OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2010 The WebRTC project authors. All Rights Reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 #include <memory> | |
12 #include <sstream> | |
13 | |
14 #include "libyuv/cpu_id.h" | |
15 #include "libyuv/scale.h" | |
16 #include "webrtc/base/basictypes.h" | |
17 #include "webrtc/base/flags.h" | |
18 #include "webrtc/base/gunit.h" | |
19 #include "webrtc/media/base/testutils.h" | |
20 | |
21 #if defined(_MSC_VER) | |
22 #define ALIGN16(var) __declspec(align(16)) var | |
23 #else | |
24 #define ALIGN16(var) var __attribute__((aligned(16))) | |
25 #endif | |
26 | |
27 using cricket::LoadPlanarYuvTestImage; | |
28 using cricket::DumpPlanarYuvTestImage; | |
29 | |
30 DEFINE_bool(yuvscaler_dump, false, | |
31 "whether to write out scaled images for inspection"); | |
32 DEFINE_int(yuvscaler_repeat, 1, | |
33 "how many times to perform each scaling operation (for perf testing)"); | |
34 | |
35 static const int kAlignment = 16; | |
36 | |
37 // TEST_UNCACHED flushes cache to test real memory performance. | |
38 // TEST_RSTSC uses cpu cycles for more accurate benchmark of the scale function. | |
39 #ifndef __arm__ | |
40 // #define TEST_UNCACHED 1 | |
41 // #define TEST_RSTSC 1 | |
42 #endif | |
43 | |
44 #if defined(TEST_UNCACHED) || defined(TEST_RSTSC) | |
45 #ifdef _MSC_VER | |
46 #include <emmintrin.h> // NOLINT | |
47 #endif | |
48 | |
49 #if defined(__GNUC__) && defined(__i386__) | |
50 static inline uint64_t __rdtsc(void) { | |
51 uint32_t a, d; | |
52 __asm__ volatile("rdtsc" : "=a" (a), "=d" (d)); | |
53 return (reinterpret_cast<uint64_t>(d) << 32) + a; | |
54 } | |
55 | |
56 static inline void _mm_clflush(volatile void *__p) { | |
57 asm volatile("clflush %0" : "+m" (*(volatile char *)__p)); | |
58 } | |
59 #endif | |
60 | |
61 static void FlushCache(uint8_t* dst, int count) { | |
62 while (count >= 32) { | |
63 _mm_clflush(dst); | |
64 dst += 32; | |
65 count -= 32; | |
66 } | |
67 } | |
68 #endif | |
69 | |
70 class YuvScalerTest : public testing::Test { | |
71 protected: | |
72 virtual void SetUp() { | |
73 dump_ = *rtc::FlagList::Lookup("yuvscaler_dump")->bool_variable(); | |
74 repeat_ = *rtc::FlagList::Lookup("yuvscaler_repeat")->int_variable(); | |
75 } | |
76 | |
77 // Scale an image and compare against a Lanczos-filtered test image. | |
78 // Lanczos is considered to be the "ideal" image resampling method, so we try | |
79 // to get as close to that as possible, while being as fast as possible. | |
80 bool TestScale(int iw, int ih, int ow, int oh, int offset, bool usefile, | |
81 bool optimize, int cpuflags, bool interpolate, | |
82 int memoffset, double* error) { | |
83 *error = 0.; | |
84 size_t isize = I420_SIZE(iw, ih); | |
85 size_t osize = I420_SIZE(ow, oh); | |
86 std::unique_ptr<uint8_t[]> ibuffer( | |
87 new uint8_t[isize + kAlignment + memoffset]()); | |
88 std::unique_ptr<uint8_t[]> obuffer( | |
89 new uint8_t[osize + kAlignment + memoffset]()); | |
90 std::unique_ptr<uint8_t[]> xbuffer( | |
91 new uint8_t[osize + kAlignment + memoffset]()); | |
92 | |
93 uint8_t* ibuf = ALIGNP(ibuffer.get(), kAlignment) + memoffset; | |
94 uint8_t* obuf = ALIGNP(obuffer.get(), kAlignment) + memoffset; | |
95 uint8_t* xbuf = ALIGNP(xbuffer.get(), kAlignment) + memoffset; | |
96 | |
97 if (usefile) { | |
98 if (!LoadPlanarYuvTestImage("faces", iw, ih, ibuf) || | |
99 !LoadPlanarYuvTestImage("faces", ow, oh, xbuf)) { | |
100 LOG(LS_ERROR) << "Failed to load image"; | |
101 return false; | |
102 } | |
103 } else { | |
104 // These are used to test huge images. | |
105 memset(ibuf, 213, isize); // Input is constant color. | |
106 memset(obuf, 100, osize); // Output set to something wrong for now. | |
107 memset(xbuf, 213, osize); // Expected result. | |
108 } | |
109 | |
110 #ifdef TEST_UNCACHED | |
111 FlushCache(ibuf, isize); | |
112 FlushCache(obuf, osize); | |
113 FlushCache(xbuf, osize); | |
114 #endif | |
115 | |
116 // Scale down. | |
117 // If cpu true, disable cpu optimizations. Else allow auto detect | |
118 // TODO(fbarchard): set flags for libyuv | |
119 libyuv::MaskCpuFlags(cpuflags); | |
120 #ifdef TEST_RSTSC | |
121 uint64_t t = 0; | |
122 #endif | |
123 for (int i = 0; i < repeat_; ++i) { | |
124 #ifdef TEST_UNCACHED | |
125 FlushCache(ibuf, isize); | |
126 FlushCache(obuf, osize); | |
127 #endif | |
128 #ifdef TEST_RSTSC | |
129 uint64_t t1 = __rdtsc(); | |
130 #endif | |
131 EXPECT_EQ(0, libyuv::ScaleOffset(ibuf, iw, ih, obuf, ow, oh, | |
132 offset, interpolate)); | |
133 #ifdef TEST_RSTSC | |
134 uint64_t t2 = __rdtsc(); | |
135 t += t2 - t1; | |
136 #endif | |
137 } | |
138 | |
139 #ifdef TEST_RSTSC | |
140 LOG(LS_INFO) << "Time: " << std::setw(9) << t; | |
141 #endif | |
142 | |
143 if (dump_) { | |
144 const testing::TestInfo* const test_info = | |
145 testing::UnitTest::GetInstance()->current_test_info(); | |
146 std::string test_name(test_info->name()); | |
147 DumpPlanarYuvTestImage(test_name, obuf, ow, oh); | |
148 } | |
149 | |
150 double sse = cricket::ComputeSumSquareError(obuf, xbuf, osize); | |
151 *error = sse / osize; // Mean Squared Error. | |
152 double PSNR = cricket::ComputePSNR(sse, osize); | |
153 LOG(LS_INFO) << "Image MSE: " << | |
154 std::setw(6) << std::setprecision(4) << *error << | |
155 " Image PSNR: " << PSNR; | |
156 return true; | |
157 } | |
158 | |
159 // Returns the index of the first differing byte. Easier to debug than memcmp. | |
160 static int FindDiff(const uint8_t* buf1, const uint8_t* buf2, int len) { | |
161 int i = 0; | |
162 while (i < len && buf1[i] == buf2[i]) { | |
163 i++; | |
164 } | |
165 return (i < len) ? i : -1; | |
166 } | |
167 | |
168 protected: | |
169 bool dump_; | |
170 int repeat_; | |
171 }; | |
172 | |
173 // Tests straight copy of data. | |
174 TEST_F(YuvScalerTest, TestCopy) { | |
175 const int iw = 640, ih = 360; | |
176 const int ow = 640, oh = 360; | |
177 ALIGN16(uint8_t ibuf[I420_SIZE(iw, ih)]); | |
178 ALIGN16(uint8_t obuf[I420_SIZE(ow, oh)]); | |
179 | |
180 // Load the frame, scale it, check it. | |
181 ASSERT_TRUE(LoadPlanarYuvTestImage("faces", iw, ih, ibuf)); | |
182 for (int i = 0; i < repeat_; ++i) { | |
183 libyuv::ScaleOffset(ibuf, iw, ih, obuf, ow, oh, 0, false); | |
184 } | |
185 if (dump_) DumpPlanarYuvTestImage("TestCopy", obuf, ow, oh); | |
186 EXPECT_EQ(-1, FindDiff(obuf, ibuf, sizeof(ibuf))); | |
187 } | |
188 | |
189 // Tests copy from 4:3 to 16:9. | |
190 TEST_F(YuvScalerTest, TestOffset16_10Copy) { | |
191 const int iw = 640, ih = 360; | |
192 const int ow = 640, oh = 480; | |
193 const int offset = (480 - 360) / 2; | |
194 std::unique_ptr<uint8_t[]> ibuffer( | |
195 new uint8_t[I420_SIZE(iw, ih) + kAlignment]); | |
196 std::unique_ptr<uint8_t[]> obuffer( | |
197 new uint8_t[I420_SIZE(ow, oh) + kAlignment]); | |
198 | |
199 uint8_t* ibuf = ALIGNP(ibuffer.get(), kAlignment); | |
200 uint8_t* obuf = ALIGNP(obuffer.get(), kAlignment); | |
201 | |
202 // Load the frame, scale it, check it. | |
203 ASSERT_TRUE(LoadPlanarYuvTestImage("faces", iw, ih, ibuf)); | |
204 | |
205 // Clear to black, which is Y = 0 and U and V = 128 | |
206 memset(obuf, 0, ow * oh); | |
207 memset(obuf + ow * oh, 128, ow * oh / 2); | |
208 for (int i = 0; i < repeat_; ++i) { | |
209 libyuv::ScaleOffset(ibuf, iw, ih, obuf, ow, oh, offset, false); | |
210 } | |
211 if (dump_) DumpPlanarYuvTestImage("TestOffsetCopy16_9", obuf, ow, oh); | |
212 EXPECT_EQ(-1, FindDiff(obuf + ow * offset, | |
213 ibuf, | |
214 iw * ih)); | |
215 EXPECT_EQ(-1, FindDiff(obuf + ow * oh + ow * offset / 4, | |
216 ibuf + iw * ih, | |
217 iw * ih / 4)); | |
218 EXPECT_EQ(-1, FindDiff(obuf + ow * oh * 5 / 4 + ow * offset / 4, | |
219 ibuf + iw * ih * 5 / 4, | |
220 iw * ih / 4)); | |
221 } | |
222 | |
223 // The following are 'cpu' flag values: | |
224 // Allow all SIMD optimizations | |
225 #define ALLFLAGS -1 | |
226 // Disable SSSE3 but allow other forms of SIMD (SSE2) | |
227 #define NOSSSE3 ~libyuv::kCpuHasSSSE3 | |
228 // Disable SSE2 and SSSE3 | |
229 #define NOSSE ~libyuv::kCpuHasSSE2 & ~libyuv::kCpuHasSSSE3 | |
230 | |
231 // TEST_M scale factor with variations of opt, align, int | |
232 #define TEST_M(name, iwidth, iheight, owidth, oheight, mse) \ | |
233 TEST_F(YuvScalerTest, name##Ref) { \ | |
234 double error; \ | |
235 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
236 0, true, false, ALLFLAGS, false, 0, &error)); \ | |
237 EXPECT_LE(error, mse); \ | |
238 } \ | |
239 TEST_F(YuvScalerTest, name##OptAligned) { \ | |
240 double error; \ | |
241 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
242 0, true, true, ALLFLAGS, false, 0, &error)); \ | |
243 EXPECT_LE(error, mse); \ | |
244 } \ | |
245 TEST_F(YuvScalerTest, name##OptUnaligned) { \ | |
246 double error; \ | |
247 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
248 0, true, true, ALLFLAGS, false, 1, &error)); \ | |
249 EXPECT_LE(error, mse); \ | |
250 } \ | |
251 TEST_F(YuvScalerTest, name##OptSSE2) { \ | |
252 double error; \ | |
253 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
254 0, true, true, NOSSSE3, false, 0, &error)); \ | |
255 EXPECT_LE(error, mse); \ | |
256 } \ | |
257 TEST_F(YuvScalerTest, name##OptC) { \ | |
258 double error; \ | |
259 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
260 0, true, true, NOSSE, false, 0, &error)); \ | |
261 EXPECT_LE(error, mse); \ | |
262 } \ | |
263 TEST_F(YuvScalerTest, name##IntRef) { \ | |
264 double error; \ | |
265 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
266 0, true, false, ALLFLAGS, true, 0, &error)); \ | |
267 EXPECT_LE(error, mse); \ | |
268 } \ | |
269 TEST_F(YuvScalerTest, name##IntOptAligned) { \ | |
270 double error; \ | |
271 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
272 0, true, true, ALLFLAGS, true, 0, &error)); \ | |
273 EXPECT_LE(error, mse); \ | |
274 } \ | |
275 TEST_F(YuvScalerTest, name##IntOptUnaligned) { \ | |
276 double error; \ | |
277 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
278 0, true, true, ALLFLAGS, true, 1, &error)); \ | |
279 EXPECT_LE(error, mse); \ | |
280 } \ | |
281 TEST_F(YuvScalerTest, name##IntOptSSE2) { \ | |
282 double error; \ | |
283 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
284 0, true, true, NOSSSE3, true, 0, &error)); \ | |
285 EXPECT_LE(error, mse); \ | |
286 } \ | |
287 TEST_F(YuvScalerTest, name##IntOptC) { \ | |
288 double error; \ | |
289 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
290 0, true, true, NOSSE, true, 0, &error)); \ | |
291 EXPECT_LE(error, mse); \ | |
292 } | |
293 | |
294 #define TEST_H(name, iwidth, iheight, owidth, oheight, opt, cpu, intr, mse) \ | |
295 TEST_F(YuvScalerTest, name) { \ | |
296 double error; \ | |
297 EXPECT_TRUE(TestScale(iwidth, iheight, owidth, oheight, \ | |
298 0, false, opt, cpu, intr, 0, &error)); \ | |
299 EXPECT_LE(error, mse); \ | |
300 } | |
301 | |
302 // Test 4x3 aspect ratio scaling | |
303 | |
304 // Tests 1/1x scale down. | |
305 TEST_M(TestScale4by3Down11, 640, 480, 640, 480, 0) | |
306 | |
307 // Tests 3/4x scale down. | |
308 TEST_M(TestScale4by3Down34, 640, 480, 480, 360, 60) | |
309 | |
310 // Tests 1/2x scale down. | |
311 TEST_M(TestScale4by3Down12, 640, 480, 320, 240, 60) | |
312 | |
313 // Tests 3/8x scale down. | |
314 TEST_M(TestScale4by3Down38, 640, 480, 240, 180, 60) | |
315 | |
316 // Tests 1/4x scale down.. | |
317 TEST_M(TestScale4by3Down14, 640, 480, 160, 120, 60) | |
318 | |
319 // Tests 3/16x scale down. | |
320 TEST_M(TestScale4by3Down316, 640, 480, 120, 90, 120) | |
321 | |
322 // Tests 1/8x scale down. | |
323 TEST_M(TestScale4by3Down18, 640, 480, 80, 60, 150) | |
324 | |
325 // Tests 2/3x scale down. | |
326 TEST_M(TestScale4by3Down23, 480, 360, 320, 240, 60) | |
327 | |
328 // Tests 4/3x scale up. | |
329 TEST_M(TestScale4by3Up43, 480, 360, 640, 480, 60) | |
330 | |
331 // Tests 2/1x scale up. | |
332 TEST_M(TestScale4by3Up21, 320, 240, 640, 480, 60) | |
333 | |
334 // Tests 4/1x scale up. | |
335 TEST_M(TestScale4by3Up41, 160, 120, 640, 480, 80) | |
336 | |
337 // Test 16x10 aspect ratio scaling | |
338 | |
339 // Tests 1/1x scale down. | |
340 TEST_M(TestScale16by10Down11, 640, 400, 640, 400, 0) | |
341 | |
342 // Tests 3/4x scale down. | |
343 TEST_M(TestScale16by10Down34, 640, 400, 480, 300, 60) | |
344 | |
345 // Tests 1/2x scale down. | |
346 TEST_M(TestScale16by10Down12, 640, 400, 320, 200, 60) | |
347 | |
348 // Tests 3/8x scale down. | |
349 TEST_M(TestScale16by10Down38, 640, 400, 240, 150, 60) | |
350 | |
351 // Tests 1/4x scale down.. | |
352 TEST_M(TestScale16by10Down14, 640, 400, 160, 100, 60) | |
353 | |
354 // Tests 3/16x scale down. | |
355 TEST_M(TestScale16by10Down316, 640, 400, 120, 75, 120) | |
356 | |
357 // Tests 1/8x scale down. | |
358 TEST_M(TestScale16by10Down18, 640, 400, 80, 50, 150) | |
359 | |
360 // Tests 2/3x scale down. | |
361 TEST_M(TestScale16by10Down23, 480, 300, 320, 200, 60) | |
362 | |
363 // Tests 4/3x scale up. | |
364 TEST_M(TestScale16by10Up43, 480, 300, 640, 400, 60) | |
365 | |
366 // Tests 2/1x scale up. | |
367 TEST_M(TestScale16by10Up21, 320, 200, 640, 400, 60) | |
368 | |
369 // Tests 4/1x scale up. | |
370 TEST_M(TestScale16by10Up41, 160, 100, 640, 400, 80) | |
371 | |
372 // Test 16x9 aspect ratio scaling | |
373 | |
374 // Tests 1/1x scale down. | |
375 TEST_M(TestScaleDown11, 640, 360, 640, 360, 0) | |
376 | |
377 // Tests 3/4x scale down. | |
378 TEST_M(TestScaleDown34, 640, 360, 480, 270, 60) | |
379 | |
380 // Tests 1/2x scale down. | |
381 TEST_M(TestScaleDown12, 640, 360, 320, 180, 60) | |
382 | |
383 // Tests 3/8x scale down. | |
384 TEST_M(TestScaleDown38, 640, 360, 240, 135, 60) | |
385 | |
386 // Tests 1/4x scale down.. | |
387 TEST_M(TestScaleDown14, 640, 360, 160, 90, 60) | |
388 | |
389 // Tests 3/16x scale down. | |
390 TEST_M(TestScaleDown316, 640, 360, 120, 68, 120) | |
391 | |
392 // Tests 1/8x scale down. | |
393 TEST_M(TestScaleDown18, 640, 360, 80, 45, 150) | |
394 | |
395 // Tests 2/3x scale down. | |
396 TEST_M(TestScaleDown23, 480, 270, 320, 180, 60) | |
397 | |
398 // Tests 4/3x scale up. | |
399 TEST_M(TestScaleUp43, 480, 270, 640, 360, 60) | |
400 | |
401 // Tests 2/1x scale up. | |
402 TEST_M(TestScaleUp21, 320, 180, 640, 360, 60) | |
403 | |
404 // Tests 4/1x scale up. | |
405 TEST_M(TestScaleUp41, 160, 90, 640, 360, 80) | |
406 | |
407 // Test HD 4x3 aspect ratio scaling | |
408 | |
409 // Tests 1/1x scale down. | |
410 TEST_M(TestScaleHD4x3Down11, 1280, 960, 1280, 960, 0) | |
411 | |
412 // Tests 3/4x scale down. | |
413 TEST_M(TestScaleHD4x3Down34, 1280, 960, 960, 720, 60) | |
414 | |
415 // Tests 1/2x scale down. | |
416 TEST_M(TestScaleHD4x3Down12, 1280, 960, 640, 480, 60) | |
417 | |
418 // Tests 3/8x scale down. | |
419 TEST_M(TestScaleHD4x3Down38, 1280, 960, 480, 360, 60) | |
420 | |
421 // Tests 1/4x scale down.. | |
422 TEST_M(TestScaleHD4x3Down14, 1280, 960, 320, 240, 60) | |
423 | |
424 // Tests 3/16x scale down. | |
425 TEST_M(TestScaleHD4x3Down316, 1280, 960, 240, 180, 120) | |
426 | |
427 // Tests 1/8x scale down. | |
428 TEST_M(TestScaleHD4x3Down18, 1280, 960, 160, 120, 150) | |
429 | |
430 // Tests 2/3x scale down. | |
431 TEST_M(TestScaleHD4x3Down23, 960, 720, 640, 480, 60) | |
432 | |
433 // Tests 4/3x scale up. | |
434 TEST_M(TestScaleHD4x3Up43, 960, 720, 1280, 960, 60) | |
435 | |
436 // Tests 2/1x scale up. | |
437 TEST_M(TestScaleHD4x3Up21, 640, 480, 1280, 960, 60) | |
438 | |
439 // Tests 4/1x scale up. | |
440 TEST_M(TestScaleHD4x3Up41, 320, 240, 1280, 960, 80) | |
441 | |
442 // Test HD 16x10 aspect ratio scaling | |
443 | |
444 // Tests 1/1x scale down. | |
445 TEST_M(TestScaleHD16x10Down11, 1280, 800, 1280, 800, 0) | |
446 | |
447 // Tests 3/4x scale down. | |
448 TEST_M(TestScaleHD16x10Down34, 1280, 800, 960, 600, 60) | |
449 | |
450 // Tests 1/2x scale down. | |
451 TEST_M(TestScaleHD16x10Down12, 1280, 800, 640, 400, 60) | |
452 | |
453 // Tests 3/8x scale down. | |
454 TEST_M(TestScaleHD16x10Down38, 1280, 800, 480, 300, 60) | |
455 | |
456 // Tests 1/4x scale down.. | |
457 TEST_M(TestScaleHD16x10Down14, 1280, 800, 320, 200, 60) | |
458 | |
459 // Tests 3/16x scale down. | |
460 TEST_M(TestScaleHD16x10Down316, 1280, 800, 240, 150, 120) | |
461 | |
462 // Tests 1/8x scale down. | |
463 TEST_M(TestScaleHD16x10Down18, 1280, 800, 160, 100, 150) | |
464 | |
465 // Tests 2/3x scale down. | |
466 TEST_M(TestScaleHD16x10Down23, 960, 600, 640, 400, 60) | |
467 | |
468 // Tests 4/3x scale up. | |
469 TEST_M(TestScaleHD16x10Up43, 960, 600, 1280, 800, 60) | |
470 | |
471 // Tests 2/1x scale up. | |
472 TEST_M(TestScaleHD16x10Up21, 640, 400, 1280, 800, 60) | |
473 | |
474 // Tests 4/1x scale up. | |
475 TEST_M(TestScaleHD16x10Up41, 320, 200, 1280, 800, 80) | |
476 | |
477 // Test HD 16x9 aspect ratio scaling | |
478 | |
479 // Tests 1/1x scale down. | |
480 TEST_M(TestScaleHDDown11, 1280, 720, 1280, 720, 0) | |
481 | |
482 // Tests 3/4x scale down. | |
483 TEST_M(TestScaleHDDown34, 1280, 720, 960, 540, 60) | |
484 | |
485 // Tests 1/2x scale down. | |
486 TEST_M(TestScaleHDDown12, 1280, 720, 640, 360, 60) | |
487 | |
488 // Tests 3/8x scale down. | |
489 TEST_M(TestScaleHDDown38, 1280, 720, 480, 270, 60) | |
490 | |
491 // Tests 1/4x scale down.. | |
492 TEST_M(TestScaleHDDown14, 1280, 720, 320, 180, 60) | |
493 | |
494 // Tests 3/16x scale down. | |
495 TEST_M(TestScaleHDDown316, 1280, 720, 240, 135, 120) | |
496 | |
497 // Tests 1/8x scale down. | |
498 TEST_M(TestScaleHDDown18, 1280, 720, 160, 90, 150) | |
499 | |
500 // Tests 2/3x scale down. | |
501 TEST_M(TestScaleHDDown23, 960, 540, 640, 360, 60) | |
502 | |
503 // Tests 4/3x scale up. | |
504 TEST_M(TestScaleHDUp43, 960, 540, 1280, 720, 60) | |
505 | |
506 // Tests 2/1x scale up. | |
507 TEST_M(TestScaleHDUp21, 640, 360, 1280, 720, 60) | |
508 | |
509 // Tests 4/1x scale up. | |
510 TEST_M(TestScaleHDUp41, 320, 180, 1280, 720, 80) | |
511 | |
512 // Tests 1366x768 resolution for comparison to chromium scaler_bench | |
513 TEST_M(TestScaleHDUp1366, 1280, 720, 1366, 768, 10) | |
514 | |
515 // Tests odd source/dest sizes. 3 less to make chroma odd as well. | |
516 TEST_M(TestScaleHDUp1363, 1277, 717, 1363, 765, 10) | |
517 | |
518 // Tests 1/2x scale down, using optimized algorithm. | |
519 TEST_M(TestScaleOddDown12, 180, 100, 90, 50, 50) | |
520 | |
521 // Tests bilinear scale down | |
522 TEST_M(TestScaleOddDownBilin, 160, 100, 90, 50, 120) | |
523 | |
524 // Test huge buffer scales that are expected to use a different code path | |
525 // that avoids stack overflow but still work using point sampling. | |
526 // Max output size is 640 wide. | |
527 | |
528 // Tests interpolated 1/8x scale down, using optimized algorithm. | |
529 TEST_H(TestScaleDown18HDOptInt, 6144, 48, 768, 6, true, ALLFLAGS, true, 1) | |
530 | |
531 // Tests interpolated 1/8x scale down, using c_only optimized algorithm. | |
532 TEST_H(TestScaleDown18HDCOnlyOptInt, 6144, 48, 768, 6, true, NOSSE, true, 1) | |
533 | |
534 // Tests interpolated 3/8x scale down, using optimized algorithm. | |
535 TEST_H(TestScaleDown38HDOptInt, 2048, 16, 768, 6, true, ALLFLAGS, true, 1) | |
536 | |
537 // Tests interpolated 3/8x scale down, using no SSSE3 optimized algorithm. | |
538 TEST_H(TestScaleDown38HDNoSSSE3OptInt, 2048, 16, 768, 6, true, NOSSSE3, true, 1) | |
539 | |
540 // Tests interpolated 3/8x scale down, using c_only optimized algorithm. | |
541 TEST_H(TestScaleDown38HDCOnlyOptInt, 2048, 16, 768, 6, true, NOSSE, true, 1) | |
542 | |
543 // Tests interpolated 3/16x scale down, using optimized algorithm. | |
544 TEST_H(TestScaleDown316HDOptInt, 4096, 32, 768, 6, true, ALLFLAGS, true, 1) | |
545 | |
546 // Tests interpolated 3/16x scale down, using no SSSE3 optimized algorithm. | |
547 TEST_H(TestScaleDown316HDNoSSSE3OptInt, 4096, 32, 768, 6, true, NOSSSE3, true, | |
548 1) | |
549 | |
550 // Tests interpolated 3/16x scale down, using c_only optimized algorithm. | |
551 TEST_H(TestScaleDown316HDCOnlyOptInt, 4096, 32, 768, 6, true, NOSSE, true, 1) | |
552 | |
553 // Test special sizes dont crash | |
554 // Tests scaling down to 1 pixel width | |
555 TEST_H(TestScaleDown1x6OptInt, 3, 24, 1, 6, true, ALLFLAGS, true, 4) | |
556 | |
557 // Tests scaling down to 1 pixel height | |
558 TEST_H(TestScaleDown6x1OptInt, 24, 3, 6, 1, true, ALLFLAGS, true, 4) | |
559 | |
560 // Tests scaling up from 1 pixel width | |
561 TEST_H(TestScaleUp1x6OptInt, 1, 6, 3, 24, true, ALLFLAGS, true, 4) | |
562 | |
563 // Tests scaling up from 1 pixel height | |
564 TEST_H(TestScaleUp6x1OptInt, 6, 1, 24, 3, true, ALLFLAGS, true, 4) | |
565 | |
566 // Test performance of a range of box filter scale sizes | |
567 | |
568 // Tests interpolated 1/2x scale down, using optimized algorithm. | |
569 TEST_H(TestScaleDown2xHDOptInt, 1280, 720, 1280 / 2, 720 / 2, true, ALLFLAGS, | |
570 true, 1) | |
571 | |
572 // Tests interpolated 1/3x scale down, using optimized algorithm. | |
573 TEST_H(TestScaleDown3xHDOptInt, 1280, 720, 1280 / 3, 720 / 3, true, ALLFLAGS, | |
574 true, 1) | |
575 | |
576 // Tests interpolated 1/4x scale down, using optimized algorithm. | |
577 TEST_H(TestScaleDown4xHDOptInt, 1280, 720, 1280 / 4, 720 / 4, true, ALLFLAGS, | |
578 true, 1) | |
579 | |
580 // Tests interpolated 1/5x scale down, using optimized algorithm. | |
581 TEST_H(TestScaleDown5xHDOptInt, 1280, 720, 1280 / 5, 720 / 5, true, ALLFLAGS, | |
582 true, 1) | |
583 | |
584 // Tests interpolated 1/6x scale down, using optimized algorithm. | |
585 TEST_H(TestScaleDown6xHDOptInt, 1280, 720, 1280 / 6, 720 / 6, true, ALLFLAGS, | |
586 true, 1) | |
587 | |
588 // Tests interpolated 1/7x scale down, using optimized algorithm. | |
589 TEST_H(TestScaleDown7xHDOptInt, 1280, 720, 1280 / 7, 720 / 7, true, ALLFLAGS, | |
590 true, 1) | |
591 | |
592 // Tests interpolated 1/8x scale down, using optimized algorithm. | |
593 TEST_H(TestScaleDown8xHDOptInt, 1280, 720, 1280 / 8, 720 / 8, true, ALLFLAGS, | |
594 true, 1) | |
595 | |
596 // Tests interpolated 1/8x scale down, using optimized algorithm. | |
597 TEST_H(TestScaleDown9xHDOptInt, 1280, 720, 1280 / 9, 720 / 9, true, ALLFLAGS, | |
598 true, 1) | |
599 | |
600 // Tests interpolated 1/8x scale down, using optimized algorithm. | |
601 TEST_H(TestScaleDown10xHDOptInt, 1280, 720, 1280 / 10, 720 / 10, true, ALLFLAGS, | |
602 true, 1) | |
OLD | NEW |