OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 #include "webrtc/modules/video_coding/frame_buffer2.h" | |
12 | |
13 #include <algorithm> | |
14 | |
15 #include "webrtc/base/checks.h" | |
16 #include "webrtc/modules/video_coding/frame_object.h" | |
17 #include "webrtc/modules/video_coding/jitter_estimator.h" | |
18 #include "webrtc/modules/video_coding/sequence_number_util.h" | |
19 #include "webrtc/modules/video_coding/timing.h" | |
20 #include "webrtc/system_wrappers/include/clock.h" | |
21 | |
22 namespace webrtc { | |
23 namespace video_coding { | |
24 | |
25 namespace { | |
26 // The maximum age of decoded frames tracked by frame buffer, compared to | |
27 // |newest_picture_id_|. | |
28 constexpr int kMaxFrameAge = 4096; | |
29 | |
30 // The maximum number of decoded frames being tracked by the frame buffer. | |
31 constexpr int kMaxNumHistoryFrames = 256; | |
32 } // namespace | |
33 | |
34 bool FrameBuffer::FrameComp::operator()(const FrameKey& f1, | |
35 const FrameKey& f2) const { | |
36 // first = picture id | |
37 // second = spatial layer | |
38 if (f1.first == f2.first) | |
39 return f1.second < f2.second; | |
40 return AheadOf(f2.first, f1.first); | |
41 } | |
42 | |
43 FrameBuffer::FrameBuffer(Clock* clock, | |
44 VCMJitterEstimator* jitter_estimator, | |
45 const VCMTiming* timing) | |
46 : clock_(clock), | |
47 frame_inserted_event_(false, false), | |
48 jitter_estimator_(jitter_estimator), | |
49 timing_(timing), | |
50 newest_picture_id_(-1) {} | |
51 | |
52 std::unique_ptr<FrameObject> FrameBuffer::NextFrame(int64_t max_wait_time_ms) { | |
53 int64_t latest_return_time = clock_->TimeInMilliseconds() + max_wait_time_ms; | |
54 while (true) { | |
55 int64_t now = clock_->TimeInMilliseconds(); | |
56 int64_t wait_ms = max_wait_time_ms; | |
57 | |
58 crit_.Enter(); | |
59 frame_inserted_event_.Reset(); | |
60 auto next_frame = frames_.end(); | |
61 for (auto frame_it = frames_.begin(); frame_it != frames_.end(); | |
62 ++frame_it) { | |
63 const FrameObject& frame = *frame_it->second; | |
64 if (IsContinuous(frame)) { | |
65 next_frame = frame_it; | |
66 int64_t render_time = timing_->RenderTimeMs(frame.timestamp, now); | |
67 wait_ms = timing_->MaxWaitingTime(render_time, now); | |
68 | |
69 // This will cause the frame buffer to prefer high framerate rather | |
70 // than high resolution in the case of the decoder not decoding fast | |
71 // enough and the stream has multiple spatial and temporal layers. | |
72 if (wait_ms == 0) | |
73 continue; | |
74 | |
75 break; | |
76 } | |
77 } | |
78 crit_.Leave(); | |
79 | |
80 // If the timout occures, return. Otherwise a new frame has been inserted | |
81 // and the best frame to decode next will be selected again. | |
82 wait_ms = std::min<int64_t>(wait_ms, latest_return_time - now); | |
83 wait_ms = std::max<int64_t>(wait_ms, 0); | |
84 if (!frame_inserted_event_.Wait(wait_ms)) { | |
85 crit_.Enter(); | |
86 if (next_frame != frames_.end()) { | |
87 // TODO(philipel): update jitter estimator with correct values. | |
88 jitter_estimator_->UpdateEstimate(100, 100); | |
89 | |
90 decoded_frames_.insert(next_frame->first); | |
91 std::unique_ptr<FrameObject> frame = std::move(next_frame->second); | |
92 frames_.erase(frames_.begin(), ++next_frame); | |
93 crit_.Leave(); | |
94 return frame; | |
95 } else { | |
96 crit_.Leave(); | |
97 return std::unique_ptr<FrameObject>(); | |
98 } | |
99 } | |
100 } | |
101 } | |
102 | |
103 void FrameBuffer::InsertFrame(std::unique_ptr<FrameObject> frame) { | |
104 rtc::CritScope lock(&crit_); | |
105 if (newest_picture_id_ == -1) | |
106 newest_picture_id_ = frame->picture_id; | |
107 | |
108 if (AheadOf<uint16_t>(frame->picture_id, newest_picture_id_)) | |
109 newest_picture_id_ = frame->picture_id; | |
110 | |
111 // Remove frames as long as we have too many, |kMaxNumHistoryFrames|. | |
112 while (decoded_frames_.size() > kMaxNumHistoryFrames) | |
113 decoded_frames_.erase(decoded_frames_.begin()); | |
114 | |
115 // Remove frames that are too old, |kMaxNumHistoryFrames|. | |
116 uint16_t old_picture_id = Subtract<1 << 16>(newest_picture_id_, kMaxFrameAge); | |
117 auto old_decoded_it = | |
118 decoded_frames_.lower_bound(FrameKey(old_picture_id, 0)); | |
119 decoded_frames_.erase(decoded_frames_.begin(), old_decoded_it); | |
120 | |
121 FrameKey key(frame->picture_id, frame->spatial_layer); | |
122 frames_[key] = std::move(frame); | |
123 frame_inserted_event_.Set(); | |
124 } | |
125 | |
126 bool FrameBuffer::IsContinuous(const FrameObject& frame) const { | |
127 // If a frame with an earlier picture id was inserted compared to the last | |
128 // decoded frames picture id then that frame arrived too late. | |
129 if (!decoded_frames_.empty() && | |
130 AheadOf(decoded_frames_.rbegin()->first, frame.picture_id)) { | |
131 return false; | |
132 } | |
133 | |
134 // Have we decoded all frames that this frame depend on? | |
135 for (size_t r = 0; r < frame.num_references; ++r) { | |
136 FrameKey ref_key(frame.references[r], frame.spatial_layer); | |
137 if (decoded_frames_.find(ref_key) == decoded_frames_.end()) | |
138 return false; | |
139 } | |
140 | |
141 // If this is a layer frame, have we decoded the lower layer of this | |
142 // super frame. | |
143 if (frame.inter_layer_predicted) { | |
144 RTC_DCHECK_GT(frame.spatial_layer, 0); | |
145 FrameKey ref_key(frame.picture_id, frame.spatial_layer - 1); | |
146 if (decoded_frames_.find(ref_key) == decoded_frames_.end()) | |
147 return false; | |
148 } | |
149 | |
150 return true; | |
151 } | |
152 | |
153 } // namespace video_coding | |
154 } // namespace webrtc | |
OLD | NEW |