OLD | NEW |
(Empty) | |
| 1 /* crc32.c -- compute the CRC-32 of a data stream |
| 2 * Copyright (C) 1995-2006, 2010 Mark Adler |
| 3 * For conditions of distribution and use, see copyright notice in zlib.h |
| 4 * |
| 5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
| 6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
| 7 * tables for updating the shift register in one step with three exclusive-ors |
| 8 * instead of four steps with four exclusive-ors. This results in about a |
| 9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
| 10 */ |
| 11 |
| 12 /* @(#) $Id$ */ |
| 13 |
| 14 /* |
| 15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
| 16 protection on the static variables used to control the first-use generation |
| 17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
| 18 first call get_crc_table() to initialize the tables before allowing more than |
| 19 one thread to use crc32(). |
| 20 */ |
| 21 |
| 22 #ifdef MAKECRCH |
| 23 # include <stdio.h> |
| 24 # ifndef DYNAMIC_CRC_TABLE |
| 25 # define DYNAMIC_CRC_TABLE |
| 26 # endif /* !DYNAMIC_CRC_TABLE */ |
| 27 #endif /* MAKECRCH */ |
| 28 |
| 29 #include "deflate.h" |
| 30 #include "x86.h" |
| 31 #include "zutil.h" /* for STDC and FAR definitions */ |
| 32 |
| 33 #define local static |
| 34 |
| 35 /* Find a four-byte integer type for crc32_little() and crc32_big(). */ |
| 36 #ifndef NOBYFOUR |
| 37 # ifdef STDC /* need ANSI C limits.h to determine sizes */ |
| 38 # include <limits.h> |
| 39 # define BYFOUR |
| 40 # if (UINT_MAX == 0xffffffffUL) |
| 41 typedef unsigned int u4; |
| 42 # else |
| 43 # if (ULONG_MAX == 0xffffffffUL) |
| 44 typedef unsigned long u4; |
| 45 # else |
| 46 # if (USHRT_MAX == 0xffffffffUL) |
| 47 typedef unsigned short u4; |
| 48 # else |
| 49 # undef BYFOUR /* can't find a four-byte integer type! */ |
| 50 # endif |
| 51 # endif |
| 52 # endif |
| 53 # endif /* STDC */ |
| 54 #endif /* !NOBYFOUR */ |
| 55 |
| 56 /* Definitions for doing the crc four data bytes at a time. */ |
| 57 #ifdef BYFOUR |
| 58 # define REV(w) ((((w)>>24)&0xff)+(((w)>>8)&0xff00)+ \ |
| 59 (((w)&0xff00)<<8)+(((w)&0xff)<<24)) |
| 60 local unsigned long crc32_little OF((unsigned long, |
| 61 const unsigned char FAR *, unsigned)); |
| 62 local unsigned long crc32_big OF((unsigned long, |
| 63 const unsigned char FAR *, unsigned)); |
| 64 # define TBLS 8 |
| 65 #else |
| 66 # define TBLS 1 |
| 67 #endif /* BYFOUR */ |
| 68 |
| 69 /* Local functions for crc concatenation */ |
| 70 local unsigned long gf2_matrix_times OF((unsigned long *mat, |
| 71 unsigned long vec)); |
| 72 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
| 73 local uLong crc32_combine_(uLong crc1, uLong crc2, z_off64_t len2); |
| 74 |
| 75 |
| 76 #ifdef DYNAMIC_CRC_TABLE |
| 77 |
| 78 local volatile int crc_table_empty = 1; |
| 79 local unsigned long FAR crc_table[TBLS][256]; |
| 80 local void make_crc_table OF((void)); |
| 81 #ifdef MAKECRCH |
| 82 local void write_table OF((FILE *, const unsigned long FAR *)); |
| 83 #endif /* MAKECRCH */ |
| 84 /* |
| 85 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
| 86 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
| 87 |
| 88 Polynomials over GF(2) are represented in binary, one bit per coefficient, |
| 89 with the lowest powers in the most significant bit. Then adding polynomials |
| 90 is just exclusive-or, and multiplying a polynomial by x is a right shift by |
| 91 one. If we call the above polynomial p, and represent a byte as the |
| 92 polynomial q, also with the lowest power in the most significant bit (so the |
| 93 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
| 94 where a mod b means the remainder after dividing a by b. |
| 95 |
| 96 This calculation is done using the shift-register method of multiplying and |
| 97 taking the remainder. The register is initialized to zero, and for each |
| 98 incoming bit, x^32 is added mod p to the register if the bit is a one (where |
| 99 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
| 100 x (which is shifting right by one and adding x^32 mod p if the bit shifted |
| 101 out is a one). We start with the highest power (least significant bit) of |
| 102 q and repeat for all eight bits of q. |
| 103 |
| 104 The first table is simply the CRC of all possible eight bit values. This is |
| 105 all the information needed to generate CRCs on data a byte at a time for all |
| 106 combinations of CRC register values and incoming bytes. The remaining tables |
| 107 allow for word-at-a-time CRC calculation for both big-endian and little- |
| 108 endian machines, where a word is four bytes. |
| 109 */ |
| 110 local void make_crc_table() |
| 111 { |
| 112 unsigned long c; |
| 113 int n, k; |
| 114 unsigned long poly; /* polynomial exclusive-or pattern */ |
| 115 /* terms of polynomial defining this crc (except x^32): */ |
| 116 static volatile int first = 1; /* flag to limit concurrent making */ |
| 117 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
| 118 |
| 119 /* See if another task is already doing this (not thread-safe, but better |
| 120 than nothing -- significantly reduces duration of vulnerability in |
| 121 case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
| 122 if (first) { |
| 123 first = 0; |
| 124 |
| 125 /* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
| 126 poly = 0UL; |
| 127 for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++) |
| 128 poly |= 1UL << (31 - p[n]); |
| 129 |
| 130 /* generate a crc for every 8-bit value */ |
| 131 for (n = 0; n < 256; n++) { |
| 132 c = (unsigned long)n; |
| 133 for (k = 0; k < 8; k++) |
| 134 c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
| 135 crc_table[0][n] = c; |
| 136 } |
| 137 |
| 138 #ifdef BYFOUR |
| 139 /* generate crc for each value followed by one, two, and three zeros, |
| 140 and then the byte reversal of those as well as the first table */ |
| 141 for (n = 0; n < 256; n++) { |
| 142 c = crc_table[0][n]; |
| 143 crc_table[4][n] = REV(c); |
| 144 for (k = 1; k < 4; k++) { |
| 145 c = crc_table[0][c & 0xff] ^ (c >> 8); |
| 146 crc_table[k][n] = c; |
| 147 crc_table[k + 4][n] = REV(c); |
| 148 } |
| 149 } |
| 150 #endif /* BYFOUR */ |
| 151 |
| 152 crc_table_empty = 0; |
| 153 } |
| 154 else { /* not first */ |
| 155 /* wait for the other guy to finish (not efficient, but rare) */ |
| 156 while (crc_table_empty) |
| 157 ; |
| 158 } |
| 159 |
| 160 #ifdef MAKECRCH |
| 161 /* write out CRC tables to crc32.h */ |
| 162 { |
| 163 FILE *out; |
| 164 |
| 165 out = fopen("crc32.h", "w"); |
| 166 if (out == NULL) return; |
| 167 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
| 168 fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
| 169 fprintf(out, "local const unsigned long FAR "); |
| 170 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
| 171 write_table(out, crc_table[0]); |
| 172 # ifdef BYFOUR |
| 173 fprintf(out, "#ifdef BYFOUR\n"); |
| 174 for (k = 1; k < 8; k++) { |
| 175 fprintf(out, " },\n {\n"); |
| 176 write_table(out, crc_table[k]); |
| 177 } |
| 178 fprintf(out, "#endif\n"); |
| 179 # endif /* BYFOUR */ |
| 180 fprintf(out, " }\n};\n"); |
| 181 fclose(out); |
| 182 } |
| 183 #endif /* MAKECRCH */ |
| 184 } |
| 185 |
| 186 #ifdef MAKECRCH |
| 187 local void write_table(out, table) |
| 188 FILE *out; |
| 189 const unsigned long FAR *table; |
| 190 { |
| 191 int n; |
| 192 |
| 193 for (n = 0; n < 256; n++) |
| 194 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n], |
| 195 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
| 196 } |
| 197 #endif /* MAKECRCH */ |
| 198 |
| 199 #else /* !DYNAMIC_CRC_TABLE */ |
| 200 /* ======================================================================== |
| 201 * Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
| 202 */ |
| 203 #include "crc32.h" |
| 204 #endif /* DYNAMIC_CRC_TABLE */ |
| 205 |
| 206 /* ========================================================================= |
| 207 * This function can be used by asm versions of crc32() |
| 208 */ |
| 209 const unsigned long FAR * ZEXPORT get_crc_table() |
| 210 { |
| 211 #ifdef DYNAMIC_CRC_TABLE |
| 212 if (crc_table_empty) |
| 213 make_crc_table(); |
| 214 #endif /* DYNAMIC_CRC_TABLE */ |
| 215 return (const unsigned long FAR *)crc_table; |
| 216 } |
| 217 |
| 218 /* ========================================================================= */ |
| 219 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
| 220 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
| 221 |
| 222 /* ========================================================================= */ |
| 223 unsigned long ZEXPORT crc32(crc, buf, len) |
| 224 unsigned long crc; |
| 225 const unsigned char FAR *buf; |
| 226 uInt len; |
| 227 { |
| 228 if (buf == Z_NULL) return 0UL; |
| 229 |
| 230 #ifdef DYNAMIC_CRC_TABLE |
| 231 if (crc_table_empty) |
| 232 make_crc_table(); |
| 233 #endif /* DYNAMIC_CRC_TABLE */ |
| 234 |
| 235 #ifdef BYFOUR |
| 236 if (sizeof(void *) == sizeof(ptrdiff_t)) { |
| 237 u4 endian; |
| 238 |
| 239 endian = 1; |
| 240 if (*((unsigned char *)(&endian))) |
| 241 return crc32_little(crc, buf, len); |
| 242 else |
| 243 return crc32_big(crc, buf, len); |
| 244 } |
| 245 #endif /* BYFOUR */ |
| 246 crc = crc ^ 0xffffffffUL; |
| 247 while (len >= 8) { |
| 248 DO8; |
| 249 len -= 8; |
| 250 } |
| 251 if (len) do { |
| 252 DO1; |
| 253 } while (--len); |
| 254 return crc ^ 0xffffffffUL; |
| 255 } |
| 256 |
| 257 #ifdef BYFOUR |
| 258 |
| 259 /* ========================================================================= */ |
| 260 #define DOLIT4 c ^= *buf4++; \ |
| 261 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
| 262 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
| 263 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
| 264 |
| 265 /* ========================================================================= */ |
| 266 local unsigned long crc32_little(crc, buf, len) |
| 267 unsigned long crc; |
| 268 const unsigned char FAR *buf; |
| 269 unsigned len; |
| 270 { |
| 271 register u4 c; |
| 272 register const u4 FAR *buf4; |
| 273 |
| 274 c = (u4)crc; |
| 275 c = ~c; |
| 276 while (len && ((ptrdiff_t)buf & 3)) { |
| 277 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
| 278 len--; |
| 279 } |
| 280 |
| 281 buf4 = (const u4 FAR *)(const void FAR *)buf; |
| 282 while (len >= 32) { |
| 283 DOLIT32; |
| 284 len -= 32; |
| 285 } |
| 286 while (len >= 4) { |
| 287 DOLIT4; |
| 288 len -= 4; |
| 289 } |
| 290 buf = (const unsigned char FAR *)buf4; |
| 291 |
| 292 if (len) do { |
| 293 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
| 294 } while (--len); |
| 295 c = ~c; |
| 296 return (unsigned long)c; |
| 297 } |
| 298 |
| 299 /* ========================================================================= */ |
| 300 #define DOBIG4 c ^= *++buf4; \ |
| 301 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
| 302 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
| 303 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
| 304 |
| 305 /* ========================================================================= */ |
| 306 local unsigned long crc32_big(crc, buf, len) |
| 307 unsigned long crc; |
| 308 const unsigned char FAR *buf; |
| 309 unsigned len; |
| 310 { |
| 311 register u4 c; |
| 312 register const u4 FAR *buf4; |
| 313 |
| 314 c = REV((u4)crc); |
| 315 c = ~c; |
| 316 while (len && ((ptrdiff_t)buf & 3)) { |
| 317 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
| 318 len--; |
| 319 } |
| 320 |
| 321 buf4 = (const u4 FAR *)(const void FAR *)buf; |
| 322 buf4--; |
| 323 while (len >= 32) { |
| 324 DOBIG32; |
| 325 len -= 32; |
| 326 } |
| 327 while (len >= 4) { |
| 328 DOBIG4; |
| 329 len -= 4; |
| 330 } |
| 331 buf4++; |
| 332 buf = (const unsigned char FAR *)buf4; |
| 333 |
| 334 if (len) do { |
| 335 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
| 336 } while (--len); |
| 337 c = ~c; |
| 338 return (unsigned long)(REV(c)); |
| 339 } |
| 340 |
| 341 #endif /* BYFOUR */ |
| 342 |
| 343 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
| 344 |
| 345 /* ========================================================================= */ |
| 346 local unsigned long gf2_matrix_times(mat, vec) |
| 347 unsigned long *mat; |
| 348 unsigned long vec; |
| 349 { |
| 350 unsigned long sum; |
| 351 |
| 352 sum = 0; |
| 353 while (vec) { |
| 354 if (vec & 1) |
| 355 sum ^= *mat; |
| 356 vec >>= 1; |
| 357 mat++; |
| 358 } |
| 359 return sum; |
| 360 } |
| 361 |
| 362 /* ========================================================================= */ |
| 363 local void gf2_matrix_square(square, mat) |
| 364 unsigned long *square; |
| 365 unsigned long *mat; |
| 366 { |
| 367 int n; |
| 368 |
| 369 for (n = 0; n < GF2_DIM; n++) |
| 370 square[n] = gf2_matrix_times(mat, mat[n]); |
| 371 } |
| 372 |
| 373 /* ========================================================================= */ |
| 374 local uLong crc32_combine_(crc1, crc2, len2) |
| 375 uLong crc1; |
| 376 uLong crc2; |
| 377 z_off64_t len2; |
| 378 { |
| 379 int n; |
| 380 unsigned long row; |
| 381 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
| 382 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
| 383 |
| 384 /* degenerate case (also disallow negative lengths) */ |
| 385 if (len2 <= 0) |
| 386 return crc1; |
| 387 |
| 388 /* put operator for one zero bit in odd */ |
| 389 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ |
| 390 row = 1; |
| 391 for (n = 1; n < GF2_DIM; n++) { |
| 392 odd[n] = row; |
| 393 row <<= 1; |
| 394 } |
| 395 |
| 396 /* put operator for two zero bits in even */ |
| 397 gf2_matrix_square(even, odd); |
| 398 |
| 399 /* put operator for four zero bits in odd */ |
| 400 gf2_matrix_square(odd, even); |
| 401 |
| 402 /* apply len2 zeros to crc1 (first square will put the operator for one |
| 403 zero byte, eight zero bits, in even) */ |
| 404 do { |
| 405 /* apply zeros operator for this bit of len2 */ |
| 406 gf2_matrix_square(even, odd); |
| 407 if (len2 & 1) |
| 408 crc1 = gf2_matrix_times(even, crc1); |
| 409 len2 >>= 1; |
| 410 |
| 411 /* if no more bits set, then done */ |
| 412 if (len2 == 0) |
| 413 break; |
| 414 |
| 415 /* another iteration of the loop with odd and even swapped */ |
| 416 gf2_matrix_square(odd, even); |
| 417 if (len2 & 1) |
| 418 crc1 = gf2_matrix_times(odd, crc1); |
| 419 len2 >>= 1; |
| 420 |
| 421 /* if no more bits set, then done */ |
| 422 } while (len2 != 0); |
| 423 |
| 424 /* return combined crc */ |
| 425 crc1 ^= crc2; |
| 426 return crc1; |
| 427 } |
| 428 |
| 429 /* ========================================================================= */ |
| 430 uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
| 431 uLong crc1; |
| 432 uLong crc2; |
| 433 z_off_t len2; |
| 434 { |
| 435 return crc32_combine_(crc1, crc2, len2); |
| 436 } |
| 437 |
| 438 uLong ZEXPORT crc32_combine64(crc1, crc2, len2) |
| 439 uLong crc1; |
| 440 uLong crc2; |
| 441 z_off64_t len2; |
| 442 { |
| 443 return crc32_combine_(crc1, crc2, len2); |
| 444 } |
| 445 |
| 446 ZLIB_INTERNAL void crc_reset(deflate_state *const s) |
| 447 { |
| 448 if (x86_cpu_enable_simd) { |
| 449 crc_fold_init(s); |
| 450 return; |
| 451 } |
| 452 s->strm->adler = crc32(0L, Z_NULL, 0); |
| 453 } |
| 454 |
| 455 ZLIB_INTERNAL void crc_finalize(deflate_state *const s) |
| 456 { |
| 457 if (x86_cpu_enable_simd) |
| 458 s->strm->adler = crc_fold_512to32(s); |
| 459 } |
| 460 |
| 461 ZLIB_INTERNAL void copy_with_crc(z_streamp strm, Bytef *dst, long size) |
| 462 { |
| 463 if (x86_cpu_enable_simd) { |
| 464 crc_fold_copy(strm->state, dst, strm->next_in, size); |
| 465 return; |
| 466 } |
| 467 zmemcpy(dst, strm->next_in, size); |
| 468 strm->adler = crc32(strm->adler, dst, size); |
| 469 } |
OLD | NEW |