Index: webrtc/base/timestampaligner_unittest.cc |
diff --git a/webrtc/base/timestampaligner_unittest.cc b/webrtc/base/timestampaligner_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ae96de0a88a13320bc96e7cb971faa70eac8af15 |
--- /dev/null |
+++ b/webrtc/base/timestampaligner_unittest.cc |
@@ -0,0 +1,133 @@ |
+/* |
+ * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include <math.h> |
+ |
+#include <algorithm> |
+ |
+#include "webrtc/base/gunit.h" |
+#include "webrtc/base/random.h" |
+#include "webrtc/base/timestampaligner.h" |
+ |
+namespace rtc { |
+ |
+namespace { |
+// Computes the difference x_k - mean(x), when x_k is the linear sequence x_k = |
+// k, and the "mean" is plain mean for the first |window_size| samples, followed |
+// by exponential averaging with weight 1 / |window_size| for each new sample. |
+// This is needed to predict the effect of camera clock drift on the timestamp |
+// translation. See the comment on TimestampAligner::UpdateOffset for more |
+// context. |
+double MeanTimeDifference(int nsamples, int window_size) { |
+ if (nsamples <= window_size) { |
+ // Plain averaging. |
+ return nsamples / 2.0; |
+ } else { |
+ // Exponential convergence towards |
+ // interval_error * (window_size - 1) |
+ double alpha = 1.0 - 1.0 / window_size; |
+ |
+ return ((window_size - 1) - |
+ (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size)); |
+ } |
+} |
+ |
+} // Anonymous namespace |
+ |
+class TimestampAlignerTest : public testing::Test { |
+ protected: |
+ void TestTimestampFilter(double rel_freq_error) { |
+ const int64_t kEpoch = 10000; |
+ const int64_t kJitterUs = 5000; |
+ const int64_t kIntervalUs = 33333; // 30 FPS |
+ const int kWindowSize = 100; |
+ const int kNumFrames = 3 * kWindowSize; |
+ |
+ int64_t interval_error_us = kIntervalUs * rel_freq_error; |
+ int64_t system_start_us = rtc::TimeMicros(); |
+ webrtc::Random random(17); |
+ |
+ int64_t prev_translated_time_us = system_start_us; |
+ |
+ for (int i = 0; i < kNumFrames; i++) { |
+ // Camera time subject to drift. |
+ int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us); |
+ int64_t system_time_us = system_start_us + i * kIntervalUs; |
+ // And system time readings are subject to jitter. |
+ int64_t system_measured_us = system_time_us + random.Rand(kJitterUs); |
+ |
+ int64_t offset_us = |
+ timestamp_aligner_.UpdateOffset(camera_time_us, system_measured_us); |
+ |
+ int64_t filtered_time_us = camera_time_us + offset_us; |
+ int64_t translated_time_us = timestamp_aligner_.ClipTimestamp( |
+ filtered_time_us, system_measured_us); |
+ |
+ EXPECT_LE(translated_time_us, system_measured_us); |
+ EXPECT_GE(translated_time_us, prev_translated_time_us); |
+ |
+ // The relative frequency error contributes to the expected error |
+ // by a factor which is the difference between the current time |
+ // and the average of earlier sample times. |
+ int64_t expected_error_us = |
+ kJitterUs / 2 + |
+ rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize); |
+ |
+ int64_t bias_us = filtered_time_us - translated_time_us; |
+ EXPECT_GE(bias_us, 0); |
+ |
+ if (i == 0) { |
+ EXPECT_EQ(translated_time_us, system_measured_us); |
+ } else { |
+ EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us, |
+ 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize))); |
+ } |
+ // If the camera clock runs too fast (rel_freq_error > 0.0), The |
+ // bias is expected to roughly cancel the expected error from the |
+ // clock drift, as this grows. Otherwise, it reflects the |
+ // measurement noise. The tolerances here were selected after some |
+ // trial and error. |
+ if (i < 10 || rel_freq_error <= 0.0) { |
+ EXPECT_LE(bias_us, 3000); |
+ } else { |
+ EXPECT_NEAR(bias_us, expected_error_us, 1500); |
+ } |
+ prev_translated_time_us = translated_time_us; |
+ } |
+ } |
+ |
+ private: |
+ TimestampAligner timestamp_aligner_; |
+}; |
+ |
+TEST_F(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) { |
+ TestTimestampFilter(0.0); |
+} |
+ |
+// 100 ppm is a worst case for a reasonable crystal. |
+TEST_F(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) { |
+ TestTimestampFilter(0.0001); |
+} |
+ |
+TEST_F(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) { |
+ TestTimestampFilter(-0.0001); |
+} |
+ |
+// 3000 ppm, 3 ms / s, is the worst observed drift, see |
+// https://bugs.chromium.org/p/webrtc/issues/detail?id=5456 |
+TEST_F(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) { |
+ TestTimestampFilter(0.003); |
+} |
+ |
+TEST_F(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) { |
+ TestTimestampFilter(-0.003); |
+} |
+ |
+} // namespace rtc |