OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include <list> | 11 #include <list> |
12 #include <memory> | 12 #include <memory> |
13 #include <vector> | 13 #include <vector> |
14 | 14 |
15 #include "testing/gtest/include/gtest/gtest.h" | 15 #include "testing/gtest/include/gtest/gtest.h" |
16 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" | 16 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" |
17 #include "webrtc/modules/rtp_rtcp/source/fec_test_helper.h" | 17 #include "webrtc/modules/rtp_rtcp/source/fec_test_helper.h" |
18 #include "webrtc/modules/rtp_rtcp/source/forward_error_correction.h" | 18 #include "webrtc/modules/rtp_rtcp/source/forward_error_correction.h" |
19 #include "webrtc/modules/rtp_rtcp/source/producer_fec.h" | 19 #include "webrtc/modules/rtp_rtcp/source/producer_fec.h" |
20 | 20 |
21 namespace webrtc { | 21 namespace webrtc { |
22 | 22 |
23 void VerifyHeader(uint16_t seq_num, | 23 void VerifyHeader(uint16_t seq_num, |
24 uint32_t timestamp, | 24 uint32_t timestamp, |
25 int red_pltype, | 25 int red_payload_type, |
26 int fec_pltype, | 26 int fec_payload_type, |
27 RedPacket* packet, | 27 RedPacket* packet, |
28 bool marker_bit) { | 28 bool marker_bit) { |
29 EXPECT_GT(packet->length(), kRtpHeaderSize); | 29 EXPECT_GT(packet->length(), kRtpHeaderSize); |
30 EXPECT_TRUE(packet->data() != NULL); | 30 EXPECT_TRUE(packet->data() != NULL); |
31 uint8_t* data = packet->data(); | 31 uint8_t* data = packet->data(); |
32 // Marker bit not set. | 32 // Marker bit not set. |
33 EXPECT_EQ(marker_bit ? 0x80 : 0, data[1] & 0x80); | 33 EXPECT_EQ(marker_bit ? 0x80 : 0, data[1] & 0x80); |
34 EXPECT_EQ(red_pltype, data[1] & 0x7F); | 34 EXPECT_EQ(red_payload_type, data[1] & 0x7F); |
35 EXPECT_EQ(seq_num, (data[2] << 8) + data[3]); | 35 EXPECT_EQ(seq_num, (data[2] << 8) + data[3]); |
36 uint32_t parsed_timestamp = (data[4] << 24) + (data[5] << 16) + | 36 uint32_t parsed_timestamp = (data[4] << 24) + (data[5] << 16) + |
37 (data[6] << 8) + data[7]; | 37 (data[6] << 8) + data[7]; |
38 EXPECT_EQ(timestamp, parsed_timestamp); | 38 EXPECT_EQ(timestamp, parsed_timestamp); |
39 EXPECT_EQ(static_cast<uint8_t>(fec_pltype), data[kRtpHeaderSize]); | 39 EXPECT_EQ(static_cast<uint8_t>(fec_payload_type), data[kRtpHeaderSize]); |
40 } | 40 } |
41 | 41 |
42 class ProducerFecTest : public ::testing::Test { | 42 class ProducerFecTest : public ::testing::Test { |
43 protected: | 43 protected: |
44 virtual void SetUp() { | 44 ProducerFecTest() : producer_(&fec_) {} |
45 fec_ = new ForwardErrorCorrection(); | |
46 producer_ = new ProducerFec(fec_); | |
47 generator_ = new FrameGenerator(); | |
48 } | |
49 | 45 |
50 virtual void TearDown() { | 46 ForwardErrorCorrection fec_; |
51 delete producer_; | 47 ProducerFec producer_; |
52 delete fec_; | 48 FrameGenerator generator_; |
53 delete generator_; | |
54 } | |
55 ForwardErrorCorrection* fec_; | |
56 ProducerFec* producer_; | |
57 FrameGenerator* generator_; | |
58 }; | 49 }; |
59 | 50 |
60 // Verifies bug found via fuzzing, where a gap in the packet sequence caused us | 51 // Verifies bug found via fuzzing, where a gap in the packet sequence caused us |
61 // to move past the end of the current FEC packet mask byte without moving to | 52 // to move past the end of the current FEC packet mask byte without moving to |
62 // the next byte. That likely caused us to repeatedly read from the same byte, | 53 // the next byte. That likely caused us to repeatedly read from the same byte, |
63 // and if that byte didn't protect packets we would generate empty FEC. | 54 // and if that byte didn't protect packets we would generate empty FEC. |
64 TEST_F(ProducerFecTest, NoEmptyFecWithSeqNumGaps) { | 55 TEST_F(ProducerFecTest, NoEmptyFecWithSeqNumGaps) { |
65 struct Packet { | 56 struct Packet { |
66 size_t header_size; | 57 size_t header_size; |
67 size_t payload_size; | 58 size_t payload_size; |
68 uint16_t seq_num; | 59 uint16_t seq_num; |
69 bool marker_bit; | 60 bool marker_bit; |
70 }; | 61 }; |
71 std::vector<Packet> protected_packets; | 62 std::vector<Packet> protected_packets; |
72 protected_packets.push_back({15, 3, 41, 0}); | 63 protected_packets.push_back({15, 3, 41, 0}); |
73 protected_packets.push_back({14, 1, 43, 0}); | 64 protected_packets.push_back({14, 1, 43, 0}); |
74 protected_packets.push_back({19, 0, 48, 0}); | 65 protected_packets.push_back({19, 0, 48, 0}); |
75 protected_packets.push_back({19, 0, 50, 0}); | 66 protected_packets.push_back({19, 0, 50, 0}); |
76 protected_packets.push_back({14, 3, 51, 0}); | 67 protected_packets.push_back({14, 3, 51, 0}); |
77 protected_packets.push_back({13, 8, 52, 0}); | 68 protected_packets.push_back({13, 8, 52, 0}); |
78 protected_packets.push_back({19, 2, 53, 0}); | 69 protected_packets.push_back({19, 2, 53, 0}); |
79 protected_packets.push_back({12, 3, 54, 0}); | 70 protected_packets.push_back({12, 3, 54, 0}); |
80 protected_packets.push_back({21, 0, 55, 0}); | 71 protected_packets.push_back({21, 0, 55, 0}); |
81 protected_packets.push_back({13, 3, 57, 1}); | 72 protected_packets.push_back({13, 3, 57, 1}); |
82 FecProtectionParams params = {117, 3, kFecMaskBursty}; | 73 FecProtectionParams params = {117, 3, kFecMaskBursty}; |
83 producer_->SetFecParameters(¶ms, 0); | 74 producer_.SetFecParameters(¶ms, 0); |
84 uint8_t packet[28] = {0}; | 75 uint8_t packet[28] = {0}; |
85 for (Packet p : protected_packets) { | 76 for (Packet p : protected_packets) { |
86 if (p.marker_bit) { | 77 if (p.marker_bit) { |
87 packet[1] |= 0x80; | 78 packet[1] |= 0x80; |
88 } else { | 79 } else { |
89 packet[1] &= ~0x80; | 80 packet[1] &= ~0x80; |
90 } | 81 } |
91 ByteWriter<uint16_t>::WriteBigEndian(&packet[2], p.seq_num); | 82 ByteWriter<uint16_t>::WriteBigEndian(&packet[2], p.seq_num); |
92 producer_->AddRtpPacketAndGenerateFec(packet, p.payload_size, | 83 producer_.AddRtpPacketAndGenerateFec(packet, p.payload_size, |
93 p.header_size); | 84 p.header_size); |
94 uint16_t num_fec_packets = producer_->NumAvailableFecPackets(); | 85 uint16_t num_fec_packets = producer_.NumAvailableFecPackets(); |
95 std::vector<RedPacket*> fec_packets; | |
96 if (num_fec_packets > 0) { | 86 if (num_fec_packets > 0) { |
97 fec_packets = | 87 std::vector<std::unique_ptr<RedPacket>> fec_packets = |
98 producer_->GetFecPackets(kRedPayloadType, 99, 100, p.header_size); | 88 producer_.GetFecPacketsAsRed(kRedPayloadType, |
| 89 kFecPayloadType, |
| 90 100, |
| 91 p.header_size); |
99 EXPECT_EQ(num_fec_packets, fec_packets.size()); | 92 EXPECT_EQ(num_fec_packets, fec_packets.size()); |
100 } | 93 } |
101 for (RedPacket* fec_packet : fec_packets) { | |
102 delete fec_packet; | |
103 } | |
104 } | 94 } |
105 } | 95 } |
106 | 96 |
107 TEST_F(ProducerFecTest, OneFrameFec) { | 97 TEST_F(ProducerFecTest, OneFrameFec) { |
108 // The number of media packets (|kNumPackets|), number of frames (one for | 98 // The number of media packets (|kNumPackets|), number of frames (one for |
109 // this test), and the protection factor (|params->fec_rate|) are set to make | 99 // this test), and the protection factor (|params->fec_rate|) are set to make |
110 // sure the conditions for generating FEC are satisfied. This means: | 100 // sure the conditions for generating FEC are satisfied. This means: |
111 // (1) protection factor is high enough so that actual overhead over 1 frame | 101 // (1) protection factor is high enough so that actual overhead over 1 frame |
112 // of packets is within |kMaxExcessOverhead|, and (2) the total number of | 102 // of packets is within |kMaxExcessOverhead|, and (2) the total number of |
113 // media packets for 1 frame is at least |minimum_media_packets_fec_|. | 103 // media packets for 1 frame is at least |minimum_media_packets_fec_|. |
114 const int kNumPackets = 4; | 104 const int kNumPackets = 4; |
115 FecProtectionParams params = {15, 3, kFecMaskRandom}; | 105 FecProtectionParams params = {15, 3, kFecMaskRandom}; |
116 std::list<test::RawRtpPacket*> rtp_packets; | 106 std::list<test::RawRtpPacket*> rtp_packets; |
117 generator_->NewFrame(kNumPackets); | 107 generator_.NewFrame(kNumPackets); |
118 producer_->SetFecParameters(¶ms, 0); // Expecting one FEC packet. | 108 producer_.SetFecParameters(¶ms, 0); // Expecting one FEC packet. |
119 uint32_t last_timestamp = 0; | 109 uint32_t last_timestamp = 0; |
120 for (int i = 0; i < kNumPackets; ++i) { | 110 for (int i = 0; i < kNumPackets; ++i) { |
121 test::RawRtpPacket* rtp_packet = generator_->NextPacket(i, 10); | 111 test::RawRtpPacket* rtp_packet = generator_.NextPacket(i, 10); |
122 rtp_packets.push_back(rtp_packet); | 112 rtp_packets.push_back(rtp_packet); |
123 EXPECT_EQ(0, producer_->AddRtpPacketAndGenerateFec(rtp_packet->data, | 113 EXPECT_EQ(0, producer_.AddRtpPacketAndGenerateFec(rtp_packet->data, |
124 rtp_packet->length, | 114 rtp_packet->length, |
125 kRtpHeaderSize)); | 115 kRtpHeaderSize)); |
126 last_timestamp = rtp_packet->header.header.timestamp; | 116 last_timestamp = rtp_packet->header.header.timestamp; |
127 } | 117 } |
128 EXPECT_TRUE(producer_->FecAvailable()); | 118 EXPECT_TRUE(producer_.FecAvailable()); |
129 uint16_t seq_num = generator_->NextSeqNum(); | 119 uint16_t seq_num = generator_.NextSeqNum(); |
130 std::vector<RedPacket*> packets = producer_->GetFecPackets(kRedPayloadType, | 120 std::vector<std::unique_ptr<RedPacket>> packets = |
131 kFecPayloadType, | 121 producer_.GetFecPacketsAsRed(kRedPayloadType, |
132 seq_num, | 122 kFecPayloadType, |
133 kRtpHeaderSize); | 123 seq_num, |
134 EXPECT_FALSE(producer_->FecAvailable()); | 124 kRtpHeaderSize); |
| 125 EXPECT_FALSE(producer_.FecAvailable()); |
135 ASSERT_EQ(1u, packets.size()); | 126 ASSERT_EQ(1u, packets.size()); |
136 VerifyHeader(seq_num, last_timestamp, | 127 VerifyHeader(seq_num, last_timestamp, |
137 kRedPayloadType, kFecPayloadType, packets.front(), false); | 128 kRedPayloadType, kFecPayloadType, packets.front().get(), false); |
138 while (!rtp_packets.empty()) { | 129 while (!rtp_packets.empty()) { |
139 delete rtp_packets.front(); | 130 delete rtp_packets.front(); |
140 rtp_packets.pop_front(); | 131 rtp_packets.pop_front(); |
141 } | 132 } |
142 delete packets.front(); | |
143 } | 133 } |
144 | 134 |
145 TEST_F(ProducerFecTest, TwoFrameFec) { | 135 TEST_F(ProducerFecTest, TwoFrameFec) { |
146 // The number of media packets/frame (|kNumPackets|), the number of frames | 136 // The number of media packets/frame (|kNumPackets|), the number of frames |
147 // (|kNumFrames|), and the protection factor (|params->fec_rate|) are set to | 137 // (|kNumFrames|), and the protection factor (|params->fec_rate|) are set to |
148 // make sure the conditions for generating FEC are satisfied. This means: | 138 // make sure the conditions for generating FEC are satisfied. This means: |
149 // (1) protection factor is high enough so that actual overhead over | 139 // (1) protection factor is high enough so that actual overhead over |
150 // |kNumFrames| is within |kMaxExcessOverhead|, and (2) the total number of | 140 // |kNumFrames| is within |kMaxExcessOverhead|, and (2) the total number of |
151 // media packets for |kNumFrames| frames is at least | 141 // media packets for |kNumFrames| frames is at least |
152 // |minimum_media_packets_fec_|. | 142 // |minimum_media_packets_fec_|. |
153 const int kNumPackets = 2; | 143 const int kNumPackets = 2; |
154 const int kNumFrames = 2; | 144 const int kNumFrames = 2; |
155 | 145 |
156 FecProtectionParams params = {15, 3, kFecMaskRandom}; | 146 FecProtectionParams params = {15, 3, kFecMaskRandom}; |
157 std::list<test::RawRtpPacket*> rtp_packets; | 147 std::list<test::RawRtpPacket*> rtp_packets; |
158 producer_->SetFecParameters(¶ms, 0); // Expecting one FEC packet. | 148 producer_.SetFecParameters(¶ms, 0); // Expecting one FEC packet. |
159 uint32_t last_timestamp = 0; | 149 uint32_t last_timestamp = 0; |
160 for (int i = 0; i < kNumFrames; ++i) { | 150 for (int i = 0; i < kNumFrames; ++i) { |
161 generator_->NewFrame(kNumPackets); | 151 generator_.NewFrame(kNumPackets); |
162 for (int j = 0; j < kNumPackets; ++j) { | 152 for (int j = 0; j < kNumPackets; ++j) { |
163 test::RawRtpPacket* rtp_packet = | 153 test::RawRtpPacket* rtp_packet = |
164 generator_->NextPacket(i * kNumPackets + j, 10); | 154 generator_.NextPacket(i * kNumPackets + j, 10); |
165 rtp_packets.push_back(rtp_packet); | 155 rtp_packets.push_back(rtp_packet); |
166 EXPECT_EQ(0, producer_->AddRtpPacketAndGenerateFec(rtp_packet->data, | 156 EXPECT_EQ(0, producer_.AddRtpPacketAndGenerateFec(rtp_packet->data, |
167 rtp_packet->length, | 157 rtp_packet->length, |
168 kRtpHeaderSize)); | 158 kRtpHeaderSize)); |
169 last_timestamp = rtp_packet->header.header.timestamp; | 159 last_timestamp = rtp_packet->header.header.timestamp; |
170 } | 160 } |
171 } | 161 } |
172 EXPECT_TRUE(producer_->FecAvailable()); | 162 EXPECT_TRUE(producer_.FecAvailable()); |
173 uint16_t seq_num = generator_->NextSeqNum(); | 163 uint16_t seq_num = generator_.NextSeqNum(); |
174 std::vector<RedPacket*> packets = producer_->GetFecPackets(kRedPayloadType, | 164 std::vector<std::unique_ptr<RedPacket>> packets = |
175 kFecPayloadType, | 165 producer_.GetFecPacketsAsRed(kRedPayloadType, |
176 seq_num, | 166 kFecPayloadType, |
177 kRtpHeaderSize); | 167 seq_num, |
178 EXPECT_FALSE(producer_->FecAvailable()); | 168 kRtpHeaderSize); |
| 169 EXPECT_FALSE(producer_.FecAvailable()); |
179 ASSERT_EQ(1u, packets.size()); | 170 ASSERT_EQ(1u, packets.size()); |
180 VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, | 171 VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, |
181 packets.front(), false); | 172 packets.front().get(), false); |
182 while (!rtp_packets.empty()) { | 173 while (!rtp_packets.empty()) { |
183 delete rtp_packets.front(); | 174 delete rtp_packets.front(); |
184 rtp_packets.pop_front(); | 175 rtp_packets.pop_front(); |
185 } | 176 } |
186 delete packets.front(); | |
187 } | 177 } |
188 | 178 |
189 TEST_F(ProducerFecTest, BuildRedPacket) { | 179 TEST_F(ProducerFecTest, BuildRedPacket) { |
190 generator_->NewFrame(1); | 180 generator_.NewFrame(1); |
191 test::RawRtpPacket* packet = generator_->NextPacket(0, 10); | 181 test::RawRtpPacket* packet = generator_.NextPacket(0, 10); |
192 std::unique_ptr<RedPacket> red_packet(producer_->BuildRedPacket( | 182 std::unique_ptr<RedPacket> red_packet = ProducerFec::BuildRedPacket( |
193 packet->data, packet->length - kRtpHeaderSize, kRtpHeaderSize, | 183 packet->data, packet->length - kRtpHeaderSize, kRtpHeaderSize, |
194 kRedPayloadType)); | 184 kRedPayloadType); |
195 EXPECT_EQ(packet->length + 1, red_packet->length()); | 185 EXPECT_EQ(packet->length + 1, red_packet->length()); |
196 VerifyHeader(packet->header.header.sequenceNumber, | 186 VerifyHeader(packet->header.header.sequenceNumber, |
197 packet->header.header.timestamp, | 187 packet->header.header.timestamp, |
198 kRedPayloadType, | 188 kRedPayloadType, |
199 packet->header.header.payloadType, | 189 packet->header.header.payloadType, |
200 red_packet.get(), | 190 red_packet.get(), |
201 true); // Marker bit set. | 191 true); // Marker bit set. |
202 for (int i = 0; i < 10; ++i) | 192 for (int i = 0; i < 10; ++i) |
203 EXPECT_EQ(i, red_packet->data()[kRtpHeaderSize + 1 + i]); | 193 EXPECT_EQ(i, red_packet->data()[kRtpHeaderSize + 1 + i]); |
204 delete packet; | 194 delete packet; |
205 } | 195 } |
206 | 196 |
207 } // namespace webrtc | 197 } // namespace webrtc |
OLD | NEW |