| Index: src/core/SkColorSpace.cpp
|
| diff --git a/src/core/SkColorSpace.cpp b/src/core/SkColorSpace.cpp
|
| index c6bf4b9431300460b4fbe4dd2b6f276de9dda4a2..66b980b8f969860b1e169bb3353d08d1ee9ef427 100644
|
| --- a/src/core/SkColorSpace.cpp
|
| +++ b/src/core/SkColorSpace.cpp
|
| @@ -9,6 +9,82 @@
|
| #include "SkColorSpace_Base.h"
|
| #include "SkColorSpacePriv.h"
|
| #include "SkOnce.h"
|
| +#include "SkPoint3.h"
|
| +
|
| +static inline bool is_zero_to_one(float v) {
|
| + return (0.0f <= v) && (v <= 1.0f);
|
| +}
|
| +
|
| +bool SkColorSpacePrimaries::toXYZD50(SkMatrix44* toXYZ_D50) const {
|
| + if (!is_zero_to_one(fRX) || !is_zero_to_one(fRY) ||
|
| + !is_zero_to_one(fGX) || !is_zero_to_one(fGY) ||
|
| + !is_zero_to_one(fBX) || !is_zero_to_one(fBY) ||
|
| + !is_zero_to_one(fWX) || !is_zero_to_one(fWY))
|
| + {
|
| + return false;
|
| + }
|
| +
|
| + // First, we need to convert xy values (primaries) to XYZ.
|
| + SkMatrix primaries;
|
| + primaries.setAll( fRX, fGX, fBX,
|
| + fRY, fGY, fBY,
|
| + 1.0f - fRX - fRY, 1.0f - fGX - fGY, 1.0f - fBX - fBY);
|
| + SkMatrix primariesInv;
|
| + if (!primaries.invert(&primariesInv)) {
|
| + return false;
|
| + }
|
| +
|
| + // Assumes that Y is 1.0f.
|
| + SkVector3 wXYZ = SkVector3::Make(fWX / fWY, 1.0f, (1.0f - fWX - fWY) / fWY);
|
| + SkVector3 XYZ;
|
| + XYZ.fX = primariesInv[0] * wXYZ.fX + primariesInv[1] * wXYZ.fY + primariesInv[2] * wXYZ.fZ;
|
| + XYZ.fY = primariesInv[3] * wXYZ.fX + primariesInv[4] * wXYZ.fY + primariesInv[5] * wXYZ.fZ;
|
| + XYZ.fZ = primariesInv[6] * wXYZ.fX + primariesInv[7] * wXYZ.fY + primariesInv[8] * wXYZ.fZ;
|
| + SkMatrix toXYZ;
|
| + toXYZ.setAll(XYZ.fX, 0.0f, 0.0f,
|
| + 0.0f, XYZ.fY, 0.0f,
|
| + 0.0f, 0.0f, XYZ.fZ);
|
| + toXYZ.postConcat(primaries);
|
| +
|
| + // Now convert toXYZ matrix to toXYZD50.
|
| + SkVector3 wXYZD50 = SkVector3::Make(0.96422f, 1.0f, 0.82521f);
|
| +
|
| + // Calculate the chromatic adaptation matrix. We will use the Bradford method, thus
|
| + // the matrices below. The Bradford method is used by Adobe and is widely considered
|
| + // to be the best.
|
| + SkMatrix mA, mAInv;
|
| + mA.setAll(+0.8951f, +0.2664f, -0.1614f,
|
| + -0.7502f, +1.7135f, +0.0367f,
|
| + +0.0389f, -0.0685f, +1.0296f);
|
| + mAInv.setAll(+0.9869929f, -0.1470543f, +0.1599627f,
|
| + +0.4323053f, +0.5183603f, +0.0492912f,
|
| + -0.0085287f, +0.0400428f, +0.9684867f);
|
| +
|
| + SkVector3 srcCone;
|
| + srcCone.fX = mA[0] * wXYZ.fX + mA[1] * wXYZ.fY + mA[2] * wXYZ.fZ;
|
| + srcCone.fY = mA[3] * wXYZ.fX + mA[4] * wXYZ.fY + mA[5] * wXYZ.fZ;
|
| + srcCone.fZ = mA[6] * wXYZ.fX + mA[7] * wXYZ.fY + mA[8] * wXYZ.fZ;
|
| + SkVector3 dstCone;
|
| + dstCone.fX = mA[0] * wXYZD50.fX + mA[1] * wXYZD50.fY + mA[2] * wXYZD50.fZ;
|
| + dstCone.fY = mA[3] * wXYZD50.fX + mA[4] * wXYZD50.fY + mA[5] * wXYZD50.fZ;
|
| + dstCone.fZ = mA[6] * wXYZD50.fX + mA[7] * wXYZD50.fY + mA[8] * wXYZD50.fZ;
|
| +
|
| + SkMatrix DXToD50;
|
| + DXToD50.setIdentity();
|
| + DXToD50[0] = dstCone.fX / srcCone.fX;
|
| + DXToD50[4] = dstCone.fY / srcCone.fY;
|
| + DXToD50[8] = dstCone.fZ / srcCone.fZ;
|
| + DXToD50.postConcat(mAInv);
|
| + DXToD50.preConcat(mA);
|
| +
|
| + toXYZ.postConcat(DXToD50);
|
| + toXYZ_D50->set3x3(toXYZ[0], toXYZ[3], toXYZ[6],
|
| + toXYZ[1], toXYZ[4], toXYZ[7],
|
| + toXYZ[2], toXYZ[5], toXYZ[8]);
|
| + return true;
|
| +}
|
| +
|
| +///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
| SkColorSpace_Base::SkColorSpace_Base(SkGammaNamed gammaNamed, const SkMatrix44& toXYZD50)
|
| : fGammaNamed(gammaNamed)
|
|
|