Index: webrtc/modules/audio_processing/agc/legacy/analog_agc.c |
diff --git a/webrtc/modules/audio_processing/agc/legacy/analog_agc.c b/webrtc/modules/audio_processing/agc/legacy/analog_agc.c |
index 3a1dc9d5ce42ccfe5a27803eb0e91bff0c5ee2e3..36c67c282a02a1b9096f01aa8bda572624f8b67b 100644 |
--- a/webrtc/modules/audio_processing/agc/legacy/analog_agc.c |
+++ b/webrtc/modules/audio_processing/agc/legacy/analog_agc.c |
@@ -26,18 +26,19 @@ |
#endif |
/* The slope of in Q13*/ |
-static const int16_t kSlope1[8] = {21793, 12517, 7189, 4129, 2372, 1362, 472, 78}; |
+static const int16_t kSlope1[8] = {21793, 12517, 7189, 4129, |
+ 2372, 1362, 472, 78}; |
/* The offset in Q14 */ |
-static const int16_t kOffset1[8] = {25395, 23911, 22206, 20737, 19612, 18805, 17951, |
- 17367}; |
+static const int16_t kOffset1[8] = {25395, 23911, 22206, 20737, |
+ 19612, 18805, 17951, 17367}; |
/* The slope of in Q13*/ |
static const int16_t kSlope2[8] = {2063, 1731, 1452, 1218, 1021, 857, 597, 337}; |
/* The offset in Q14 */ |
-static const int16_t kOffset2[8] = {18432, 18379, 18290, 18177, 18052, 17920, 17670, |
- 17286}; |
+static const int16_t kOffset2[8] = {18432, 18379, 18290, 18177, |
+ 18052, 17920, 17670, 17286}; |
static const int16_t kMuteGuardTimeMs = 8000; |
static const int16_t kInitCheck = 42; |
@@ -46,18 +47,23 @@ static const size_t kNumSubframes = 10; |
/* Default settings if config is not used */ |
#define AGC_DEFAULT_TARGET_LEVEL 3 |
#define AGC_DEFAULT_COMP_GAIN 9 |
-/* This is the target level for the analog part in ENV scale. To convert to RMS scale you |
+/* This is the target level for the analog part in ENV scale. To convert to RMS |
+ * scale you |
* have to add OFFSET_ENV_TO_RMS. |
*/ |
#define ANALOG_TARGET_LEVEL 11 |
-#define ANALOG_TARGET_LEVEL_2 5 // ANALOG_TARGET_LEVEL / 2 |
-/* Offset between RMS scale (analog part) and ENV scale (digital part). This value actually |
- * varies with the FIXED_ANALOG_TARGET_LEVEL, hence we should in the future replace it with |
+#define ANALOG_TARGET_LEVEL_2 5 // ANALOG_TARGET_LEVEL / 2 |
+/* Offset between RMS scale (analog part) and ENV scale (digital part). This |
+ * value actually |
+ * varies with the FIXED_ANALOG_TARGET_LEVEL, hence we should in the future |
+ * replace it with |
* a table. |
*/ |
#define OFFSET_ENV_TO_RMS 9 |
-/* The reference input level at which the digital part gives an output of targetLevelDbfs |
- * (desired level) if we have no compression gain. This level should be set high enough not |
+/* The reference input level at which the digital part gives an output of |
+ * targetLevelDbfs |
+ * (desired level) if we have no compression gain. This level should be set high |
+ * enough not |
* to compress the peaks due to the dynamics. |
*/ |
#define DIGITAL_REF_AT_0_COMP_GAIN 4 |
@@ -74,194 +80,181 @@ static const size_t kNumSubframes = 10; |
* fprintf(1, '\t%i, %i, %i, %i,\n', round(10.^(linspace(0,10,32)/20) * 2^12)); |
*/ |
/* Q12 */ |
-static const uint16_t kGainTableAnalog[GAIN_TBL_LEN] = {4096, 4251, 4412, 4579, 4752, |
- 4932, 5118, 5312, 5513, 5722, 5938, 6163, 6396, 6638, 6889, 7150, 7420, 7701, 7992, |
- 8295, 8609, 8934, 9273, 9623, 9987, 10365, 10758, 11165, 11587, 12025, 12480, 12953}; |
+static const uint16_t kGainTableAnalog[GAIN_TBL_LEN] = { |
+ 4096, 4251, 4412, 4579, 4752, 4932, 5118, 5312, 5513, 5722, 5938, |
+ 6163, 6396, 6638, 6889, 7150, 7420, 7701, 7992, 8295, 8609, 8934, |
+ 9273, 9623, 9987, 10365, 10758, 11165, 11587, 12025, 12480, 12953}; |
/* Gain/Suppression tables for virtual Mic (in Q10) */ |
-static const uint16_t kGainTableVirtualMic[128] = {1052, 1081, 1110, 1141, 1172, 1204, |
- 1237, 1271, 1305, 1341, 1378, 1416, 1454, 1494, 1535, 1577, 1620, 1664, 1710, 1757, |
- 1805, 1854, 1905, 1957, 2010, 2065, 2122, 2180, 2239, 2301, 2364, 2428, 2495, 2563, |
- 2633, 2705, 2779, 2855, 2933, 3013, 3096, 3180, 3267, 3357, 3449, 3543, 3640, 3739, |
- 3842, 3947, 4055, 4166, 4280, 4397, 4517, 4640, 4767, 4898, 5032, 5169, 5311, 5456, |
- 5605, 5758, 5916, 6078, 6244, 6415, 6590, 6770, 6956, 7146, 7341, 7542, 7748, 7960, |
- 8178, 8402, 8631, 8867, 9110, 9359, 9615, 9878, 10148, 10426, 10711, 11004, 11305, |
- 11614, 11932, 12258, 12593, 12938, 13292, 13655, 14029, 14412, 14807, 15212, 15628, |
- 16055, 16494, 16945, 17409, 17885, 18374, 18877, 19393, 19923, 20468, 21028, 21603, |
- 22194, 22801, 23425, 24065, 24724, 25400, 26095, 26808, 27541, 28295, 29069, 29864, |
- 30681, 31520, 32382}; |
-static const uint16_t kSuppressionTableVirtualMic[128] = {1024, 1006, 988, 970, 952, |
- 935, 918, 902, 886, 870, 854, 839, 824, 809, 794, 780, 766, 752, 739, 726, 713, 700, |
- 687, 675, 663, 651, 639, 628, 616, 605, 594, 584, 573, 563, 553, 543, 533, 524, 514, |
- 505, 496, 487, 478, 470, 461, 453, 445, 437, 429, 421, 414, 406, 399, 392, 385, 378, |
- 371, 364, 358, 351, 345, 339, 333, 327, 321, 315, 309, 304, 298, 293, 288, 283, 278, |
- 273, 268, 263, 258, 254, 249, 244, 240, 236, 232, 227, 223, 219, 215, 211, 208, 204, |
- 200, 197, 193, 190, 186, 183, 180, 176, 173, 170, 167, 164, 161, 158, 155, 153, 150, |
- 147, 145, 142, 139, 137, 134, 132, 130, 127, 125, 123, 121, 118, 116, 114, 112, 110, |
- 108, 106, 104, 102}; |
+static const uint16_t kGainTableVirtualMic[128] = { |
+ 1052, 1081, 1110, 1141, 1172, 1204, 1237, 1271, 1305, 1341, 1378, |
+ 1416, 1454, 1494, 1535, 1577, 1620, 1664, 1710, 1757, 1805, 1854, |
+ 1905, 1957, 2010, 2065, 2122, 2180, 2239, 2301, 2364, 2428, 2495, |
+ 2563, 2633, 2705, 2779, 2855, 2933, 3013, 3096, 3180, 3267, 3357, |
+ 3449, 3543, 3640, 3739, 3842, 3947, 4055, 4166, 4280, 4397, 4517, |
+ 4640, 4767, 4898, 5032, 5169, 5311, 5456, 5605, 5758, 5916, 6078, |
+ 6244, 6415, 6590, 6770, 6956, 7146, 7341, 7542, 7748, 7960, 8178, |
+ 8402, 8631, 8867, 9110, 9359, 9615, 9878, 10148, 10426, 10711, 11004, |
+ 11305, 11614, 11932, 12258, 12593, 12938, 13292, 13655, 14029, 14412, 14807, |
+ 15212, 15628, 16055, 16494, 16945, 17409, 17885, 18374, 18877, 19393, 19923, |
+ 20468, 21028, 21603, 22194, 22801, 23425, 24065, 24724, 25400, 26095, 26808, |
+ 27541, 28295, 29069, 29864, 30681, 31520, 32382}; |
+static const uint16_t kSuppressionTableVirtualMic[128] = { |
+ 1024, 1006, 988, 970, 952, 935, 918, 902, 886, 870, 854, 839, 824, 809, 794, |
+ 780, 766, 752, 739, 726, 713, 700, 687, 675, 663, 651, 639, 628, 616, 605, |
+ 594, 584, 573, 563, 553, 543, 533, 524, 514, 505, 496, 487, 478, 470, 461, |
+ 453, 445, 437, 429, 421, 414, 406, 399, 392, 385, 378, 371, 364, 358, 351, |
+ 345, 339, 333, 327, 321, 315, 309, 304, 298, 293, 288, 283, 278, 273, 268, |
+ 263, 258, 254, 249, 244, 240, 236, 232, 227, 223, 219, 215, 211, 208, 204, |
+ 200, 197, 193, 190, 186, 183, 180, 176, 173, 170, 167, 164, 161, 158, 155, |
+ 153, 150, 147, 145, 142, 139, 137, 134, 132, 130, 127, 125, 123, 121, 118, |
+ 116, 114, 112, 110, 108, 106, 104, 102}; |
/* Table for target energy levels. Values in Q(-7) |
* Matlab code |
- * targetLevelTable = fprintf('%d,\t%d,\t%d,\t%d,\n', round((32767*10.^(-(0:63)'/20)).^2*16/2^7) */ |
- |
-static const int32_t kTargetLevelTable[64] = {134209536, 106606424, 84680493, 67264106, |
- 53429779, 42440782, 33711911, 26778323, 21270778, 16895980, 13420954, 10660642, |
- 8468049, 6726411, 5342978, 4244078, 3371191, 2677832, 2127078, 1689598, 1342095, |
- 1066064, 846805, 672641, 534298, 424408, 337119, 267783, 212708, 168960, 134210, |
- 106606, 84680, 67264, 53430, 42441, 33712, 26778, 21271, 16896, 13421, 10661, 8468, |
- 6726, 5343, 4244, 3371, 2678, 2127, 1690, 1342, 1066, 847, 673, 534, 424, 337, 268, |
- 213, 169, 134, 107, 85, 67}; |
- |
-int WebRtcAgc_AddMic(void *state, int16_t* const* in_mic, size_t num_bands, |
- size_t samples) |
-{ |
- int32_t nrg, max_nrg, sample, tmp32; |
- int32_t *ptr; |
- uint16_t targetGainIdx, gain; |
- size_t i; |
- int16_t n, L, tmp16, tmp_speech[16]; |
- LegacyAgc* stt; |
- stt = (LegacyAgc*)state; |
- |
- if (stt->fs == 8000) { |
- L = 8; |
- if (samples != 80) { |
- return -1; |
- } |
- } else { |
- L = 16; |
- if (samples != 160) { |
- return -1; |
- } |
- } |
- |
- /* apply slowly varying digital gain */ |
- if (stt->micVol > stt->maxAnalog) |
- { |
- /* |maxLevel| is strictly >= |micVol|, so this condition should be |
- * satisfied here, ensuring there is no divide-by-zero. */ |
- assert(stt->maxLevel > stt->maxAnalog); |
- |
- /* Q1 */ |
- tmp16 = (int16_t)(stt->micVol - stt->maxAnalog); |
- tmp32 = (GAIN_TBL_LEN - 1) * tmp16; |
- tmp16 = (int16_t)(stt->maxLevel - stt->maxAnalog); |
- targetGainIdx = tmp32 / tmp16; |
- assert(targetGainIdx < GAIN_TBL_LEN); |
- |
- /* Increment through the table towards the target gain. |
- * If micVol drops below maxAnalog, we allow the gain |
- * to be dropped immediately. */ |
- if (stt->gainTableIdx < targetGainIdx) |
- { |
- stt->gainTableIdx++; |
- } else if (stt->gainTableIdx > targetGainIdx) |
- { |
- stt->gainTableIdx--; |
- } |
+ * targetLevelTable = fprintf('%d,\t%d,\t%d,\t%d,\n', |
+ * round((32767*10.^(-(0:63)'/20)).^2*16/2^7) */ |
+ |
+static const int32_t kTargetLevelTable[64] = { |
+ 134209536, 106606424, 84680493, 67264106, 53429779, 42440782, 33711911, |
+ 26778323, 21270778, 16895980, 13420954, 10660642, 8468049, 6726411, |
+ 5342978, 4244078, 3371191, 2677832, 2127078, 1689598, 1342095, |
+ 1066064, 846805, 672641, 534298, 424408, 337119, 267783, |
+ 212708, 168960, 134210, 106606, 84680, 67264, 53430, |
+ 42441, 33712, 26778, 21271, 16896, 13421, 10661, |
+ 8468, 6726, 5343, 4244, 3371, 2678, 2127, |
+ 1690, 1342, 1066, 847, 673, 534, 424, |
+ 337, 268, 213, 169, 134, 107, 85, |
+ 67}; |
+ |
+int WebRtcAgc_AddMic(void* state, |
+ int16_t* const* in_mic, |
+ size_t num_bands, |
+ size_t samples) { |
+ int32_t nrg, max_nrg, sample, tmp32; |
+ int32_t* ptr; |
+ uint16_t targetGainIdx, gain; |
+ size_t i; |
+ int16_t n, L, tmp16, tmp_speech[16]; |
+ LegacyAgc* stt; |
+ stt = (LegacyAgc*)state; |
- /* Q12 */ |
- gain = kGainTableAnalog[stt->gainTableIdx]; |
- |
- for (i = 0; i < samples; i++) |
- { |
- size_t j; |
- for (j = 0; j < num_bands; ++j) |
- { |
- sample = (in_mic[j][i] * gain) >> 12; |
- if (sample > 32767) |
- { |
- in_mic[j][i] = 32767; |
- } else if (sample < -32768) |
- { |
- in_mic[j][i] = -32768; |
- } else |
- { |
- in_mic[j][i] = (int16_t)sample; |
- } |
- } |
- } |
- } else |
- { |
- stt->gainTableIdx = 0; |
+ if (stt->fs == 8000) { |
+ L = 8; |
+ if (samples != 80) { |
+ return -1; |
+ } |
+ } else { |
+ L = 16; |
+ if (samples != 160) { |
+ return -1; |
} |
+ } |
- /* compute envelope */ |
- if (stt->inQueue > 0) |
- { |
- ptr = stt->env[1]; |
- } else |
- { |
- ptr = stt->env[0]; |
+ /* apply slowly varying digital gain */ |
+ if (stt->micVol > stt->maxAnalog) { |
+ /* |maxLevel| is strictly >= |micVol|, so this condition should be |
+ * satisfied here, ensuring there is no divide-by-zero. */ |
+ assert(stt->maxLevel > stt->maxAnalog); |
+ |
+ /* Q1 */ |
+ tmp16 = (int16_t)(stt->micVol - stt->maxAnalog); |
+ tmp32 = (GAIN_TBL_LEN - 1) * tmp16; |
+ tmp16 = (int16_t)(stt->maxLevel - stt->maxAnalog); |
+ targetGainIdx = tmp32 / tmp16; |
+ assert(targetGainIdx < GAIN_TBL_LEN); |
+ |
+ /* Increment through the table towards the target gain. |
+ * If micVol drops below maxAnalog, we allow the gain |
+ * to be dropped immediately. */ |
+ if (stt->gainTableIdx < targetGainIdx) { |
+ stt->gainTableIdx++; |
+ } else if (stt->gainTableIdx > targetGainIdx) { |
+ stt->gainTableIdx--; |
} |
- for (i = 0; i < kNumSubframes; i++) |
- { |
- /* iterate over samples */ |
- max_nrg = 0; |
- for (n = 0; n < L; n++) |
- { |
- nrg = in_mic[0][i * L + n] * in_mic[0][i * L + n]; |
- if (nrg > max_nrg) |
- { |
- max_nrg = nrg; |
- } |
+ /* Q12 */ |
+ gain = kGainTableAnalog[stt->gainTableIdx]; |
+ |
+ for (i = 0; i < samples; i++) { |
+ size_t j; |
+ for (j = 0; j < num_bands; ++j) { |
+ sample = (in_mic[j][i] * gain) >> 12; |
+ if (sample > 32767) { |
+ in_mic[j][i] = 32767; |
+ } else if (sample < -32768) { |
+ in_mic[j][i] = -32768; |
+ } else { |
+ in_mic[j][i] = (int16_t)sample; |
} |
- ptr[i] = max_nrg; |
+ } |
} |
+ } else { |
+ stt->gainTableIdx = 0; |
+ } |
- /* compute energy */ |
- if (stt->inQueue > 0) |
- { |
- ptr = stt->Rxx16w32_array[1]; |
- } else |
- { |
- ptr = stt->Rxx16w32_array[0]; |
- } |
+ /* compute envelope */ |
+ if (stt->inQueue > 0) { |
+ ptr = stt->env[1]; |
+ } else { |
+ ptr = stt->env[0]; |
+ } |
- for (i = 0; i < kNumSubframes / 2; i++) |
- { |
- if (stt->fs == 16000) |
- { |
- WebRtcSpl_DownsampleBy2(&in_mic[0][i * 32], |
- 32, |
- tmp_speech, |
- stt->filterState); |
- } else |
- { |
- memcpy(tmp_speech, &in_mic[0][i * 16], 16 * sizeof(short)); |
- } |
- /* Compute energy in blocks of 16 samples */ |
- ptr[i] = WebRtcSpl_DotProductWithScale(tmp_speech, tmp_speech, 16, 4); |
+ for (i = 0; i < kNumSubframes; i++) { |
+ /* iterate over samples */ |
+ max_nrg = 0; |
+ for (n = 0; n < L; n++) { |
+ nrg = in_mic[0][i * L + n] * in_mic[0][i * L + n]; |
+ if (nrg > max_nrg) { |
+ max_nrg = nrg; |
+ } |
} |
+ ptr[i] = max_nrg; |
+ } |
- /* update queue information */ |
- if (stt->inQueue == 0) |
- { |
- stt->inQueue = 1; |
- } else |
- { |
- stt->inQueue = 2; |
+ /* compute energy */ |
+ if (stt->inQueue > 0) { |
+ ptr = stt->Rxx16w32_array[1]; |
+ } else { |
+ ptr = stt->Rxx16w32_array[0]; |
+ } |
+ |
+ for (i = 0; i < kNumSubframes / 2; i++) { |
+ if (stt->fs == 16000) { |
+ WebRtcSpl_DownsampleBy2(&in_mic[0][i * 32], 32, tmp_speech, |
+ stt->filterState); |
+ } else { |
+ memcpy(tmp_speech, &in_mic[0][i * 16], 16 * sizeof(short)); |
} |
+ /* Compute energy in blocks of 16 samples */ |
+ ptr[i] = WebRtcSpl_DotProductWithScale(tmp_speech, tmp_speech, 16, 4); |
+ } |
- /* call VAD (use low band only) */ |
- WebRtcAgc_ProcessVad(&stt->vadMic, in_mic[0], samples); |
+ /* update queue information */ |
+ if (stt->inQueue == 0) { |
+ stt->inQueue = 1; |
+ } else { |
+ stt->inQueue = 2; |
+ } |
- return 0; |
+ /* call VAD (use low band only) */ |
+ WebRtcAgc_ProcessVad(&stt->vadMic, in_mic[0], samples); |
+ |
+ return 0; |
} |
-int WebRtcAgc_AddFarend(void *state, const int16_t *in_far, size_t samples) { |
+int WebRtcAgc_AddFarend(void* state, const int16_t* in_far, size_t samples) { |
LegacyAgc* stt = (LegacyAgc*)state; |
- int err = WebRtcAgc_GetAddFarendError(state, samples); |
+ int err = WebRtcAgc_GetAddFarendError(state, samples); |
- if (err != 0) |
- return err; |
+ if (err != 0) |
+ return err; |
- return WebRtcAgc_AddFarendToDigital(&stt->digitalAgc, in_far, samples); |
+ return WebRtcAgc_AddFarendToDigital(&stt->digitalAgc, in_far, samples); |
} |
-int WebRtcAgc_GetAddFarendError(void *state, size_t samples) { |
+int WebRtcAgc_GetAddFarendError(void* state, size_t samples) { |
LegacyAgc* stt; |
stt = (LegacyAgc*)state; |
@@ -281,1038 +274,920 @@ int WebRtcAgc_GetAddFarendError(void *state, size_t samples) { |
return 0; |
} |
-int WebRtcAgc_VirtualMic(void *agcInst, int16_t* const* in_near, |
- size_t num_bands, size_t samples, int32_t micLevelIn, |
- int32_t *micLevelOut) |
-{ |
- int32_t tmpFlt, micLevelTmp, gainIdx; |
- uint16_t gain; |
- size_t ii, j; |
- LegacyAgc* stt; |
- |
- uint32_t nrg; |
- size_t sampleCntr; |
- uint32_t frameNrg = 0; |
- uint32_t frameNrgLimit = 5500; |
- int16_t numZeroCrossing = 0; |
- const int16_t kZeroCrossingLowLim = 15; |
- const int16_t kZeroCrossingHighLim = 20; |
- |
- stt = (LegacyAgc*)agcInst; |
- |
- /* |
- * Before applying gain decide if this is a low-level signal. |
- * The idea is that digital AGC will not adapt to low-level |
- * signals. |
- */ |
- if (stt->fs != 8000) |
- { |
- frameNrgLimit = frameNrgLimit << 1; |
- } |
+int WebRtcAgc_VirtualMic(void* agcInst, |
+ int16_t* const* in_near, |
+ size_t num_bands, |
+ size_t samples, |
+ int32_t micLevelIn, |
+ int32_t* micLevelOut) { |
+ int32_t tmpFlt, micLevelTmp, gainIdx; |
+ uint16_t gain; |
+ size_t ii, j; |
+ LegacyAgc* stt; |
- frameNrg = (uint32_t)(in_near[0][0] * in_near[0][0]); |
- for (sampleCntr = 1; sampleCntr < samples; sampleCntr++) |
- { |
+ uint32_t nrg; |
+ size_t sampleCntr; |
+ uint32_t frameNrg = 0; |
+ uint32_t frameNrgLimit = 5500; |
+ int16_t numZeroCrossing = 0; |
+ const int16_t kZeroCrossingLowLim = 15; |
+ const int16_t kZeroCrossingHighLim = 20; |
- // increment frame energy if it is less than the limit |
- // the correct value of the energy is not important |
- if (frameNrg < frameNrgLimit) |
- { |
- nrg = (uint32_t)(in_near[0][sampleCntr] * in_near[0][sampleCntr]); |
- frameNrg += nrg; |
- } |
+ stt = (LegacyAgc*)agcInst; |
- // Count the zero crossings |
- numZeroCrossing += |
- ((in_near[0][sampleCntr] ^ in_near[0][sampleCntr - 1]) < 0); |
- } |
+ /* |
+ * Before applying gain decide if this is a low-level signal. |
+ * The idea is that digital AGC will not adapt to low-level |
+ * signals. |
+ */ |
+ if (stt->fs != 8000) { |
+ frameNrgLimit = frameNrgLimit << 1; |
+ } |
- if ((frameNrg < 500) || (numZeroCrossing <= 5)) |
- { |
- stt->lowLevelSignal = 1; |
- } else if (numZeroCrossing <= kZeroCrossingLowLim) |
- { |
- stt->lowLevelSignal = 0; |
- } else if (frameNrg <= frameNrgLimit) |
- { |
- stt->lowLevelSignal = 1; |
- } else if (numZeroCrossing >= kZeroCrossingHighLim) |
- { |
- stt->lowLevelSignal = 1; |
- } else |
- { |
- stt->lowLevelSignal = 0; |
+ frameNrg = (uint32_t)(in_near[0][0] * in_near[0][0]); |
+ for (sampleCntr = 1; sampleCntr < samples; sampleCntr++) { |
+ // increment frame energy if it is less than the limit |
+ // the correct value of the energy is not important |
+ if (frameNrg < frameNrgLimit) { |
+ nrg = (uint32_t)(in_near[0][sampleCntr] * in_near[0][sampleCntr]); |
+ frameNrg += nrg; |
} |
- micLevelTmp = micLevelIn << stt->scale; |
- /* Set desired level */ |
- gainIdx = stt->micVol; |
- if (stt->micVol > stt->maxAnalog) |
- { |
- gainIdx = stt->maxAnalog; |
- } |
- if (micLevelTmp != stt->micRef) |
- { |
- /* Something has happened with the physical level, restart. */ |
- stt->micRef = micLevelTmp; |
- stt->micVol = 127; |
- *micLevelOut = 127; |
- stt->micGainIdx = 127; |
- gainIdx = 127; |
- } |
- /* Pre-process the signal to emulate the microphone level. */ |
- /* Take one step at a time in the gain table. */ |
- if (gainIdx > 127) |
- { |
- gain = kGainTableVirtualMic[gainIdx - 128]; |
- } else |
- { |
+ // Count the zero crossings |
+ numZeroCrossing += |
+ ((in_near[0][sampleCntr] ^ in_near[0][sampleCntr - 1]) < 0); |
+ } |
+ |
+ if ((frameNrg < 500) || (numZeroCrossing <= 5)) { |
+ stt->lowLevelSignal = 1; |
+ } else if (numZeroCrossing <= kZeroCrossingLowLim) { |
+ stt->lowLevelSignal = 0; |
+ } else if (frameNrg <= frameNrgLimit) { |
+ stt->lowLevelSignal = 1; |
+ } else if (numZeroCrossing >= kZeroCrossingHighLim) { |
+ stt->lowLevelSignal = 1; |
+ } else { |
+ stt->lowLevelSignal = 0; |
+ } |
+ |
+ micLevelTmp = micLevelIn << stt->scale; |
+ /* Set desired level */ |
+ gainIdx = stt->micVol; |
+ if (stt->micVol > stt->maxAnalog) { |
+ gainIdx = stt->maxAnalog; |
+ } |
+ if (micLevelTmp != stt->micRef) { |
+ /* Something has happened with the physical level, restart. */ |
+ stt->micRef = micLevelTmp; |
+ stt->micVol = 127; |
+ *micLevelOut = 127; |
+ stt->micGainIdx = 127; |
+ gainIdx = 127; |
+ } |
+ /* Pre-process the signal to emulate the microphone level. */ |
+ /* Take one step at a time in the gain table. */ |
+ if (gainIdx > 127) { |
+ gain = kGainTableVirtualMic[gainIdx - 128]; |
+ } else { |
+ gain = kSuppressionTableVirtualMic[127 - gainIdx]; |
+ } |
+ for (ii = 0; ii < samples; ii++) { |
+ tmpFlt = (in_near[0][ii] * gain) >> 10; |
+ if (tmpFlt > 32767) { |
+ tmpFlt = 32767; |
+ gainIdx--; |
+ if (gainIdx >= 127) { |
+ gain = kGainTableVirtualMic[gainIdx - 127]; |
+ } else { |
gain = kSuppressionTableVirtualMic[127 - gainIdx]; |
+ } |
} |
- for (ii = 0; ii < samples; ii++) |
- { |
- tmpFlt = (in_near[0][ii] * gain) >> 10; |
- if (tmpFlt > 32767) |
- { |
- tmpFlt = 32767; |
- gainIdx--; |
- if (gainIdx >= 127) |
- { |
- gain = kGainTableVirtualMic[gainIdx - 127]; |
- } else |
- { |
- gain = kSuppressionTableVirtualMic[127 - gainIdx]; |
- } |
- } |
- if (tmpFlt < -32768) |
- { |
- tmpFlt = -32768; |
- gainIdx--; |
- if (gainIdx >= 127) |
- { |
- gain = kGainTableVirtualMic[gainIdx - 127]; |
- } else |
- { |
- gain = kSuppressionTableVirtualMic[127 - gainIdx]; |
- } |
- } |
- in_near[0][ii] = (int16_t)tmpFlt; |
- for (j = 1; j < num_bands; ++j) |
- { |
- tmpFlt = (in_near[j][ii] * gain) >> 10; |
- if (tmpFlt > 32767) |
- { |
- tmpFlt = 32767; |
- } |
- if (tmpFlt < -32768) |
- { |
- tmpFlt = -32768; |
- } |
- in_near[j][ii] = (int16_t)tmpFlt; |
- } |
+ if (tmpFlt < -32768) { |
+ tmpFlt = -32768; |
+ gainIdx--; |
+ if (gainIdx >= 127) { |
+ gain = kGainTableVirtualMic[gainIdx - 127]; |
+ } else { |
+ gain = kSuppressionTableVirtualMic[127 - gainIdx]; |
+ } |
} |
- /* Set the level we (finally) used */ |
- stt->micGainIdx = gainIdx; |
-// *micLevelOut = stt->micGainIdx; |
- *micLevelOut = stt->micGainIdx >> stt->scale; |
- /* Add to Mic as if it was the output from a true microphone */ |
- if (WebRtcAgc_AddMic(agcInst, in_near, num_bands, samples) != 0) |
- { |
- return -1; |
+ in_near[0][ii] = (int16_t)tmpFlt; |
+ for (j = 1; j < num_bands; ++j) { |
+ tmpFlt = (in_near[j][ii] * gain) >> 10; |
+ if (tmpFlt > 32767) { |
+ tmpFlt = 32767; |
+ } |
+ if (tmpFlt < -32768) { |
+ tmpFlt = -32768; |
+ } |
+ in_near[j][ii] = (int16_t)tmpFlt; |
} |
- return 0; |
+ } |
+ /* Set the level we (finally) used */ |
+ stt->micGainIdx = gainIdx; |
+ // *micLevelOut = stt->micGainIdx; |
+ *micLevelOut = stt->micGainIdx >> stt->scale; |
+ /* Add to Mic as if it was the output from a true microphone */ |
+ if (WebRtcAgc_AddMic(agcInst, in_near, num_bands, samples) != 0) { |
+ return -1; |
+ } |
+ return 0; |
} |
void WebRtcAgc_UpdateAgcThresholds(LegacyAgc* stt) { |
- int16_t tmp16; |
+ int16_t tmp16; |
#ifdef MIC_LEVEL_FEEDBACK |
- int zeros; |
+ int zeros; |
- if (stt->micLvlSat) |
- { |
- /* Lower the analog target level since we have reached its maximum */ |
- zeros = WebRtcSpl_NormW32(stt->Rxx160_LPw32); |
- stt->targetIdxOffset = (3 * zeros - stt->targetIdx - 2) / 4; |
- } |
+ if (stt->micLvlSat) { |
+ /* Lower the analog target level since we have reached its maximum */ |
+ zeros = WebRtcSpl_NormW32(stt->Rxx160_LPw32); |
+ stt->targetIdxOffset = (3 * zeros - stt->targetIdx - 2) / 4; |
+ } |
#endif |
- /* Set analog target level in envelope dBOv scale */ |
- tmp16 = (DIFF_REF_TO_ANALOG * stt->compressionGaindB) + ANALOG_TARGET_LEVEL_2; |
- tmp16 = WebRtcSpl_DivW32W16ResW16((int32_t)tmp16, ANALOG_TARGET_LEVEL); |
- stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN + tmp16; |
- if (stt->analogTarget < DIGITAL_REF_AT_0_COMP_GAIN) |
- { |
- stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN; |
- } |
- if (stt->agcMode == kAgcModeFixedDigital) |
- { |
- /* Adjust for different parameter interpretation in FixedDigital mode */ |
- stt->analogTarget = stt->compressionGaindB; |
- } |
+ /* Set analog target level in envelope dBOv scale */ |
+ tmp16 = (DIFF_REF_TO_ANALOG * stt->compressionGaindB) + ANALOG_TARGET_LEVEL_2; |
+ tmp16 = WebRtcSpl_DivW32W16ResW16((int32_t)tmp16, ANALOG_TARGET_LEVEL); |
+ stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN + tmp16; |
+ if (stt->analogTarget < DIGITAL_REF_AT_0_COMP_GAIN) { |
+ stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN; |
+ } |
+ if (stt->agcMode == kAgcModeFixedDigital) { |
+ /* Adjust for different parameter interpretation in FixedDigital mode */ |
+ stt->analogTarget = stt->compressionGaindB; |
+ } |
#ifdef MIC_LEVEL_FEEDBACK |
- stt->analogTarget += stt->targetIdxOffset; |
+ stt->analogTarget += stt->targetIdxOffset; |
#endif |
- /* Since the offset between RMS and ENV is not constant, we should make this into a |
- * table, but for now, we'll stick with a constant, tuned for the chosen analog |
- * target level. |
- */ |
- stt->targetIdx = ANALOG_TARGET_LEVEL + OFFSET_ENV_TO_RMS; |
+ /* Since the offset between RMS and ENV is not constant, we should make this |
+ * into a |
+ * table, but for now, we'll stick with a constant, tuned for the chosen |
+ * analog |
+ * target level. |
+ */ |
+ stt->targetIdx = ANALOG_TARGET_LEVEL + OFFSET_ENV_TO_RMS; |
#ifdef MIC_LEVEL_FEEDBACK |
- stt->targetIdx += stt->targetIdxOffset; |
+ stt->targetIdx += stt->targetIdxOffset; |
#endif |
- /* Analog adaptation limits */ |
- /* analogTargetLevel = round((32767*10^(-targetIdx/20))^2*16/2^7) */ |
- stt->analogTargetLevel = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx]; /* ex. -20 dBov */ |
- stt->startUpperLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 1];/* -19 dBov */ |
- stt->startLowerLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 1];/* -21 dBov */ |
- stt->upperPrimaryLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 2];/* -18 dBov */ |
- stt->lowerPrimaryLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 2];/* -22 dBov */ |
- stt->upperSecondaryLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 5];/* -15 dBov */ |
- stt->lowerSecondaryLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 5];/* -25 dBov */ |
- stt->upperLimit = stt->startUpperLimit; |
- stt->lowerLimit = stt->startLowerLimit; |
+ /* Analog adaptation limits */ |
+ /* analogTargetLevel = round((32767*10^(-targetIdx/20))^2*16/2^7) */ |
+ stt->analogTargetLevel = |
+ RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx]; /* ex. -20 dBov */ |
+ stt->startUpperLimit = |
+ RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 1]; /* -19 dBov */ |
+ stt->startLowerLimit = |
+ RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 1]; /* -21 dBov */ |
+ stt->upperPrimaryLimit = |
+ RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 2]; /* -18 dBov */ |
+ stt->lowerPrimaryLimit = |
+ RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 2]; /* -22 dBov */ |
+ stt->upperSecondaryLimit = |
+ RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 5]; /* -15 dBov */ |
+ stt->lowerSecondaryLimit = |
+ RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 5]; /* -25 dBov */ |
+ stt->upperLimit = stt->startUpperLimit; |
+ stt->lowerLimit = stt->startLowerLimit; |
} |
void WebRtcAgc_SaturationCtrl(LegacyAgc* stt, |
uint8_t* saturated, |
int32_t* env) { |
- int16_t i, tmpW16; |
- |
- /* Check if the signal is saturated */ |
- for (i = 0; i < 10; i++) |
- { |
- tmpW16 = (int16_t)(env[i] >> 20); |
- if (tmpW16 > 875) |
- { |
- stt->envSum += tmpW16; |
- } |
- } |
+ int16_t i, tmpW16; |
- if (stt->envSum > 25000) |
- { |
- *saturated = 1; |
- stt->envSum = 0; |
+ /* Check if the signal is saturated */ |
+ for (i = 0; i < 10; i++) { |
+ tmpW16 = (int16_t)(env[i] >> 20); |
+ if (tmpW16 > 875) { |
+ stt->envSum += tmpW16; |
} |
+ } |
- /* stt->envSum *= 0.99; */ |
- stt->envSum = (int16_t)((stt->envSum * 32440) >> 15); |
+ if (stt->envSum > 25000) { |
+ *saturated = 1; |
+ stt->envSum = 0; |
+ } |
+ |
+ /* stt->envSum *= 0.99; */ |
+ stt->envSum = (int16_t)((stt->envSum * 32440) >> 15); |
} |
void WebRtcAgc_ZeroCtrl(LegacyAgc* stt, int32_t* inMicLevel, int32_t* env) { |
- int16_t i; |
- int32_t tmp32 = 0; |
- int32_t midVal; |
- |
- /* Is the input signal zero? */ |
- for (i = 0; i < 10; i++) |
- { |
- tmp32 += env[i]; |
- } |
+ int16_t i; |
+ int32_t tmp32 = 0; |
+ int32_t midVal; |
- /* Each block is allowed to have a few non-zero |
- * samples. |
- */ |
- if (tmp32 < 500) |
- { |
- stt->msZero += 10; |
- } else |
- { |
- stt->msZero = 0; |
- } |
+ /* Is the input signal zero? */ |
+ for (i = 0; i < 10; i++) { |
+ tmp32 += env[i]; |
+ } |
- if (stt->muteGuardMs > 0) |
- { |
- stt->muteGuardMs -= 10; |
- } |
+ /* Each block is allowed to have a few non-zero |
+ * samples. |
+ */ |
+ if (tmp32 < 500) { |
+ stt->msZero += 10; |
+ } else { |
+ stt->msZero = 0; |
+ } |
- if (stt->msZero > 500) |
- { |
- stt->msZero = 0; |
- |
- /* Increase microphone level only if it's less than 50% */ |
- midVal = (stt->maxAnalog + stt->minLevel + 1) / 2; |
- if (*inMicLevel < midVal) |
- { |
- /* *inMicLevel *= 1.1; */ |
- *inMicLevel = (1126 * *inMicLevel) >> 10; |
- /* Reduces risk of a muted mic repeatedly triggering excessive levels due |
- * to zero signal detection. */ |
- *inMicLevel = WEBRTC_SPL_MIN(*inMicLevel, stt->zeroCtrlMax); |
- stt->micVol = *inMicLevel; |
- } |
+ if (stt->muteGuardMs > 0) { |
+ stt->muteGuardMs -= 10; |
+ } |
+ |
+ if (stt->msZero > 500) { |
+ stt->msZero = 0; |
+ |
+ /* Increase microphone level only if it's less than 50% */ |
+ midVal = (stt->maxAnalog + stt->minLevel + 1) / 2; |
+ if (*inMicLevel < midVal) { |
+ /* *inMicLevel *= 1.1; */ |
+ *inMicLevel = (1126 * *inMicLevel) >> 10; |
+ /* Reduces risk of a muted mic repeatedly triggering excessive levels due |
+ * to zero signal detection. */ |
+ *inMicLevel = WEBRTC_SPL_MIN(*inMicLevel, stt->zeroCtrlMax); |
+ stt->micVol = *inMicLevel; |
+ } |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\t\tAGC->zeroCntrl, frame %d: 500 ms under threshold," |
- " micVol: %d\n", |
- stt->fcount, |
- stt->micVol); |
+ fprintf(stt->fpt, |
+ "\t\tAGC->zeroCntrl, frame %d: 500 ms under threshold," |
+ " micVol: %d\n", |
+ stt->fcount, stt->micVol); |
#endif |
- stt->activeSpeech = 0; |
- stt->Rxx16_LPw32Max = 0; |
+ stt->activeSpeech = 0; |
+ stt->Rxx16_LPw32Max = 0; |
- /* The AGC has a tendency (due to problems with the VAD parameters), to |
- * vastly increase the volume after a muting event. This timer prevents |
- * upwards adaptation for a short period. */ |
- stt->muteGuardMs = kMuteGuardTimeMs; |
- } |
+ /* The AGC has a tendency (due to problems with the VAD parameters), to |
+ * vastly increase the volume after a muting event. This timer prevents |
+ * upwards adaptation for a short period. */ |
+ stt->muteGuardMs = kMuteGuardTimeMs; |
+ } |
} |
void WebRtcAgc_SpeakerInactiveCtrl(LegacyAgc* stt) { |
- /* Check if the near end speaker is inactive. |
- * If that is the case the VAD threshold is |
- * increased since the VAD speech model gets |
- * more sensitive to any sound after a long |
- * silence. |
- */ |
- |
- int32_t tmp32; |
- int16_t vadThresh; |
- |
- if (stt->vadMic.stdLongTerm < 2500) |
- { |
- stt->vadThreshold = 1500; |
- } else |
- { |
- vadThresh = kNormalVadThreshold; |
- if (stt->vadMic.stdLongTerm < 4500) |
- { |
- /* Scale between min and max threshold */ |
- vadThresh += (4500 - stt->vadMic.stdLongTerm) / 2; |
- } |
- |
- /* stt->vadThreshold = (31 * stt->vadThreshold + vadThresh) / 32; */ |
- tmp32 = vadThresh + 31 * stt->vadThreshold; |
- stt->vadThreshold = (int16_t)(tmp32 >> 5); |
+ /* Check if the near end speaker is inactive. |
+ * If that is the case the VAD threshold is |
+ * increased since the VAD speech model gets |
+ * more sensitive to any sound after a long |
+ * silence. |
+ */ |
+ |
+ int32_t tmp32; |
+ int16_t vadThresh; |
+ |
+ if (stt->vadMic.stdLongTerm < 2500) { |
+ stt->vadThreshold = 1500; |
+ } else { |
+ vadThresh = kNormalVadThreshold; |
+ if (stt->vadMic.stdLongTerm < 4500) { |
+ /* Scale between min and max threshold */ |
+ vadThresh += (4500 - stt->vadMic.stdLongTerm) / 2; |
} |
+ |
+ /* stt->vadThreshold = (31 * stt->vadThreshold + vadThresh) / 32; */ |
+ tmp32 = vadThresh + 31 * stt->vadThreshold; |
+ stt->vadThreshold = (int16_t)(tmp32 >> 5); |
+ } |
} |
-void WebRtcAgc_ExpCurve(int16_t volume, int16_t *index) |
-{ |
- // volume in Q14 |
- // index in [0-7] |
- /* 8 different curves */ |
- if (volume > 5243) |
- { |
- if (volume > 7864) |
- { |
- if (volume > 12124) |
- { |
- *index = 7; |
- } else |
- { |
- *index = 6; |
- } |
- } else |
- { |
- if (volume > 6554) |
- { |
- *index = 5; |
- } else |
- { |
- *index = 4; |
- } |
- } |
- } else |
- { |
- if (volume > 2621) |
- { |
- if (volume > 3932) |
- { |
- *index = 3; |
- } else |
- { |
- *index = 2; |
- } |
- } else |
- { |
- if (volume > 1311) |
- { |
- *index = 1; |
- } else |
- { |
- *index = 0; |
- } |
- } |
+void WebRtcAgc_ExpCurve(int16_t volume, int16_t* index) { |
+ // volume in Q14 |
+ // index in [0-7] |
+ /* 8 different curves */ |
+ if (volume > 5243) { |
+ if (volume > 7864) { |
+ if (volume > 12124) { |
+ *index = 7; |
+ } else { |
+ *index = 6; |
+ } |
+ } else { |
+ if (volume > 6554) { |
+ *index = 5; |
+ } else { |
+ *index = 4; |
+ } |
} |
+ } else { |
+ if (volume > 2621) { |
+ if (volume > 3932) { |
+ *index = 3; |
+ } else { |
+ *index = 2; |
+ } |
+ } else { |
+ if (volume > 1311) { |
+ *index = 1; |
+ } else { |
+ *index = 0; |
+ } |
+ } |
+ } |
} |
-int32_t WebRtcAgc_ProcessAnalog(void *state, int32_t inMicLevel, |
- int32_t *outMicLevel, |
+int32_t WebRtcAgc_ProcessAnalog(void* state, |
+ int32_t inMicLevel, |
+ int32_t* outMicLevel, |
int16_t vadLogRatio, |
- int16_t echo, uint8_t *saturationWarning) |
-{ |
- uint32_t tmpU32; |
- int32_t Rxx16w32, tmp32; |
- int32_t inMicLevelTmp, lastMicVol; |
- int16_t i; |
- uint8_t saturated = 0; |
- LegacyAgc* stt; |
- |
- stt = (LegacyAgc*)state; |
- inMicLevelTmp = inMicLevel << stt->scale; |
- |
- if (inMicLevelTmp > stt->maxAnalog) |
- { |
+ int16_t echo, |
+ uint8_t* saturationWarning) { |
+ uint32_t tmpU32; |
+ int32_t Rxx16w32, tmp32; |
+ int32_t inMicLevelTmp, lastMicVol; |
+ int16_t i; |
+ uint8_t saturated = 0; |
+ LegacyAgc* stt; |
+ |
+ stt = (LegacyAgc*)state; |
+ inMicLevelTmp = inMicLevel << stt->scale; |
+ |
+ if (inMicLevelTmp > stt->maxAnalog) { |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\tAGC->ProcessAnalog, frame %d: micLvl > maxAnalog\n", |
- stt->fcount); |
+ fprintf(stt->fpt, "\tAGC->ProcessAnalog, frame %d: micLvl > maxAnalog\n", |
+ stt->fcount); |
#endif |
- return -1; |
- } else if (inMicLevelTmp < stt->minLevel) |
- { |
+ return -1; |
+ } else if (inMicLevelTmp < stt->minLevel) { |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\tAGC->ProcessAnalog, frame %d: micLvl < minLevel\n", |
- stt->fcount); |
+ fprintf(stt->fpt, "\tAGC->ProcessAnalog, frame %d: micLvl < minLevel\n", |
+ stt->fcount); |
#endif |
- return -1; |
- } |
+ return -1; |
+ } |
- if (stt->firstCall == 0) |
- { |
- int32_t tmpVol; |
- stt->firstCall = 1; |
- tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9; |
- tmpVol = (stt->minLevel + tmp32); |
- |
- /* If the mic level is very low at start, increase it! */ |
- if ((inMicLevelTmp < tmpVol) && (stt->agcMode == kAgcModeAdaptiveAnalog)) |
- { |
- inMicLevelTmp = tmpVol; |
- } |
- stt->micVol = inMicLevelTmp; |
- } |
+ if (stt->firstCall == 0) { |
+ int32_t tmpVol; |
+ stt->firstCall = 1; |
+ tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9; |
+ tmpVol = (stt->minLevel + tmp32); |
- /* Set the mic level to the previous output value if there is digital input gain */ |
- if ((inMicLevelTmp == stt->maxAnalog) && (stt->micVol > stt->maxAnalog)) |
- { |
- inMicLevelTmp = stt->micVol; |
+ /* If the mic level is very low at start, increase it! */ |
+ if ((inMicLevelTmp < tmpVol) && (stt->agcMode == kAgcModeAdaptiveAnalog)) { |
+ inMicLevelTmp = tmpVol; |
} |
+ stt->micVol = inMicLevelTmp; |
+ } |
- /* If the mic level was manually changed to a very low value raise it! */ |
- if ((inMicLevelTmp != stt->micVol) && (inMicLevelTmp < stt->minOutput)) |
- { |
- tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9; |
- inMicLevelTmp = (stt->minLevel + tmp32); |
- stt->micVol = inMicLevelTmp; |
+ /* Set the mic level to the previous output value if there is digital input |
+ * gain */ |
+ if ((inMicLevelTmp == stt->maxAnalog) && (stt->micVol > stt->maxAnalog)) { |
+ inMicLevelTmp = stt->micVol; |
+ } |
+ |
+ /* If the mic level was manually changed to a very low value raise it! */ |
+ if ((inMicLevelTmp != stt->micVol) && (inMicLevelTmp < stt->minOutput)) { |
+ tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9; |
+ inMicLevelTmp = (stt->minLevel + tmp32); |
+ stt->micVol = inMicLevelTmp; |
#ifdef MIC_LEVEL_FEEDBACK |
- //stt->numBlocksMicLvlSat = 0; |
+// stt->numBlocksMicLvlSat = 0; |
#endif |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\tAGC->ProcessAnalog, frame %d: micLvl < minLevel by manual" |
- " decrease, raise vol\n", |
- stt->fcount); |
+ fprintf(stt->fpt, |
+ "\tAGC->ProcessAnalog, frame %d: micLvl < minLevel by manual" |
+ " decrease, raise vol\n", |
+ stt->fcount); |
#endif |
- } |
+ } |
- if (inMicLevelTmp != stt->micVol) |
- { |
- if (inMicLevel == stt->lastInMicLevel) { |
- // We requested a volume adjustment, but it didn't occur. This is |
- // probably due to a coarse quantization of the volume slider. |
- // Restore the requested value to prevent getting stuck. |
- inMicLevelTmp = stt->micVol; |
- } |
- else { |
- // As long as the value changed, update to match. |
- stt->micVol = inMicLevelTmp; |
- } |
+ if (inMicLevelTmp != stt->micVol) { |
+ if (inMicLevel == stt->lastInMicLevel) { |
+ // We requested a volume adjustment, but it didn't occur. This is |
+ // probably due to a coarse quantization of the volume slider. |
+ // Restore the requested value to prevent getting stuck. |
+ inMicLevelTmp = stt->micVol; |
+ } else { |
+ // As long as the value changed, update to match. |
+ stt->micVol = inMicLevelTmp; |
} |
+ } |
- if (inMicLevelTmp > stt->maxLevel) |
- { |
- // Always allow the user to raise the volume above the maxLevel. |
- stt->maxLevel = inMicLevelTmp; |
- } |
+ if (inMicLevelTmp > stt->maxLevel) { |
+ // Always allow the user to raise the volume above the maxLevel. |
+ stt->maxLevel = inMicLevelTmp; |
+ } |
- // Store last value here, after we've taken care of manual updates etc. |
- stt->lastInMicLevel = inMicLevel; |
- lastMicVol = stt->micVol; |
- |
- /* Checks if the signal is saturated. Also a check if individual samples |
- * are larger than 12000 is done. If they are the counter for increasing |
- * the volume level is set to -100ms |
- */ |
- WebRtcAgc_SaturationCtrl(stt, &saturated, stt->env[0]); |
- |
- /* The AGC is always allowed to lower the level if the signal is saturated */ |
- if (saturated == 1) |
- { |
- /* Lower the recording level |
- * Rxx160_LP is adjusted down because it is so slow it could |
- * cause the AGC to make wrong decisions. */ |
- /* stt->Rxx160_LPw32 *= 0.875; */ |
- stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 8) * 7; |
- |
- stt->zeroCtrlMax = stt->micVol; |
- |
- /* stt->micVol *= 0.903; */ |
- tmp32 = inMicLevelTmp - stt->minLevel; |
- tmpU32 = WEBRTC_SPL_UMUL(29591, (uint32_t)(tmp32)); |
- stt->micVol = (tmpU32 >> 15) + stt->minLevel; |
- if (stt->micVol > lastMicVol - 2) |
- { |
- stt->micVol = lastMicVol - 2; |
- } |
- inMicLevelTmp = stt->micVol; |
+ // Store last value here, after we've taken care of manual updates etc. |
+ stt->lastInMicLevel = inMicLevel; |
+ lastMicVol = stt->micVol; |
+ |
+ /* Checks if the signal is saturated. Also a check if individual samples |
+ * are larger than 12000 is done. If they are the counter for increasing |
+ * the volume level is set to -100ms |
+ */ |
+ WebRtcAgc_SaturationCtrl(stt, &saturated, stt->env[0]); |
+ |
+ /* The AGC is always allowed to lower the level if the signal is saturated */ |
+ if (saturated == 1) { |
+ /* Lower the recording level |
+ * Rxx160_LP is adjusted down because it is so slow it could |
+ * cause the AGC to make wrong decisions. */ |
+ /* stt->Rxx160_LPw32 *= 0.875; */ |
+ stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 8) * 7; |
+ |
+ stt->zeroCtrlMax = stt->micVol; |
+ |
+ /* stt->micVol *= 0.903; */ |
+ tmp32 = inMicLevelTmp - stt->minLevel; |
+ tmpU32 = WEBRTC_SPL_UMUL(29591, (uint32_t)(tmp32)); |
+ stt->micVol = (tmpU32 >> 15) + stt->minLevel; |
+ if (stt->micVol > lastMicVol - 2) { |
+ stt->micVol = lastMicVol - 2; |
+ } |
+ inMicLevelTmp = stt->micVol; |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\tAGC->ProcessAnalog, frame %d: saturated, micVol = %d\n", |
- stt->fcount, |
- stt->micVol); |
+ fprintf(stt->fpt, |
+ "\tAGC->ProcessAnalog, frame %d: saturated, micVol = %d\n", |
+ stt->fcount, stt->micVol); |
#endif |
- if (stt->micVol < stt->minOutput) |
- { |
- *saturationWarning = 1; |
- } |
+ if (stt->micVol < stt->minOutput) { |
+ *saturationWarning = 1; |
+ } |
- /* Reset counter for decrease of volume level to avoid |
- * decreasing too much. The saturation control can still |
- * lower the level if needed. */ |
- stt->msTooHigh = -100; |
+ /* Reset counter for decrease of volume level to avoid |
+ * decreasing too much. The saturation control can still |
+ * lower the level if needed. */ |
+ stt->msTooHigh = -100; |
- /* Enable the control mechanism to ensure that our measure, |
- * Rxx160_LP, is in the correct range. This must be done since |
- * the measure is very slow. */ |
- stt->activeSpeech = 0; |
- stt->Rxx16_LPw32Max = 0; |
+ /* Enable the control mechanism to ensure that our measure, |
+ * Rxx160_LP, is in the correct range. This must be done since |
+ * the measure is very slow. */ |
+ stt->activeSpeech = 0; |
+ stt->Rxx16_LPw32Max = 0; |
- /* Reset to initial values */ |
- stt->msecSpeechInnerChange = kMsecSpeechInner; |
- stt->msecSpeechOuterChange = kMsecSpeechOuter; |
- stt->changeToSlowMode = 0; |
+ /* Reset to initial values */ |
+ stt->msecSpeechInnerChange = kMsecSpeechInner; |
+ stt->msecSpeechOuterChange = kMsecSpeechOuter; |
+ stt->changeToSlowMode = 0; |
- stt->muteGuardMs = 0; |
+ stt->muteGuardMs = 0; |
- stt->upperLimit = stt->startUpperLimit; |
- stt->lowerLimit = stt->startLowerLimit; |
+ stt->upperLimit = stt->startUpperLimit; |
+ stt->lowerLimit = stt->startLowerLimit; |
#ifdef MIC_LEVEL_FEEDBACK |
- //stt->numBlocksMicLvlSat = 0; |
+// stt->numBlocksMicLvlSat = 0; |
#endif |
+ } |
+ |
+ /* Check if the input speech is zero. If so the mic volume |
+ * is increased. On some computers the input is zero up as high |
+ * level as 17% */ |
+ WebRtcAgc_ZeroCtrl(stt, &inMicLevelTmp, stt->env[0]); |
+ |
+ /* Check if the near end speaker is inactive. |
+ * If that is the case the VAD threshold is |
+ * increased since the VAD speech model gets |
+ * more sensitive to any sound after a long |
+ * silence. |
+ */ |
+ WebRtcAgc_SpeakerInactiveCtrl(stt); |
+ |
+ for (i = 0; i < 5; i++) { |
+ /* Computed on blocks of 16 samples */ |
+ |
+ Rxx16w32 = stt->Rxx16w32_array[0][i]; |
+ |
+ /* Rxx160w32 in Q(-7) */ |
+ tmp32 = (Rxx16w32 - stt->Rxx16_vectorw32[stt->Rxx16pos]) >> 3; |
+ stt->Rxx160w32 = stt->Rxx160w32 + tmp32; |
+ stt->Rxx16_vectorw32[stt->Rxx16pos] = Rxx16w32; |
+ |
+ /* Circular buffer */ |
+ stt->Rxx16pos++; |
+ if (stt->Rxx16pos == RXX_BUFFER_LEN) { |
+ stt->Rxx16pos = 0; |
} |
- /* Check if the input speech is zero. If so the mic volume |
- * is increased. On some computers the input is zero up as high |
- * level as 17% */ |
- WebRtcAgc_ZeroCtrl(stt, &inMicLevelTmp, stt->env[0]); |
- |
- /* Check if the near end speaker is inactive. |
- * If that is the case the VAD threshold is |
- * increased since the VAD speech model gets |
- * more sensitive to any sound after a long |
- * silence. |
- */ |
- WebRtcAgc_SpeakerInactiveCtrl(stt); |
- |
- for (i = 0; i < 5; i++) |
- { |
- /* Computed on blocks of 16 samples */ |
- |
- Rxx16w32 = stt->Rxx16w32_array[0][i]; |
- |
- /* Rxx160w32 in Q(-7) */ |
- tmp32 = (Rxx16w32 - stt->Rxx16_vectorw32[stt->Rxx16pos]) >> 3; |
- stt->Rxx160w32 = stt->Rxx160w32 + tmp32; |
- stt->Rxx16_vectorw32[stt->Rxx16pos] = Rxx16w32; |
- |
- /* Circular buffer */ |
- stt->Rxx16pos++; |
- if (stt->Rxx16pos == RXX_BUFFER_LEN) |
- { |
- stt->Rxx16pos = 0; |
+ /* Rxx16_LPw32 in Q(-4) */ |
+ tmp32 = (Rxx16w32 - stt->Rxx16_LPw32) >> kAlphaShortTerm; |
+ stt->Rxx16_LPw32 = (stt->Rxx16_LPw32) + tmp32; |
+ |
+ if (vadLogRatio > stt->vadThreshold) { |
+ /* Speech detected! */ |
+ |
+ /* Check if Rxx160_LP is in the correct range. If |
+ * it is too high/low then we set it to the maximum of |
+ * Rxx16_LPw32 during the first 200ms of speech. |
+ */ |
+ if (stt->activeSpeech < 250) { |
+ stt->activeSpeech += 2; |
+ |
+ if (stt->Rxx16_LPw32 > stt->Rxx16_LPw32Max) { |
+ stt->Rxx16_LPw32Max = stt->Rxx16_LPw32; |
} |
+ } else if (stt->activeSpeech == 250) { |
+ stt->activeSpeech += 2; |
+ tmp32 = stt->Rxx16_LPw32Max >> 3; |
+ stt->Rxx160_LPw32 = tmp32 * RXX_BUFFER_LEN; |
+ } |
+ |
+ tmp32 = (stt->Rxx160w32 - stt->Rxx160_LPw32) >> kAlphaLongTerm; |
+ stt->Rxx160_LPw32 = stt->Rxx160_LPw32 + tmp32; |
+ |
+ if (stt->Rxx160_LPw32 > stt->upperSecondaryLimit) { |
+ stt->msTooHigh += 2; |
+ stt->msTooLow = 0; |
+ stt->changeToSlowMode = 0; |
- /* Rxx16_LPw32 in Q(-4) */ |
- tmp32 = (Rxx16w32 - stt->Rxx16_LPw32) >> kAlphaShortTerm; |
- stt->Rxx16_LPw32 = (stt->Rxx16_LPw32) + tmp32; |
- |
- if (vadLogRatio > stt->vadThreshold) |
- { |
- /* Speech detected! */ |
- |
- /* Check if Rxx160_LP is in the correct range. If |
- * it is too high/low then we set it to the maximum of |
- * Rxx16_LPw32 during the first 200ms of speech. |
- */ |
- if (stt->activeSpeech < 250) |
- { |
- stt->activeSpeech += 2; |
- |
- if (stt->Rxx16_LPw32 > stt->Rxx16_LPw32Max) |
- { |
- stt->Rxx16_LPw32Max = stt->Rxx16_LPw32; |
- } |
- } else if (stt->activeSpeech == 250) |
- { |
- stt->activeSpeech += 2; |
- tmp32 = stt->Rxx16_LPw32Max >> 3; |
- stt->Rxx160_LPw32 = tmp32 * RXX_BUFFER_LEN; |
- } |
- |
- tmp32 = (stt->Rxx160w32 - stt->Rxx160_LPw32) >> kAlphaLongTerm; |
- stt->Rxx160_LPw32 = stt->Rxx160_LPw32 + tmp32; |
- |
- if (stt->Rxx160_LPw32 > stt->upperSecondaryLimit) |
- { |
- stt->msTooHigh += 2; |
- stt->msTooLow = 0; |
- stt->changeToSlowMode = 0; |
- |
- if (stt->msTooHigh > stt->msecSpeechOuterChange) |
- { |
- stt->msTooHigh = 0; |
- |
- /* Lower the recording level */ |
- /* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */ |
- tmp32 = stt->Rxx160_LPw32 >> 6; |
- stt->Rxx160_LPw32 = tmp32 * 53; |
- |
- /* Reduce the max gain to avoid excessive oscillation |
- * (but never drop below the maximum analog level). |
- */ |
- stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16; |
- stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog); |
- |
- stt->zeroCtrlMax = stt->micVol; |
- |
- /* 0.95 in Q15 */ |
- tmp32 = inMicLevelTmp - stt->minLevel; |
- tmpU32 = WEBRTC_SPL_UMUL(31130, (uint32_t)(tmp32)); |
- stt->micVol = (tmpU32 >> 15) + stt->minLevel; |
- if (stt->micVol > lastMicVol - 1) |
- { |
- stt->micVol = lastMicVol - 1; |
- } |
- inMicLevelTmp = stt->micVol; |
- |
- /* Enable the control mechanism to ensure that our measure, |
- * Rxx160_LP, is in the correct range. |
- */ |
- stt->activeSpeech = 0; |
- stt->Rxx16_LPw32Max = 0; |
+ if (stt->msTooHigh > stt->msecSpeechOuterChange) { |
+ stt->msTooHigh = 0; |
+ |
+ /* Lower the recording level */ |
+ /* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */ |
+ tmp32 = stt->Rxx160_LPw32 >> 6; |
+ stt->Rxx160_LPw32 = tmp32 * 53; |
+ |
+ /* Reduce the max gain to avoid excessive oscillation |
+ * (but never drop below the maximum analog level). |
+ */ |
+ stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16; |
+ stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog); |
+ |
+ stt->zeroCtrlMax = stt->micVol; |
+ |
+ /* 0.95 in Q15 */ |
+ tmp32 = inMicLevelTmp - stt->minLevel; |
+ tmpU32 = WEBRTC_SPL_UMUL(31130, (uint32_t)(tmp32)); |
+ stt->micVol = (tmpU32 >> 15) + stt->minLevel; |
+ if (stt->micVol > lastMicVol - 1) { |
+ stt->micVol = lastMicVol - 1; |
+ } |
+ inMicLevelTmp = stt->micVol; |
+ |
+ /* Enable the control mechanism to ensure that our measure, |
+ * Rxx160_LP, is in the correct range. |
+ */ |
+ stt->activeSpeech = 0; |
+ stt->Rxx16_LPw32Max = 0; |
#ifdef MIC_LEVEL_FEEDBACK |
- //stt->numBlocksMicLvlSat = 0; |
+// stt->numBlocksMicLvlSat = 0; |
#endif |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\tAGC->ProcessAnalog, frame %d: measure >" |
- " 2ndUpperLim, micVol = %d, maxLevel = %d\n", |
- stt->fcount, |
- stt->micVol, |
- stt->maxLevel); |
+ fprintf(stt->fpt, |
+ "\tAGC->ProcessAnalog, frame %d: measure >" |
+ " 2ndUpperLim, micVol = %d, maxLevel = %d\n", |
+ stt->fcount, stt->micVol, stt->maxLevel); |
#endif |
- } |
- } else if (stt->Rxx160_LPw32 > stt->upperLimit) |
- { |
- stt->msTooHigh += 2; |
- stt->msTooLow = 0; |
- stt->changeToSlowMode = 0; |
- |
- if (stt->msTooHigh > stt->msecSpeechInnerChange) |
- { |
- /* Lower the recording level */ |
- stt->msTooHigh = 0; |
- /* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */ |
- stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 53; |
- |
- /* Reduce the max gain to avoid excessive oscillation |
- * (but never drop below the maximum analog level). |
- */ |
- stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16; |
- stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog); |
- |
- stt->zeroCtrlMax = stt->micVol; |
- |
- /* 0.965 in Q15 */ |
- tmp32 = inMicLevelTmp - stt->minLevel; |
- tmpU32 = WEBRTC_SPL_UMUL(31621, (uint32_t)(inMicLevelTmp - stt->minLevel)); |
- stt->micVol = (tmpU32 >> 15) + stt->minLevel; |
- if (stt->micVol > lastMicVol - 1) |
- { |
- stt->micVol = lastMicVol - 1; |
- } |
- inMicLevelTmp = stt->micVol; |
+ } |
+ } else if (stt->Rxx160_LPw32 > stt->upperLimit) { |
+ stt->msTooHigh += 2; |
+ stt->msTooLow = 0; |
+ stt->changeToSlowMode = 0; |
+ |
+ if (stt->msTooHigh > stt->msecSpeechInnerChange) { |
+ /* Lower the recording level */ |
+ stt->msTooHigh = 0; |
+ /* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */ |
+ stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 53; |
+ |
+ /* Reduce the max gain to avoid excessive oscillation |
+ * (but never drop below the maximum analog level). |
+ */ |
+ stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16; |
+ stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog); |
+ |
+ stt->zeroCtrlMax = stt->micVol; |
+ |
+ /* 0.965 in Q15 */ |
+ tmp32 = inMicLevelTmp - stt->minLevel; |
+ tmpU32 = |
+ WEBRTC_SPL_UMUL(31621, (uint32_t)(inMicLevelTmp - stt->minLevel)); |
+ stt->micVol = (tmpU32 >> 15) + stt->minLevel; |
+ if (stt->micVol > lastMicVol - 1) { |
+ stt->micVol = lastMicVol - 1; |
+ } |
+ inMicLevelTmp = stt->micVol; |
#ifdef MIC_LEVEL_FEEDBACK |
- //stt->numBlocksMicLvlSat = 0; |
+// stt->numBlocksMicLvlSat = 0; |
#endif |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\tAGC->ProcessAnalog, frame %d: measure >" |
- " UpperLim, micVol = %d, maxLevel = %d\n", |
- stt->fcount, |
- stt->micVol, |
- stt->maxLevel); |
+ fprintf(stt->fpt, |
+ "\tAGC->ProcessAnalog, frame %d: measure >" |
+ " UpperLim, micVol = %d, maxLevel = %d\n", |
+ stt->fcount, stt->micVol, stt->maxLevel); |
#endif |
- } |
- } else if (stt->Rxx160_LPw32 < stt->lowerSecondaryLimit) |
- { |
- stt->msTooHigh = 0; |
- stt->changeToSlowMode = 0; |
- stt->msTooLow += 2; |
- |
- if (stt->msTooLow > stt->msecSpeechOuterChange) |
- { |
- /* Raise the recording level */ |
- int16_t index, weightFIX; |
- int16_t volNormFIX = 16384; // =1 in Q14. |
- |
- stt->msTooLow = 0; |
- |
- /* Normalize the volume level */ |
- tmp32 = (inMicLevelTmp - stt->minLevel) << 14; |
- if (stt->maxInit != stt->minLevel) |
- { |
- volNormFIX = tmp32 / (stt->maxInit - stt->minLevel); |
- } |
- |
- /* Find correct curve */ |
- WebRtcAgc_ExpCurve(volNormFIX, &index); |
- |
- /* Compute weighting factor for the volume increase, 32^(-2*X)/2+1.05 */ |
- weightFIX = kOffset1[index] - |
- (int16_t)((kSlope1[index] * volNormFIX) >> 13); |
- |
- /* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */ |
- stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67; |
- |
- tmp32 = inMicLevelTmp - stt->minLevel; |
- tmpU32 = ((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel)); |
- stt->micVol = (tmpU32 >> 14) + stt->minLevel; |
- if (stt->micVol < lastMicVol + 2) |
- { |
- stt->micVol = lastMicVol + 2; |
- } |
- |
- inMicLevelTmp = stt->micVol; |
+ } |
+ } else if (stt->Rxx160_LPw32 < stt->lowerSecondaryLimit) { |
+ stt->msTooHigh = 0; |
+ stt->changeToSlowMode = 0; |
+ stt->msTooLow += 2; |
+ |
+ if (stt->msTooLow > stt->msecSpeechOuterChange) { |
+ /* Raise the recording level */ |
+ int16_t index, weightFIX; |
+ int16_t volNormFIX = 16384; // =1 in Q14. |
+ |
+ stt->msTooLow = 0; |
+ |
+ /* Normalize the volume level */ |
+ tmp32 = (inMicLevelTmp - stt->minLevel) << 14; |
+ if (stt->maxInit != stt->minLevel) { |
+ volNormFIX = tmp32 / (stt->maxInit - stt->minLevel); |
+ } |
+ |
+ /* Find correct curve */ |
+ WebRtcAgc_ExpCurve(volNormFIX, &index); |
+ |
+ /* Compute weighting factor for the volume increase, 32^(-2*X)/2+1.05 |
+ */ |
+ weightFIX = |
+ kOffset1[index] - (int16_t)((kSlope1[index] * volNormFIX) >> 13); |
+ |
+ /* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */ |
+ stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67; |
+ |
+ tmp32 = inMicLevelTmp - stt->minLevel; |
+ tmpU32 = |
+ ((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel)); |
+ stt->micVol = (tmpU32 >> 14) + stt->minLevel; |
+ if (stt->micVol < lastMicVol + 2) { |
+ stt->micVol = lastMicVol + 2; |
+ } |
+ |
+ inMicLevelTmp = stt->micVol; |
#ifdef MIC_LEVEL_FEEDBACK |
- /* Count ms in level saturation */ |
- //if (stt->micVol > stt->maxAnalog) { |
- if (stt->micVol > 150) |
- { |
- /* mic level is saturated */ |
- stt->numBlocksMicLvlSat++; |
- fprintf(stderr, "Sat mic Level: %d\n", stt->numBlocksMicLvlSat); |
- } |
+ /* Count ms in level saturation */ |
+ // if (stt->micVol > stt->maxAnalog) { |
+ if (stt->micVol > 150) { |
+ /* mic level is saturated */ |
+ stt->numBlocksMicLvlSat++; |
+ fprintf(stderr, "Sat mic Level: %d\n", stt->numBlocksMicLvlSat); |
+ } |
#endif |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\tAGC->ProcessAnalog, frame %d: measure <" |
- " 2ndLowerLim, micVol = %d\n", |
- stt->fcount, |
- stt->micVol); |
+ fprintf(stt->fpt, |
+ "\tAGC->ProcessAnalog, frame %d: measure <" |
+ " 2ndLowerLim, micVol = %d\n", |
+ stt->fcount, stt->micVol); |
#endif |
- } |
- } else if (stt->Rxx160_LPw32 < stt->lowerLimit) |
- { |
- stt->msTooHigh = 0; |
- stt->changeToSlowMode = 0; |
- stt->msTooLow += 2; |
- |
- if (stt->msTooLow > stt->msecSpeechInnerChange) |
- { |
- /* Raise the recording level */ |
- int16_t index, weightFIX; |
- int16_t volNormFIX = 16384; // =1 in Q14. |
- |
- stt->msTooLow = 0; |
- |
- /* Normalize the volume level */ |
- tmp32 = (inMicLevelTmp - stt->minLevel) << 14; |
- if (stt->maxInit != stt->minLevel) |
- { |
- volNormFIX = tmp32 / (stt->maxInit - stt->minLevel); |
- } |
- |
- /* Find correct curve */ |
- WebRtcAgc_ExpCurve(volNormFIX, &index); |
- |
- /* Compute weighting factor for the volume increase, (3.^(-2.*X))/8+1 */ |
- weightFIX = kOffset2[index] - |
- (int16_t)((kSlope2[index] * volNormFIX) >> 13); |
- |
- /* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */ |
- stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67; |
- |
- tmp32 = inMicLevelTmp - stt->minLevel; |
- tmpU32 = ((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel)); |
- stt->micVol = (tmpU32 >> 14) + stt->minLevel; |
- if (stt->micVol < lastMicVol + 1) |
- { |
- stt->micVol = lastMicVol + 1; |
- } |
- |
- inMicLevelTmp = stt->micVol; |
+ } |
+ } else if (stt->Rxx160_LPw32 < stt->lowerLimit) { |
+ stt->msTooHigh = 0; |
+ stt->changeToSlowMode = 0; |
+ stt->msTooLow += 2; |
+ |
+ if (stt->msTooLow > stt->msecSpeechInnerChange) { |
+ /* Raise the recording level */ |
+ int16_t index, weightFIX; |
+ int16_t volNormFIX = 16384; // =1 in Q14. |
+ |
+ stt->msTooLow = 0; |
+ |
+ /* Normalize the volume level */ |
+ tmp32 = (inMicLevelTmp - stt->minLevel) << 14; |
+ if (stt->maxInit != stt->minLevel) { |
+ volNormFIX = tmp32 / (stt->maxInit - stt->minLevel); |
+ } |
+ |
+ /* Find correct curve */ |
+ WebRtcAgc_ExpCurve(volNormFIX, &index); |
+ |
+ /* Compute weighting factor for the volume increase, (3.^(-2.*X))/8+1 |
+ */ |
+ weightFIX = |
+ kOffset2[index] - (int16_t)((kSlope2[index] * volNormFIX) >> 13); |
+ |
+ /* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */ |
+ stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67; |
+ |
+ tmp32 = inMicLevelTmp - stt->minLevel; |
+ tmpU32 = |
+ ((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel)); |
+ stt->micVol = (tmpU32 >> 14) + stt->minLevel; |
+ if (stt->micVol < lastMicVol + 1) { |
+ stt->micVol = lastMicVol + 1; |
+ } |
+ |
+ inMicLevelTmp = stt->micVol; |
#ifdef MIC_LEVEL_FEEDBACK |
- /* Count ms in level saturation */ |
- //if (stt->micVol > stt->maxAnalog) { |
- if (stt->micVol > 150) |
- { |
- /* mic level is saturated */ |
- stt->numBlocksMicLvlSat++; |
- fprintf(stderr, "Sat mic Level: %d\n", stt->numBlocksMicLvlSat); |
- } |
+ /* Count ms in level saturation */ |
+ // if (stt->micVol > stt->maxAnalog) { |
+ if (stt->micVol > 150) { |
+ /* mic level is saturated */ |
+ stt->numBlocksMicLvlSat++; |
+ fprintf(stderr, "Sat mic Level: %d\n", stt->numBlocksMicLvlSat); |
+ } |
#endif |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "\tAGC->ProcessAnalog, frame %d: measure < LowerLim, micVol = %d\n", |
- stt->fcount, |
- stt->micVol); |
+ fprintf(stt->fpt, |
+ "\tAGC->ProcessAnalog, frame %d: measure < LowerLim, micVol " |
+ "= %d\n", |
+ stt->fcount, stt->micVol); |
#endif |
+ } |
+ } else { |
+ /* The signal is inside the desired range which is: |
+ * lowerLimit < Rxx160_LP/640 < upperLimit |
+ */ |
+ if (stt->changeToSlowMode > 4000) { |
+ stt->msecSpeechInnerChange = 1000; |
+ stt->msecSpeechOuterChange = 500; |
+ stt->upperLimit = stt->upperPrimaryLimit; |
+ stt->lowerLimit = stt->lowerPrimaryLimit; |
+ } else { |
+ stt->changeToSlowMode += 2; // in milliseconds |
+ } |
+ stt->msTooLow = 0; |
+ stt->msTooHigh = 0; |
- } |
- } else |
- { |
- /* The signal is inside the desired range which is: |
- * lowerLimit < Rxx160_LP/640 < upperLimit |
- */ |
- if (stt->changeToSlowMode > 4000) |
- { |
- stt->msecSpeechInnerChange = 1000; |
- stt->msecSpeechOuterChange = 500; |
- stt->upperLimit = stt->upperPrimaryLimit; |
- stt->lowerLimit = stt->lowerPrimaryLimit; |
- } else |
- { |
- stt->changeToSlowMode += 2; // in milliseconds |
- } |
- stt->msTooLow = 0; |
- stt->msTooHigh = 0; |
- |
- stt->micVol = inMicLevelTmp; |
- |
- } |
+ stt->micVol = inMicLevelTmp; |
+ } |
#ifdef MIC_LEVEL_FEEDBACK |
- if (stt->numBlocksMicLvlSat > NUM_BLOCKS_IN_SAT_BEFORE_CHANGE_TARGET) |
- { |
- stt->micLvlSat = 1; |
- fprintf(stderr, "target before = %d (%d)\n", stt->analogTargetLevel, stt->targetIdx); |
- WebRtcAgc_UpdateAgcThresholds(stt); |
- WebRtcAgc_CalculateGainTable(&(stt->digitalAgc.gainTable[0]), |
- stt->compressionGaindB, stt->targetLevelDbfs, stt->limiterEnable, |
- stt->analogTarget); |
- stt->numBlocksMicLvlSat = 0; |
- stt->micLvlSat = 0; |
- fprintf(stderr, "target offset = %d\n", stt->targetIdxOffset); |
- fprintf(stderr, "target after = %d (%d)\n", stt->analogTargetLevel, stt->targetIdx); |
- } |
+ if (stt->numBlocksMicLvlSat > NUM_BLOCKS_IN_SAT_BEFORE_CHANGE_TARGET) { |
+ stt->micLvlSat = 1; |
+ fprintf(stderr, "target before = %d (%d)\n", stt->analogTargetLevel, |
+ stt->targetIdx); |
+ WebRtcAgc_UpdateAgcThresholds(stt); |
+ WebRtcAgc_CalculateGainTable( |
+ &(stt->digitalAgc.gainTable[0]), stt->compressionGaindB, |
+ stt->targetLevelDbfs, stt->limiterEnable, stt->analogTarget); |
+ stt->numBlocksMicLvlSat = 0; |
+ stt->micLvlSat = 0; |
+ fprintf(stderr, "target offset = %d\n", stt->targetIdxOffset); |
+ fprintf(stderr, "target after = %d (%d)\n", stt->analogTargetLevel, |
+ stt->targetIdx); |
+ } |
#endif |
- } |
} |
+ } |
- /* Ensure gain is not increased in presence of echo or after a mute event |
- * (but allow the zeroCtrl() increase on the frame of a mute detection). |
- */ |
- if (echo == 1 || (stt->muteGuardMs > 0 && stt->muteGuardMs < kMuteGuardTimeMs)) |
- { |
- if (stt->micVol > lastMicVol) |
- { |
- stt->micVol = lastMicVol; |
- } |
+ /* Ensure gain is not increased in presence of echo or after a mute event |
+ * (but allow the zeroCtrl() increase on the frame of a mute detection). |
+ */ |
+ if (echo == 1 || |
+ (stt->muteGuardMs > 0 && stt->muteGuardMs < kMuteGuardTimeMs)) { |
+ if (stt->micVol > lastMicVol) { |
+ stt->micVol = lastMicVol; |
} |
+ } |
- /* limit the gain */ |
- if (stt->micVol > stt->maxLevel) |
- { |
- stt->micVol = stt->maxLevel; |
- } else if (stt->micVol < stt->minOutput) |
- { |
- stt->micVol = stt->minOutput; |
- } |
+ /* limit the gain */ |
+ if (stt->micVol > stt->maxLevel) { |
+ stt->micVol = stt->maxLevel; |
+ } else if (stt->micVol < stt->minOutput) { |
+ stt->micVol = stt->minOutput; |
+ } |
- *outMicLevel = WEBRTC_SPL_MIN(stt->micVol, stt->maxAnalog) >> stt->scale; |
+ *outMicLevel = WEBRTC_SPL_MIN(stt->micVol, stt->maxAnalog) >> stt->scale; |
- return 0; |
+ return 0; |
} |
-int WebRtcAgc_Process(void *agcInst, const int16_t* const* in_near, |
- size_t num_bands, size_t samples, |
- int16_t* const* out, int32_t inMicLevel, |
- int32_t *outMicLevel, int16_t echo, |
- uint8_t *saturationWarning) |
-{ |
+int WebRtcAgc_Process(void* agcInst, |
+ const int16_t* const* in_near, |
+ size_t num_bands, |
+ size_t samples, |
+ int16_t* const* out, |
+ int32_t inMicLevel, |
+ int32_t* outMicLevel, |
+ int16_t echo, |
+ uint8_t* saturationWarning) { |
LegacyAgc* stt; |
stt = (LegacyAgc*)agcInst; |
- // |
- if (stt == NULL) |
- { |
- return -1; |
- } |
- // |
- |
+ // |
+ if (stt == NULL) { |
+ return -1; |
+ } |
+ // |
- if (stt->fs == 8000) |
- { |
- if (samples != 80) |
- { |
- return -1; |
- } |
- } else if (stt->fs == 16000 || stt->fs == 32000 || stt->fs == 48000) |
- { |
- if (samples != 160) |
- { |
- return -1; |
- } |
- } else |
- { |
- return -1; |
+ if (stt->fs == 8000) { |
+ if (samples != 80) { |
+ return -1; |
} |
+ } else if (stt->fs == 16000 || stt->fs == 32000 || stt->fs == 48000) { |
+ if (samples != 160) { |
+ return -1; |
+ } |
+ } else { |
+ return -1; |
+ } |
- *saturationWarning = 0; |
- //TODO: PUT IN RANGE CHECKING FOR INPUT LEVELS |
- *outMicLevel = inMicLevel; |
+ *saturationWarning = 0; |
+ // TODO(minyue): PUT IN RANGE CHECKING FOR INPUT LEVELS |
+ *outMicLevel = inMicLevel; |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- stt->fcount++; |
+ stt->fcount++; |
#endif |
- if (WebRtcAgc_ProcessDigital(&stt->digitalAgc, |
- in_near, |
- num_bands, |
- out, |
- stt->fs, |
- stt->lowLevelSignal) == -1) |
- { |
+ if (WebRtcAgc_ProcessDigital(&stt->digitalAgc, in_near, num_bands, out, |
+ stt->fs, stt->lowLevelSignal) == -1) { |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "AGC->Process, frame %d: Error from DigAGC\n\n", |
- stt->fcount); |
+ fprintf(stt->fpt, "AGC->Process, frame %d: Error from DigAGC\n\n", |
+ stt->fcount); |
#endif |
- return -1; |
- } |
- if (stt->agcMode < kAgcModeFixedDigital && |
- (stt->lowLevelSignal == 0 || stt->agcMode != kAgcModeAdaptiveDigital)) |
- { |
- if (WebRtcAgc_ProcessAnalog(agcInst, |
- inMicLevel, |
- outMicLevel, |
- stt->vadMic.logRatio, |
- echo, |
- saturationWarning) == -1) |
- { |
- return -1; |
- } |
+ return -1; |
+ } |
+ if (stt->agcMode < kAgcModeFixedDigital && |
+ (stt->lowLevelSignal == 0 || stt->agcMode != kAgcModeAdaptiveDigital)) { |
+ if (WebRtcAgc_ProcessAnalog(agcInst, inMicLevel, outMicLevel, |
+ stt->vadMic.logRatio, echo, |
+ saturationWarning) == -1) { |
+ return -1; |
} |
+ } |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->agcLog, |
- "%5d\t%d\t%d\t%d\t%d\n", |
- stt->fcount, |
- inMicLevel, |
- *outMicLevel, |
- stt->maxLevel, |
- stt->micVol); |
+ fprintf(stt->agcLog, "%5d\t%d\t%d\t%d\t%d\n", stt->fcount, inMicLevel, |
+ *outMicLevel, stt->maxLevel, stt->micVol); |
#endif |
- /* update queue */ |
- if (stt->inQueue > 1) |
- { |
- memcpy(stt->env[0], stt->env[1], 10 * sizeof(int32_t)); |
- memcpy(stt->Rxx16w32_array[0], |
- stt->Rxx16w32_array[1], |
- 5 * sizeof(int32_t)); |
- } |
+ /* update queue */ |
+ if (stt->inQueue > 1) { |
+ memcpy(stt->env[0], stt->env[1], 10 * sizeof(int32_t)); |
+ memcpy(stt->Rxx16w32_array[0], stt->Rxx16w32_array[1], 5 * sizeof(int32_t)); |
+ } |
- if (stt->inQueue > 0) |
- { |
- stt->inQueue--; |
- } |
+ if (stt->inQueue > 0) { |
+ stt->inQueue--; |
+ } |
- return 0; |
+ return 0; |
} |
int WebRtcAgc_set_config(void* agcInst, WebRtcAgcConfig agcConfig) { |
LegacyAgc* stt; |
stt = (LegacyAgc*)agcInst; |
- if (stt == NULL) |
- { |
- return -1; |
- } |
+ if (stt == NULL) { |
+ return -1; |
+ } |
- if (stt->initFlag != kInitCheck) |
- { |
- stt->lastError = AGC_UNINITIALIZED_ERROR; |
- return -1; |
- } |
+ if (stt->initFlag != kInitCheck) { |
+ stt->lastError = AGC_UNINITIALIZED_ERROR; |
+ return -1; |
+ } |
- if (agcConfig.limiterEnable != kAgcFalse && agcConfig.limiterEnable != kAgcTrue) |
- { |
- stt->lastError = AGC_BAD_PARAMETER_ERROR; |
- return -1; |
- } |
- stt->limiterEnable = agcConfig.limiterEnable; |
- stt->compressionGaindB = agcConfig.compressionGaindB; |
- if ((agcConfig.targetLevelDbfs < 0) || (agcConfig.targetLevelDbfs > 31)) |
- { |
- stt->lastError = AGC_BAD_PARAMETER_ERROR; |
- return -1; |
- } |
- stt->targetLevelDbfs = agcConfig.targetLevelDbfs; |
+ if (agcConfig.limiterEnable != kAgcFalse && |
+ agcConfig.limiterEnable != kAgcTrue) { |
+ stt->lastError = AGC_BAD_PARAMETER_ERROR; |
+ return -1; |
+ } |
+ stt->limiterEnable = agcConfig.limiterEnable; |
+ stt->compressionGaindB = agcConfig.compressionGaindB; |
+ if ((agcConfig.targetLevelDbfs < 0) || (agcConfig.targetLevelDbfs > 31)) { |
+ stt->lastError = AGC_BAD_PARAMETER_ERROR; |
+ return -1; |
+ } |
+ stt->targetLevelDbfs = agcConfig.targetLevelDbfs; |
- if (stt->agcMode == kAgcModeFixedDigital) |
- { |
- /* Adjust for different parameter interpretation in FixedDigital mode */ |
- stt->compressionGaindB += agcConfig.targetLevelDbfs; |
- } |
+ if (stt->agcMode == kAgcModeFixedDigital) { |
+ /* Adjust for different parameter interpretation in FixedDigital mode */ |
+ stt->compressionGaindB += agcConfig.targetLevelDbfs; |
+ } |
- /* Update threshold levels for analog adaptation */ |
- WebRtcAgc_UpdateAgcThresholds(stt); |
+ /* Update threshold levels for analog adaptation */ |
+ WebRtcAgc_UpdateAgcThresholds(stt); |
- /* Recalculate gain table */ |
- if (WebRtcAgc_CalculateGainTable(&(stt->digitalAgc.gainTable[0]), stt->compressionGaindB, |
- stt->targetLevelDbfs, stt->limiterEnable, stt->analogTarget) == -1) |
- { |
+ /* Recalculate gain table */ |
+ if (WebRtcAgc_CalculateGainTable( |
+ &(stt->digitalAgc.gainTable[0]), stt->compressionGaindB, |
+ stt->targetLevelDbfs, stt->limiterEnable, stt->analogTarget) == -1) { |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "AGC->set_config, frame %d: Error from calcGainTable\n\n", |
- stt->fcount); |
+ fprintf(stt->fpt, "AGC->set_config, frame %d: Error from calcGainTable\n\n", |
+ stt->fcount); |
#endif |
- return -1; |
- } |
- /* Store the config in a WebRtcAgcConfig */ |
- stt->usedConfig.compressionGaindB = agcConfig.compressionGaindB; |
- stt->usedConfig.limiterEnable = agcConfig.limiterEnable; |
- stt->usedConfig.targetLevelDbfs = agcConfig.targetLevelDbfs; |
+ return -1; |
+ } |
+ /* Store the config in a WebRtcAgcConfig */ |
+ stt->usedConfig.compressionGaindB = agcConfig.compressionGaindB; |
+ stt->usedConfig.limiterEnable = agcConfig.limiterEnable; |
+ stt->usedConfig.targetLevelDbfs = agcConfig.targetLevelDbfs; |
- return 0; |
+ return 0; |
} |
int WebRtcAgc_get_config(void* agcInst, WebRtcAgcConfig* config) { |
LegacyAgc* stt; |
stt = (LegacyAgc*)agcInst; |
- if (stt == NULL) |
- { |
- return -1; |
- } |
+ if (stt == NULL) { |
+ return -1; |
+ } |
- if (config == NULL) |
- { |
- stt->lastError = AGC_NULL_POINTER_ERROR; |
- return -1; |
- } |
+ if (config == NULL) { |
+ stt->lastError = AGC_NULL_POINTER_ERROR; |
+ return -1; |
+ } |
- if (stt->initFlag != kInitCheck) |
- { |
- stt->lastError = AGC_UNINITIALIZED_ERROR; |
- return -1; |
- } |
+ if (stt->initFlag != kInitCheck) { |
+ stt->lastError = AGC_UNINITIALIZED_ERROR; |
+ return -1; |
+ } |
- config->limiterEnable = stt->usedConfig.limiterEnable; |
- config->targetLevelDbfs = stt->usedConfig.targetLevelDbfs; |
- config->compressionGaindB = stt->usedConfig.compressionGaindB; |
+ config->limiterEnable = stt->usedConfig.limiterEnable; |
+ config->targetLevelDbfs = stt->usedConfig.targetLevelDbfs; |
+ config->compressionGaindB = stt->usedConfig.compressionGaindB; |
- return 0; |
+ return 0; |
} |
void* WebRtcAgc_Create() { |
@@ -1330,7 +1205,7 @@ void* WebRtcAgc_Create() { |
return stt; |
} |
-void WebRtcAgc_Free(void *state) { |
+void WebRtcAgc_Free(void* state) { |
LegacyAgc* stt; |
stt = (LegacyAgc*)state; |
@@ -1345,176 +1220,170 @@ void WebRtcAgc_Free(void *state) { |
/* minLevel - Minimum volume level |
* maxLevel - Maximum volume level |
*/ |
-int WebRtcAgc_Init(void *agcInst, int32_t minLevel, int32_t maxLevel, |
- int16_t agcMode, uint32_t fs) |
-{ |
- int32_t max_add, tmp32; |
- int16_t i; |
- int tmpNorm; |
- LegacyAgc* stt; |
- |
- /* typecast state pointer */ |
- stt = (LegacyAgc*)agcInst; |
- |
- if (WebRtcAgc_InitDigital(&stt->digitalAgc, agcMode) != 0) |
- { |
- stt->lastError = AGC_UNINITIALIZED_ERROR; |
- return -1; |
- } |
+int WebRtcAgc_Init(void* agcInst, |
+ int32_t minLevel, |
+ int32_t maxLevel, |
+ int16_t agcMode, |
+ uint32_t fs) { |
+ int32_t max_add, tmp32; |
+ int16_t i; |
+ int tmpNorm; |
+ LegacyAgc* stt; |
- /* Analog AGC variables */ |
- stt->envSum = 0; |
+ /* typecast state pointer */ |
+ stt = (LegacyAgc*)agcInst; |
+ |
+ if (WebRtcAgc_InitDigital(&stt->digitalAgc, agcMode) != 0) { |
+ stt->lastError = AGC_UNINITIALIZED_ERROR; |
+ return -1; |
+ } |
- /* mode = 0 - Only saturation protection |
- * 1 - Analog Automatic Gain Control [-targetLevelDbfs (default -3 dBOv)] |
- * 2 - Digital Automatic Gain Control [-targetLevelDbfs (default -3 dBOv)] |
- * 3 - Fixed Digital Gain [compressionGaindB (default 8 dB)] |
- */ |
+ /* Analog AGC variables */ |
+ stt->envSum = 0; |
+ |
+/* mode = 0 - Only saturation protection |
+ * 1 - Analog Automatic Gain Control [-targetLevelDbfs (default -3 |
+ * dBOv)] |
+ * 2 - Digital Automatic Gain Control [-targetLevelDbfs (default -3 |
+ * dBOv)] |
+ * 3 - Fixed Digital Gain [compressionGaindB (default 8 dB)] |
+ */ |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- stt->fcount = 0; |
- fprintf(stt->fpt, "AGC->Init\n"); |
+ stt->fcount = 0; |
+ fprintf(stt->fpt, "AGC->Init\n"); |
#endif |
- if (agcMode < kAgcModeUnchanged || agcMode > kAgcModeFixedDigital) |
- { |
+ if (agcMode < kAgcModeUnchanged || agcMode > kAgcModeFixedDigital) { |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, "AGC->Init: error, incorrect mode\n\n"); |
+ fprintf(stt->fpt, "AGC->Init: error, incorrect mode\n\n"); |
#endif |
- return -1; |
- } |
- stt->agcMode = agcMode; |
- stt->fs = fs; |
- |
- /* initialize input VAD */ |
- WebRtcAgc_InitVad(&stt->vadMic); |
- |
- /* If the volume range is smaller than 0-256 then |
- * the levels are shifted up to Q8-domain */ |
- tmpNorm = WebRtcSpl_NormU32((uint32_t)maxLevel); |
- stt->scale = tmpNorm - 23; |
- if (stt->scale < 0) |
- { |
- stt->scale = 0; |
- } |
- // TODO(bjornv): Investigate if we really need to scale up a small range now when we have |
- // a guard against zero-increments. For now, we do not support scale up (scale = 0). |
+ return -1; |
+ } |
+ stt->agcMode = agcMode; |
+ stt->fs = fs; |
+ |
+ /* initialize input VAD */ |
+ WebRtcAgc_InitVad(&stt->vadMic); |
+ |
+ /* If the volume range is smaller than 0-256 then |
+ * the levels are shifted up to Q8-domain */ |
+ tmpNorm = WebRtcSpl_NormU32((uint32_t)maxLevel); |
+ stt->scale = tmpNorm - 23; |
+ if (stt->scale < 0) { |
stt->scale = 0; |
- maxLevel <<= stt->scale; |
- minLevel <<= stt->scale; |
- |
- /* Make minLevel and maxLevel static in AdaptiveDigital */ |
- if (stt->agcMode == kAgcModeAdaptiveDigital) |
- { |
- minLevel = 0; |
- maxLevel = 255; |
- stt->scale = 0; |
- } |
- /* The maximum supplemental volume range is based on a vague idea |
- * of how much lower the gain will be than the real analog gain. */ |
- max_add = (maxLevel - minLevel) / 4; |
- |
- /* Minimum/maximum volume level that can be set */ |
- stt->minLevel = minLevel; |
- stt->maxAnalog = maxLevel; |
- stt->maxLevel = maxLevel + max_add; |
- stt->maxInit = stt->maxLevel; |
- |
- stt->zeroCtrlMax = stt->maxAnalog; |
- stt->lastInMicLevel = 0; |
- |
- /* Initialize micVol parameter */ |
- stt->micVol = stt->maxAnalog; |
- if (stt->agcMode == kAgcModeAdaptiveDigital) |
- { |
- stt->micVol = 127; /* Mid-point of mic level */ |
- } |
- stt->micRef = stt->micVol; |
- stt->micGainIdx = 127; |
+ } |
+ // TODO(bjornv): Investigate if we really need to scale up a small range now |
+ // when we have |
+ // a guard against zero-increments. For now, we do not support scale up (scale |
+ // = 0). |
+ stt->scale = 0; |
+ maxLevel <<= stt->scale; |
+ minLevel <<= stt->scale; |
+ |
+ /* Make minLevel and maxLevel static in AdaptiveDigital */ |
+ if (stt->agcMode == kAgcModeAdaptiveDigital) { |
+ minLevel = 0; |
+ maxLevel = 255; |
+ stt->scale = 0; |
+ } |
+ /* The maximum supplemental volume range is based on a vague idea |
+ * of how much lower the gain will be than the real analog gain. */ |
+ max_add = (maxLevel - minLevel) / 4; |
+ |
+ /* Minimum/maximum volume level that can be set */ |
+ stt->minLevel = minLevel; |
+ stt->maxAnalog = maxLevel; |
+ stt->maxLevel = maxLevel + max_add; |
+ stt->maxInit = stt->maxLevel; |
+ |
+ stt->zeroCtrlMax = stt->maxAnalog; |
+ stt->lastInMicLevel = 0; |
+ |
+ /* Initialize micVol parameter */ |
+ stt->micVol = stt->maxAnalog; |
+ if (stt->agcMode == kAgcModeAdaptiveDigital) { |
+ stt->micVol = 127; /* Mid-point of mic level */ |
+ } |
+ stt->micRef = stt->micVol; |
+ stt->micGainIdx = 127; |
#ifdef MIC_LEVEL_FEEDBACK |
- stt->numBlocksMicLvlSat = 0; |
- stt->micLvlSat = 0; |
+ stt->numBlocksMicLvlSat = 0; |
+ stt->micLvlSat = 0; |
#endif |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, |
- "AGC->Init: minLevel = %d, maxAnalog = %d, maxLevel = %d\n", |
- stt->minLevel, |
- stt->maxAnalog, |
- stt->maxLevel); |
+ fprintf(stt->fpt, "AGC->Init: minLevel = %d, maxAnalog = %d, maxLevel = %d\n", |
+ stt->minLevel, stt->maxAnalog, stt->maxLevel); |
#endif |
- /* Minimum output volume is 4% higher than the available lowest volume level */ |
- tmp32 = ((stt->maxLevel - stt->minLevel) * 10) >> 8; |
- stt->minOutput = (stt->minLevel + tmp32); |
+ /* Minimum output volume is 4% higher than the available lowest volume level |
+ */ |
+ tmp32 = ((stt->maxLevel - stt->minLevel) * 10) >> 8; |
+ stt->minOutput = (stt->minLevel + tmp32); |
- stt->msTooLow = 0; |
- stt->msTooHigh = 0; |
- stt->changeToSlowMode = 0; |
- stt->firstCall = 0; |
- stt->msZero = 0; |
- stt->muteGuardMs = 0; |
- stt->gainTableIdx = 0; |
+ stt->msTooLow = 0; |
+ stt->msTooHigh = 0; |
+ stt->changeToSlowMode = 0; |
+ stt->firstCall = 0; |
+ stt->msZero = 0; |
+ stt->muteGuardMs = 0; |
+ stt->gainTableIdx = 0; |
- stt->msecSpeechInnerChange = kMsecSpeechInner; |
- stt->msecSpeechOuterChange = kMsecSpeechOuter; |
+ stt->msecSpeechInnerChange = kMsecSpeechInner; |
+ stt->msecSpeechOuterChange = kMsecSpeechOuter; |
- stt->activeSpeech = 0; |
- stt->Rxx16_LPw32Max = 0; |
+ stt->activeSpeech = 0; |
+ stt->Rxx16_LPw32Max = 0; |
- stt->vadThreshold = kNormalVadThreshold; |
- stt->inActive = 0; |
+ stt->vadThreshold = kNormalVadThreshold; |
+ stt->inActive = 0; |
- for (i = 0; i < RXX_BUFFER_LEN; i++) |
- { |
- stt->Rxx16_vectorw32[i] = (int32_t)1000; /* -54dBm0 */ |
- } |
- stt->Rxx160w32 = 125 * RXX_BUFFER_LEN; /* (stt->Rxx16_vectorw32[0]>>3) = 125 */ |
+ for (i = 0; i < RXX_BUFFER_LEN; i++) { |
+ stt->Rxx16_vectorw32[i] = (int32_t)1000; /* -54dBm0 */ |
+ } |
+ stt->Rxx160w32 = |
+ 125 * RXX_BUFFER_LEN; /* (stt->Rxx16_vectorw32[0]>>3) = 125 */ |
- stt->Rxx16pos = 0; |
- stt->Rxx16_LPw32 = (int32_t)16284; /* Q(-4) */ |
+ stt->Rxx16pos = 0; |
+ stt->Rxx16_LPw32 = (int32_t)16284; /* Q(-4) */ |
- for (i = 0; i < 5; i++) |
- { |
- stt->Rxx16w32_array[0][i] = 0; |
- } |
- for (i = 0; i < 10; i++) |
- { |
- stt->env[0][i] = 0; |
- stt->env[1][i] = 0; |
- } |
- stt->inQueue = 0; |
+ for (i = 0; i < 5; i++) { |
+ stt->Rxx16w32_array[0][i] = 0; |
+ } |
+ for (i = 0; i < 10; i++) { |
+ stt->env[0][i] = 0; |
+ stt->env[1][i] = 0; |
+ } |
+ stt->inQueue = 0; |
#ifdef MIC_LEVEL_FEEDBACK |
- stt->targetIdxOffset = 0; |
+ stt->targetIdxOffset = 0; |
#endif |
- WebRtcSpl_MemSetW32(stt->filterState, 0, 8); |
+ WebRtcSpl_MemSetW32(stt->filterState, 0, 8); |
- stt->initFlag = kInitCheck; |
- // Default config settings. |
- stt->defaultConfig.limiterEnable = kAgcTrue; |
- stt->defaultConfig.targetLevelDbfs = AGC_DEFAULT_TARGET_LEVEL; |
- stt->defaultConfig.compressionGaindB = AGC_DEFAULT_COMP_GAIN; |
+ stt->initFlag = kInitCheck; |
+ // Default config settings. |
+ stt->defaultConfig.limiterEnable = kAgcTrue; |
+ stt->defaultConfig.targetLevelDbfs = AGC_DEFAULT_TARGET_LEVEL; |
+ stt->defaultConfig.compressionGaindB = AGC_DEFAULT_COMP_GAIN; |
- if (WebRtcAgc_set_config(stt, stt->defaultConfig) == -1) |
- { |
- stt->lastError = AGC_UNSPECIFIED_ERROR; |
- return -1; |
- } |
- stt->Rxx160_LPw32 = stt->analogTargetLevel; // Initialize rms value |
+ if (WebRtcAgc_set_config(stt, stt->defaultConfig) == -1) { |
+ stt->lastError = AGC_UNSPECIFIED_ERROR; |
+ return -1; |
+ } |
+ stt->Rxx160_LPw32 = stt->analogTargetLevel; // Initialize rms value |
- stt->lowLevelSignal = 0; |
+ stt->lowLevelSignal = 0; |
- /* Only positive values are allowed that are not too large */ |
- if ((minLevel >= maxLevel) || (maxLevel & 0xFC000000)) |
- { |
+ /* Only positive values are allowed that are not too large */ |
+ if ((minLevel >= maxLevel) || (maxLevel & 0xFC000000)) { |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, "minLevel, maxLevel value(s) are invalid\n\n"); |
+ fprintf(stt->fpt, "minLevel, maxLevel value(s) are invalid\n\n"); |
#endif |
- return -1; |
- } else |
- { |
+ return -1; |
+ } else { |
#ifdef WEBRTC_AGC_DEBUG_DUMP |
- fprintf(stt->fpt, "\n"); |
+ fprintf(stt->fpt, "\n"); |
#endif |
- return 0; |
- } |
+ return 0; |
+ } |
} |