; |
| 140 |
| 141 // This class simplifies the implementation of WeakPtr's type conversion |
| 142 // constructor by avoiding the need for a public accessor for ref_. A |
| 143 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this |
| 144 // base class gives us a way to access ref_ in a protected fashion. |
| 145 class WeakPtrBase { |
| 146 public: |
| 147 WeakPtrBase(); |
| 148 ~WeakPtrBase(); |
| 149 |
| 150 WeakPtrBase(const WeakPtrBase& other) = default; |
| 151 WeakPtrBase(WeakPtrBase&& other) = default; |
| 152 WeakPtrBase& operator=(const WeakPtrBase& other) = default; |
| 153 WeakPtrBase& operator=(WeakPtrBase&& other) = default; |
| 154 |
| 155 protected: |
| 156 explicit WeakPtrBase(const WeakReference& ref); |
| 157 |
| 158 WeakReference ref_; |
| 159 }; |
| 160 |
| 161 } // namespace internal |
| 162 |
| 163 template <typename T> |
| 164 class WeakPtrFactory; |
| 165 |
| 166 template <typename T> |
| 167 class WeakPtr : public internal::WeakPtrBase { |
| 168 public: |
| 169 WeakPtr() : ptr_(nullptr) {} |
| 170 |
| 171 // Allow conversion from U to T provided U "is a" T. Note that this |
| 172 // is separate from the (implicit) copy and move constructors. |
| 173 template <typename U> |
| 174 WeakPtr(const WeakPtr<U>& other) |
| 175 : internal::WeakPtrBase(other), ptr_(other.ptr_) {} |
| 176 template <typename U> |
| 177 WeakPtr(WeakPtr<U>&& other) |
| 178 : internal::WeakPtrBase(std::move(other)), ptr_(other.ptr_) {} |
| 179 |
| 180 T* get() const { return ref_.is_valid() ? ptr_ : nullptr; } |
| 181 |
| 182 T& operator*() const { |
| 183 RTC_DCHECK(get() != nullptr); |
| 184 return *get(); |
| 185 } |
| 186 T* operator->() const { |
| 187 RTC_DCHECK(get() != nullptr); |
| 188 return get(); |
| 189 } |
| 190 |
| 191 void reset() { |
| 192 ref_ = internal::WeakReference(); |
| 193 ptr_ = nullptr; |
| 194 } |
| 195 |
| 196 // Allow conditionals to test validity, e.g. if (weak_ptr) {...}; |
| 197 explicit operator bool() const { return get() != nullptr; } |
| 198 |
| 199 private: |
| 200 template <typename U> |
| 201 friend class WeakPtr; |
| 202 friend class WeakPtrFactory<T>; |
| 203 |
| 204 WeakPtr(const internal::WeakReference& ref, T* ptr) |
| 205 : internal::WeakPtrBase(ref), ptr_(ptr) {} |
| 206 |
| 207 // This pointer is only valid when ref_.is_valid() is true. Otherwise, its |
| 208 // value is undefined (as opposed to nullptr). |
| 209 T* ptr_; |
| 210 }; |
| 211 |
| 212 // Allow callers to compare WeakPtrs against nullptr to test validity. |
| 213 template <class T> |
| 214 bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) { |
| 215 return !(weak_ptr == nullptr); |
| 216 } |
| 217 template <class T> |
| 218 bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) { |
| 219 return weak_ptr != nullptr; |
| 220 } |
| 221 template <class T> |
| 222 bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) { |
| 223 return weak_ptr.get() == nullptr; |
| 224 } |
| 225 template <class T> |
| 226 bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) { |
| 227 return weak_ptr == nullptr; |
| 228 } |
| 229 |
| 230 // A class may be composed of a WeakPtrFactory and thereby |
| 231 // control how it exposes weak pointers to itself. This is helpful if you only |
| 232 // need weak pointers within the implementation of a class. This class is also |
| 233 // useful when working with primitive types. For example, you could have a |
| 234 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool. |
| 235 |
| 236 // Note that GetWeakPtr must be called on one and only one TaskQueue or thread |
| 237 // and the WeakPtr must only be dereferenced and invalidated on that same |
| 238 // TaskQueue/thread. A WeakPtr instance can be copied and posted to other |
| 239 // sequences though as long as it is not dereferenced (WeakPtr<T>::get()). |
| 240 template <class T> |
| 241 class WeakPtrFactory { |
| 242 public: |
| 243 explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {} |
| 244 |
| 245 ~WeakPtrFactory() { ptr_ = nullptr; } |
| 246 |
| 247 WeakPtr<T> GetWeakPtr() { |
| 248 RTC_DCHECK(ptr_); |
| 249 return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_); |
| 250 } |
| 251 |
| 252 // Call this method to invalidate all existing weak pointers. |
| 253 void InvalidateWeakPtrs() { |
| 254 RTC_DCHECK(ptr_); |
| 255 weak_reference_owner_.Invalidate(); |
| 256 } |
| 257 |
| 258 // Call this method to determine if any weak pointers exist. |
| 259 bool HasWeakPtrs() const { |
| 260 RTC_DCHECK(ptr_); |
| 261 return weak_reference_owner_.HasRefs(); |
| 262 } |
| 263 |
| 264 private: |
| 265 internal::WeakReferenceOwner weak_reference_owner_; |
| 266 T* ptr_; |
| 267 RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory); |
| 268 }; |
| 269 |
| 270 } // namespace rtc |
| 271 |
| 272 #endif // WEBRTC_BASE_WEAK_PTR_H_ |
OLD | NEW |