OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
(...skipping 104 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
115 } | 115 } |
116 | 116 |
117 return result; | 117 return result; |
118 } | 118 } |
119 | 119 |
120 // Works for positive numbers only. | 120 // Works for positive numbers only. |
121 size_t Round(float x) { | 121 size_t Round(float x) { |
122 return static_cast<size_t>(std::floor(x + 0.5f)); | 122 return static_cast<size_t>(std::floor(x + 0.5f)); |
123 } | 123 } |
124 | 124 |
125 // Calculates the sum of absolute values of a complex matrix. | |
126 float SumAbs(const ComplexMatrix<float>& mat) { | |
127 float sum_abs = 0.f; | |
128 const complex<float>* const* mat_els = mat.elements(); | |
129 for (size_t i = 0; i < mat.num_rows(); ++i) { | |
130 for (size_t j = 0; j < mat.num_columns(); ++j) { | |
131 sum_abs += std::abs(mat_els[i][j]); | |
132 } | |
133 } | |
134 return sum_abs; | |
135 } | |
136 | |
137 // Calculates the sum of squares of a complex matrix. | 125 // Calculates the sum of squares of a complex matrix. |
138 float SumSquares(const ComplexMatrix<float>& mat) { | 126 float SumSquares(const ComplexMatrix<float>& mat) { |
139 float sum_squares = 0.f; | 127 float sum_squares = 0.f; |
140 const complex<float>* const* mat_els = mat.elements(); | 128 const complex<float>* const* mat_els = mat.elements(); |
141 for (size_t i = 0; i < mat.num_rows(); ++i) { | 129 for (size_t i = 0; i < mat.num_rows(); ++i) { |
142 for (size_t j = 0; j < mat.num_columns(); ++j) { | 130 for (size_t j = 0; j < mat.num_columns(); ++j) { |
143 float abs_value = std::abs(mat_els[i][j]); | 131 float abs_value = std::abs(mat_els[i][j]); |
144 sum_squares += abs_value * abs_value; | 132 sum_squares += abs_value * abs_value; |
145 } | 133 } |
146 } | 134 } |
(...skipping 29 matching lines...) Expand all Loading... | |
176 return array_geometry; | 164 return array_geometry; |
177 } | 165 } |
178 | 166 |
179 } // namespace | 167 } // namespace |
180 | 168 |
181 const float NonlinearBeamformer::kHalfBeamWidthRadians = DegreesToRadians(20.f); | 169 const float NonlinearBeamformer::kHalfBeamWidthRadians = DegreesToRadians(20.f); |
182 | 170 |
183 // static | 171 // static |
184 const size_t NonlinearBeamformer::kNumFreqBins; | 172 const size_t NonlinearBeamformer::kNumFreqBins; |
185 | 173 |
174 PostFilterTransform::PostFilterTransform(size_t num_channels, | |
175 size_t chunk_length, | |
176 float* window, | |
177 size_t fft_size) | |
178 : transform_(num_channels, | |
179 num_channels, | |
180 chunk_length, | |
181 window, | |
182 fft_size, | |
183 fft_size / 2, | |
184 this), | |
185 num_freq_bins_(fft_size / 2 + 1) {} | |
186 | |
187 void PostFilterTransform::ProcessChunk(float* const* data, float* final_mask) { | |
188 final_mask_ = final_mask; | |
189 transform_.ProcessChunk(data, data); | |
190 } | |
191 | |
192 void PostFilterTransform::ProcessAudioBlock(const complex<float>* const* input, | |
193 size_t num_input_channels, | |
194 size_t num_freq_bins, | |
195 size_t num_output_channels, | |
196 complex<float>* const* output) { | |
197 RTC_DCHECK_EQ(num_freq_bins_, num_freq_bins); | |
198 RTC_DCHECK_EQ(num_input_channels, num_output_channels); | |
199 | |
200 for (size_t ch = 0; ch < num_input_channels; ++ch) { | |
201 for (size_t f_ix = 0; f_ix < num_freq_bins_; ++f_ix) { | |
202 output[ch][f_ix] = | |
203 kCompensationGain * final_mask_[f_ix] * input[ch][f_ix]; | |
204 } | |
205 } | |
206 } | |
207 | |
186 NonlinearBeamformer::NonlinearBeamformer( | 208 NonlinearBeamformer::NonlinearBeamformer( |
187 const std::vector<Point>& array_geometry, | 209 const std::vector<Point>& array_geometry, |
210 size_t num_postfilter_channels, | |
188 SphericalPointf target_direction) | 211 SphericalPointf target_direction) |
189 : num_input_channels_(array_geometry.size()), | 212 : num_input_channels_(array_geometry.size()), |
213 num_postfilter_channels_(num_postfilter_channels), | |
190 array_geometry_(GetCenteredArray(array_geometry)), | 214 array_geometry_(GetCenteredArray(array_geometry)), |
191 array_normal_(GetArrayNormalIfExists(array_geometry)), | 215 array_normal_(GetArrayNormalIfExists(array_geometry)), |
192 min_mic_spacing_(GetMinimumSpacing(array_geometry)), | 216 min_mic_spacing_(GetMinimumSpacing(array_geometry)), |
193 target_angle_radians_(target_direction.azimuth()), | 217 target_angle_radians_(target_direction.azimuth()), |
194 away_radians_(std::min( | 218 away_radians_(std::min( |
195 static_cast<float>(M_PI), | 219 static_cast<float>(M_PI), |
196 std::max(kMinAwayRadians, | 220 std::max(kMinAwayRadians, |
197 kAwaySlope * static_cast<float>(M_PI) / min_mic_spacing_))) { | 221 kAwaySlope * static_cast<float>(M_PI) / min_mic_spacing_))) { |
198 WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_); | 222 WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_); |
199 } | 223 } |
200 | 224 |
201 void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) { | 225 void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) { |
202 chunk_length_ = | 226 chunk_length_ = |
203 static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms)); | 227 static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms)); |
204 sample_rate_hz_ = sample_rate_hz; | 228 sample_rate_hz_ = sample_rate_hz; |
205 | 229 |
206 high_pass_postfilter_mask_ = 1.f; | 230 high_pass_postfilter_mask_ = 1.f; |
207 is_target_present_ = false; | 231 is_target_present_ = false; |
208 hold_target_blocks_ = kHoldTargetSeconds * 2 * sample_rate_hz / kFftSize; | 232 hold_target_blocks_ = kHoldTargetSeconds * 2 * sample_rate_hz / kFftSize; |
209 interference_blocks_count_ = hold_target_blocks_; | 233 interference_blocks_count_ = hold_target_blocks_; |
210 | 234 |
211 lapped_transform_.reset(new LappedTransform(num_input_channels_, | 235 process_transform_.reset(new LappedTransform(num_input_channels_, |
212 1, | 236 0u, |
213 chunk_length_, | 237 chunk_length_, |
214 window_, | 238 window_, |
215 kFftSize, | 239 kFftSize, |
216 kFftSize / 2, | 240 kFftSize / 2, |
217 this)); | 241 this)); |
242 postfilter_transform_.reset(new PostFilterTransform( | |
243 num_postfilter_channels_, chunk_length_, window_, kFftSize)); | |
244 const float wave_number_step = | |
245 (2.f * M_PI * sample_rate_hz_) / (kFftSize * kSpeedOfSoundMeterSeconds); | |
218 for (size_t i = 0; i < kNumFreqBins; ++i) { | 246 for (size_t i = 0; i < kNumFreqBins; ++i) { |
219 time_smooth_mask_[i] = 1.f; | 247 time_smooth_mask_[i] = 1.f; |
220 final_mask_[i] = 1.f; | 248 final_mask_[i] = 1.f; |
221 float freq_hz = (static_cast<float>(i) / kFftSize) * sample_rate_hz_; | 249 wave_numbers_[i] = i * wave_number_step; |
222 wave_numbers_[i] = 2 * M_PI * freq_hz / kSpeedOfSoundMeterSeconds; | |
223 } | 250 } |
224 | 251 |
225 InitLowFrequencyCorrectionRanges(); | 252 InitLowFrequencyCorrectionRanges(); |
226 InitDiffuseCovMats(); | 253 InitDiffuseCovMats(); |
227 AimAt(SphericalPointf(target_angle_radians_, 0.f, 1.f)); | 254 AimAt(SphericalPointf(target_angle_radians_, 0.f, 1.f)); |
228 } | 255 } |
229 | 256 |
230 // These bin indexes determine the regions over which a mean is taken. This is | 257 // These bin indexes determine the regions over which a mean is taken. This is |
231 // applied as a constant value over the adjacent end "frequency correction" | 258 // applied as a constant value over the adjacent end "frequency correction" |
232 // regions. | 259 // regions. |
(...skipping 66 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
299 void NonlinearBeamformer::InitDelaySumMasks() { | 326 void NonlinearBeamformer::InitDelaySumMasks() { |
300 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { | 327 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { |
301 delay_sum_masks_[f_ix].Resize(1, num_input_channels_); | 328 delay_sum_masks_[f_ix].Resize(1, num_input_channels_); |
302 CovarianceMatrixGenerator::PhaseAlignmentMasks( | 329 CovarianceMatrixGenerator::PhaseAlignmentMasks( |
303 f_ix, kFftSize, sample_rate_hz_, kSpeedOfSoundMeterSeconds, | 330 f_ix, kFftSize, sample_rate_hz_, kSpeedOfSoundMeterSeconds, |
304 array_geometry_, target_angle_radians_, &delay_sum_masks_[f_ix]); | 331 array_geometry_, target_angle_radians_, &delay_sum_masks_[f_ix]); |
305 | 332 |
306 complex_f norm_factor = sqrt( | 333 complex_f norm_factor = sqrt( |
307 ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix])); | 334 ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix])); |
308 delay_sum_masks_[f_ix].Scale(1.f / norm_factor); | 335 delay_sum_masks_[f_ix].Scale(1.f / norm_factor); |
309 normalized_delay_sum_masks_[f_ix].CopyFrom(delay_sum_masks_[f_ix]); | |
310 normalized_delay_sum_masks_[f_ix].Scale(1.f / SumAbs( | |
311 normalized_delay_sum_masks_[f_ix])); | |
312 } | 336 } |
313 } | 337 } |
314 | 338 |
315 void NonlinearBeamformer::InitTargetCovMats() { | 339 void NonlinearBeamformer::InitTargetCovMats() { |
316 for (size_t i = 0; i < kNumFreqBins; ++i) { | 340 for (size_t i = 0; i < kNumFreqBins; ++i) { |
317 target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_); | 341 target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_); |
318 TransposedConjugatedProduct(delay_sum_masks_[i], &target_cov_mats_[i]); | 342 TransposedConjugatedProduct(delay_sum_masks_[i], &target_cov_mats_[i]); |
319 } | 343 } |
320 } | 344 } |
321 | 345 |
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
359 void NonlinearBeamformer::NormalizeCovMats() { | 383 void NonlinearBeamformer::NormalizeCovMats() { |
360 for (size_t i = 0; i < kNumFreqBins; ++i) { | 384 for (size_t i = 0; i < kNumFreqBins; ++i) { |
361 rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]); | 385 rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]); |
362 rpsiws_[i].clear(); | 386 rpsiws_[i].clear(); |
363 for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { | 387 for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { |
364 rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i])); | 388 rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i])); |
365 } | 389 } |
366 } | 390 } |
367 } | 391 } |
368 | 392 |
393 void NonlinearBeamformer::AnalyzeChunk(const ChannelBuffer<float>& data) { | |
394 RTC_DCHECK_EQ(data.num_channels(), num_input_channels_); | |
395 RTC_DCHECK_EQ(data.num_frames_per_band(), chunk_length_); | |
396 | |
397 old_high_pass_mask_ = high_pass_postfilter_mask_; | |
398 process_transform_->ProcessChunk(data.channels(0), nullptr); | |
399 } | |
400 | |
401 void NonlinearBeamformer::PostFilter(ChannelBuffer<float>* data) { | |
402 RTC_DCHECK_EQ(data->num_frames_per_band(), chunk_length_); | |
403 // TODO(aluebs): Change to RTC_CHECK_EQ once the ChannelBuffer is updated. | |
404 RTC_DCHECK_GE(data->num_channels(), num_postfilter_channels_); | |
405 | |
406 postfilter_transform_->ProcessChunk(data->channels(0), final_mask_); | |
407 | |
408 // Ramp up/down for smoothing is needed in order to avoid discontinuities in | |
409 // the transitions between 10 ms frames. | |
410 const float ramp_increment = | |
411 (high_pass_postfilter_mask_ - old_high_pass_mask_) / | |
412 data->num_frames_per_band(); | |
413 for (size_t i = 1; i < data->num_bands(); ++i) { | |
414 float smoothed_mask = old_high_pass_mask_; | |
415 for (size_t j = 0; j < data->num_frames_per_band(); ++j) { | |
416 smoothed_mask += ramp_increment; | |
417 for (size_t k = 0; k < num_postfilter_channels_; ++k) { | |
418 data->channels(i)[k][j] *= smoothed_mask; | |
419 } | |
420 } | |
421 } | |
422 } | |
423 | |
369 void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input, | 424 void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input, |
370 ChannelBuffer<float>* output) { | 425 ChannelBuffer<float>* output) { |
371 RTC_DCHECK_EQ(input.num_channels(), num_input_channels_); | 426 AnalyzeChunk(input); |
372 RTC_DCHECK_EQ(input.num_frames_per_band(), chunk_length_); | 427 for (size_t i = 0u; i < input.num_bands(); ++i) { |
peah-webrtc
2016/06/29 08:38:20
Would it be possible to handle the output number o
aluebs-webrtc
2016/06/29 23:19:55
To be compatible with how the beamformer was used
peah-webrtc
2016/06/30 05:25:05
I know this is how it is used to be, but it is qui
aluebs-webrtc
2016/06/30 23:37:09
This is a temporary interface to be able to migrat
| |
373 | 428 std::memcpy(output->channels(i)[0], input.channels(i)[0], |
374 float old_high_pass_mask = high_pass_postfilter_mask_; | 429 sizeof(input.channels(0)[0][0]) * input.num_frames_per_band()); |
375 lapped_transform_->ProcessChunk(input.channels(0), output->channels(0)); | |
376 // Ramp up/down for smoothing. 1 mask per 10ms results in audible | |
377 // discontinuities. | |
378 const float ramp_increment = | |
379 (high_pass_postfilter_mask_ - old_high_pass_mask) / | |
380 input.num_frames_per_band(); | |
381 // Apply the smoothed high-pass mask to the first channel of each band. | |
382 // This can be done because the effect of the linear beamformer is negligible | |
383 // compared to the post-filter. | |
384 for (size_t i = 1; i < input.num_bands(); ++i) { | |
385 float smoothed_mask = old_high_pass_mask; | |
386 for (size_t j = 0; j < input.num_frames_per_band(); ++j) { | |
387 smoothed_mask += ramp_increment; | |
388 output->channels(i)[0][j] = input.channels(i)[0][j] * smoothed_mask; | |
389 } | |
390 } | 430 } |
431 PostFilter(output); | |
391 } | 432 } |
392 | 433 |
393 void NonlinearBeamformer::AimAt(const SphericalPointf& target_direction) { | 434 void NonlinearBeamformer::AimAt(const SphericalPointf& target_direction) { |
394 target_angle_radians_ = target_direction.azimuth(); | 435 target_angle_radians_ = target_direction.azimuth(); |
395 InitHighFrequencyCorrectionRanges(); | 436 InitHighFrequencyCorrectionRanges(); |
396 InitInterfAngles(); | 437 InitInterfAngles(); |
397 InitDelaySumMasks(); | 438 InitDelaySumMasks(); |
398 InitTargetCovMats(); | 439 InitTargetCovMats(); |
399 InitInterfCovMats(); | 440 InitInterfCovMats(); |
400 NormalizeCovMats(); | 441 NormalizeCovMats(); |
401 } | 442 } |
402 | 443 |
403 bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { | 444 bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { |
404 // If more than half-beamwidth degrees away from the beam's center, | 445 // If more than half-beamwidth degrees away from the beam's center, |
405 // you are out of the beam. | 446 // you are out of the beam. |
406 return fabs(spherical_point.azimuth() - target_angle_radians_) < | 447 return fabs(spherical_point.azimuth() - target_angle_radians_) < |
407 kHalfBeamWidthRadians; | 448 kHalfBeamWidthRadians; |
408 } | 449 } |
409 | 450 |
410 void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, | 451 void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, |
411 size_t num_input_channels, | 452 size_t num_input_channels, |
412 size_t num_freq_bins, | 453 size_t num_freq_bins, |
413 size_t num_output_channels, | 454 size_t num_output_channels, |
414 complex_f* const* output) { | 455 complex_f* const* output) { |
415 RTC_CHECK_EQ(kNumFreqBins, num_freq_bins); | 456 RTC_CHECK_EQ(kNumFreqBins, num_freq_bins); |
416 RTC_CHECK_EQ(num_input_channels_, num_input_channels); | 457 RTC_CHECK_EQ(num_input_channels_, num_input_channels); |
417 RTC_CHECK_EQ(1u, num_output_channels); | 458 RTC_CHECK_EQ(0u, num_output_channels); |
418 | 459 |
419 // Calculating the post-filter masks. Note that we need two for each | 460 // Calculating the post-filter masks. Note that we need two for each |
420 // frequency bin to account for the positive and negative interferer | 461 // frequency bin to account for the positive and negative interferer |
421 // angle. | 462 // angle. |
422 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { | 463 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { |
423 eig_m_.CopyFromColumn(input, i, num_input_channels_); | 464 eig_m_.CopyFromColumn(input, i, num_input_channels_); |
424 float eig_m_norm_factor = std::sqrt(SumSquares(eig_m_)); | 465 float eig_m_norm_factor = std::sqrt(SumSquares(eig_m_)); |
425 if (eig_m_norm_factor != 0.f) { | 466 if (eig_m_norm_factor != 0.f) { |
426 eig_m_.Scale(1.f / eig_m_norm_factor); | 467 eig_m_.Scale(1.f / eig_m_norm_factor); |
427 } | 468 } |
(...skipping 21 matching lines...) Expand all Loading... | |
449 new_mask_[i] = tmp_mask; | 490 new_mask_[i] = tmp_mask; |
450 } | 491 } |
451 } | 492 } |
452 } | 493 } |
453 | 494 |
454 ApplyMaskTimeSmoothing(); | 495 ApplyMaskTimeSmoothing(); |
455 EstimateTargetPresence(); | 496 EstimateTargetPresence(); |
456 ApplyLowFrequencyCorrection(); | 497 ApplyLowFrequencyCorrection(); |
457 ApplyHighFrequencyCorrection(); | 498 ApplyHighFrequencyCorrection(); |
458 ApplyMaskFrequencySmoothing(); | 499 ApplyMaskFrequencySmoothing(); |
459 ApplyMasks(input, output); | |
460 } | 500 } |
461 | 501 |
462 float NonlinearBeamformer::CalculatePostfilterMask( | 502 float NonlinearBeamformer::CalculatePostfilterMask( |
463 const ComplexMatrixF& interf_cov_mat, | 503 const ComplexMatrixF& interf_cov_mat, |
464 float rpsiw, | 504 float rpsiw, |
465 float ratio_rxiw_rxim, | 505 float ratio_rxiw_rxim, |
466 float rmw_r) { | 506 float rmw_r) { |
467 float rpsim = Norm(interf_cov_mat, eig_m_); | 507 float rpsim = Norm(interf_cov_mat, eig_m_); |
468 | 508 |
469 float ratio = 0.f; | 509 float ratio = 0.f; |
470 if (rpsim > 0.f) { | 510 if (rpsim > 0.f) { |
471 ratio = rpsiw / rpsim; | 511 ratio = rpsiw / rpsim; |
472 } | 512 } |
473 | 513 |
474 float numerator = 1.f - kCutOffConstant; | 514 float numerator = 1.f - kCutOffConstant; |
475 if (rmw_r > 0.f) { | 515 if (rmw_r > 0.f) { |
476 numerator = 1.f - std::min(kCutOffConstant, ratio / rmw_r); | 516 numerator = 1.f - std::min(kCutOffConstant, ratio / rmw_r); |
477 } | 517 } |
478 | 518 |
479 float denominator = 1.f - kCutOffConstant; | 519 float denominator = 1.f - kCutOffConstant; |
480 if (ratio_rxiw_rxim > 0.f) { | 520 if (ratio_rxiw_rxim > 0.f) { |
481 denominator = 1.f - std::min(kCutOffConstant, ratio / ratio_rxiw_rxim); | 521 denominator = 1.f - std::min(kCutOffConstant, ratio / ratio_rxiw_rxim); |
482 } | 522 } |
483 | 523 |
484 return numerator / denominator; | 524 return numerator / denominator; |
485 } | 525 } |
486 | 526 |
487 void NonlinearBeamformer::ApplyMasks(const complex_f* const* input, | |
488 complex_f* const* output) { | |
489 complex_f* output_channel = output[0]; | |
490 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { | |
491 output_channel[f_ix] = complex_f(0.f, 0.f); | |
492 | |
493 const complex_f* delay_sum_mask_els = | |
494 normalized_delay_sum_masks_[f_ix].elements()[0]; | |
495 for (size_t c_ix = 0; c_ix < num_input_channels_; ++c_ix) { | |
496 output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix]; | |
497 } | |
498 | |
499 output_channel[f_ix] *= kCompensationGain * final_mask_[f_ix]; | |
500 } | |
501 } | |
502 | |
503 // Smooth new_mask_ into time_smooth_mask_. | 527 // Smooth new_mask_ into time_smooth_mask_. |
504 void NonlinearBeamformer::ApplyMaskTimeSmoothing() { | 528 void NonlinearBeamformer::ApplyMaskTimeSmoothing() { |
505 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { | 529 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { |
506 time_smooth_mask_[i] = kMaskTimeSmoothAlpha * new_mask_[i] + | 530 time_smooth_mask_[i] = kMaskTimeSmoothAlpha * new_mask_[i] + |
507 (1 - kMaskTimeSmoothAlpha) * time_smooth_mask_[i]; | 531 (1 - kMaskTimeSmoothAlpha) * time_smooth_mask_[i]; |
508 } | 532 } |
509 } | 533 } |
510 | 534 |
511 // Copy time_smooth_mask_ to final_mask_ and smooth over frequency. | 535 // Copy time_smooth_mask_ to final_mask_ and smooth over frequency. |
512 void NonlinearBeamformer::ApplyMaskFrequencySmoothing() { | 536 void NonlinearBeamformer::ApplyMaskFrequencySmoothing() { |
(...skipping 57 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
570 new_mask_ + high_mean_end_bin_ + 1); | 594 new_mask_ + high_mean_end_bin_ + 1); |
571 if (new_mask_[quantile] > kMaskTargetThreshold) { | 595 if (new_mask_[quantile] > kMaskTargetThreshold) { |
572 is_target_present_ = true; | 596 is_target_present_ = true; |
573 interference_blocks_count_ = 0; | 597 interference_blocks_count_ = 0; |
574 } else { | 598 } else { |
575 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; | 599 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; |
576 } | 600 } |
577 } | 601 } |
578 | 602 |
579 } // namespace webrtc | 603 } // namespace webrtc |
OLD | NEW |