Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(88)

Side by Side Diff: webrtc/base/task_queue.h

Issue 1984503002: Reland of New task queueing primitive for async tasks: TaskQueue. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Optional initialization for build_for Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright 2016 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #ifndef WEBRTC_BASE_TASK_QUEUE_H_
12 #define WEBRTC_BASE_TASK_QUEUE_H_
13
14 #include <list>
15 #include <memory>
16
17 #if defined(WEBRTC_MAC) && !defined(WEBRTC_BUILD_LIBEVENT)
18 #include <dispatch/dispatch.h>
19 #endif
20
21 #include "webrtc/base/constructormagic.h"
22 #include "webrtc/base/criticalsection.h"
23
24 #if defined(WEBRTC_WIN) || defined(WEBRTC_BUILD_LIBEVENT)
25 #include "webrtc/base/platform_thread.h"
26 #endif
27
28 #if defined(WEBRTC_BUILD_LIBEVENT)
29 struct event_base;
30 struct event;
31 #endif
32
33 namespace rtc {
34
35 // Base interface for asynchronously executed tasks.
36 // The interface basically consists of a single function, Run(), that executes
37 // on the target queue. For more details see the Run() method and TaskQueue.
38 class QueuedTask {
39 public:
40 QueuedTask() {}
41 virtual ~QueuedTask() {}
42
43 // Main routine that will run when the task is executed on the desired queue.
44 // The task should return |true| to indicate that it should be deleted or
45 // |false| to indicate that the queue should consider ownership of the task
46 // having been transferred. Returning |false| can be useful if a task has
47 // re-posted itself to a different queue or is otherwise being re-used.
48 virtual bool Run() = 0;
49
50 private:
51 RTC_DISALLOW_COPY_AND_ASSIGN(QueuedTask);
52 };
53
54 // Simple implementation of QueuedTask for use with rtc::Bind and lambdas.
55 template <class Closure>
56 class ClosureTask : public QueuedTask {
57 public:
58 explicit ClosureTask(const Closure& closure) : closure_(closure) {}
59
60 private:
61 bool Run() override {
62 closure_();
63 return true;
64 }
65
66 Closure closure_;
67 };
68
69 // Extends ClosureTask to also allow specifying cleanup code.
70 // This is useful when using lambdas if guaranteeing cleanup, even if a task
71 // was dropped (queue is too full), is required.
72 template <class Closure, class Cleanup>
73 class ClosureTaskWithCleanup : public ClosureTask<Closure> {
74 public:
75 ClosureTaskWithCleanup(const Closure& closure, Cleanup cleanup)
76 : ClosureTask<Closure>(closure), cleanup_(cleanup) {}
77 ~ClosureTaskWithCleanup() { cleanup_(); }
78
79 private:
80 Cleanup cleanup_;
81 };
82
83 // Convenience function to construct closures that can be passed directly
84 // to methods that support std::unique_ptr<QueuedTask> but not template
85 // based parameters.
86 template <class Closure>
87 static std::unique_ptr<QueuedTask> NewClosure(const Closure& closure) {
88 return std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure));
89 }
90
91 template <class Closure, class Cleanup>
92 static std::unique_ptr<QueuedTask> NewClosure(const Closure& closure,
93 const Cleanup& cleanup) {
94 return std::unique_ptr<QueuedTask>(
95 new ClosureTaskWithCleanup<Closure, Cleanup>(closure, cleanup));
96 }
97
98 // Implements a task queue that asynchronously executes tasks in a way that
99 // guarantees that they're executed in FIFO order and that tasks never overlap.
100 // Tasks may always execute on the same worker thread and they may not.
101 // To DCHECK that tasks are executing on a known task queue, use IsCurrent().
102 //
103 // Here are some usage examples:
104 //
105 // 1) Asynchronously running a lambda:
106 //
107 // class MyClass {
108 // ...
109 // TaskQueue queue_("MyQueue");
110 // };
111 //
112 // void MyClass::StartWork() {
113 // queue_.PostTask([]() { Work(); });
114 // ...
115 //
116 // 2) Doing work asynchronously on a worker queue and providing a notification
117 // callback on the current queue, when the work has been done:
118 //
119 // void MyClass::StartWorkAndLetMeKnowWhenDone(
120 // std::unique_ptr<QueuedTask> callback) {
121 // DCHECK(TaskQueue::Current()) << "Need to be running on a queue";
122 // queue_.PostTaskAndReply([]() { Work(); }, std::move(callback));
123 // }
124 // ...
125 // my_class->StartWorkAndLetMeKnowWhenDone(
126 // NewClosure([]() { LOG(INFO) << "The work is done!";}));
127 //
128 // 3) Posting a custom task on a timer. The task posts itself again after
129 // every running:
130 //
131 // class TimerTask : public QueuedTask {
132 // public:
133 // TimerTask() {}
134 // private:
135 // bool Run() override {
136 // ++count_;
137 // TaskQueue::Current()->PostDelayedTask(
138 // std::unique_ptr<QueuedTask>(this), 1000);
139 // // Ownership has been transferred to the next occurance,
140 // // so return false to prevent from being deleted now.
141 // return false;
142 // }
143 // int count_ = 0;
144 // };
145 // ...
146 // queue_.PostDelayedTask(
147 // std::unique_ptr<QueuedTask>(new TimerTask()), 1000);
148 //
149 // For more examples, see task_queue_unittests.cc.
150 //
151 // A note on destruction:
152 //
153 // When a TaskQueue is deleted, pending tasks will not be executed but they will
154 // be deleted. The deletion of tasks may happen asynchronously after the
155 // TaskQueue itself has been deleted or it may happen synchronously while the
156 // TaskQueue instance is being deleted. This may vary from one OS to the next
157 // so assumptions about lifetimes of pending tasks should not be made.
158 class TaskQueue {
159 public:
160 explicit TaskQueue(const char* queue_name);
161 // TODO(tommi): Implement move semantics?
162 ~TaskQueue();
163
164 static TaskQueue* Current();
165
166 // Used for DCHECKing the current queue.
167 static bool IsCurrent(const char* queue_name);
168 bool IsCurrent() const;
169
170 // TODO(tommi): For better debuggability, implement FROM_HERE.
171
172 // Ownership of the task is passed to PostTask.
173 void PostTask(std::unique_ptr<QueuedTask> task);
174 void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
175 std::unique_ptr<QueuedTask> reply,
176 TaskQueue* reply_queue);
177 void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
178 std::unique_ptr<QueuedTask> reply);
179
180 void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds);
181
182 template <class Closure>
183 void PostTask(const Closure& closure) {
184 PostTask(std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)));
185 }
186
187 template <class Closure>
188 void PostDelayedTask(const Closure& closure, uint32_t milliseconds) {
189 PostDelayedTask(
190 std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)),
191 milliseconds);
192 }
193
194 template <class Closure1, class Closure2>
195 void PostTaskAndReply(const Closure1& task,
196 const Closure2& reply,
197 TaskQueue* reply_queue) {
198 PostTaskAndReply(
199 std::unique_ptr<QueuedTask>(new ClosureTask<Closure1>(task)),
200 std::unique_ptr<QueuedTask>(new ClosureTask<Closure2>(reply)),
201 reply_queue);
202 }
203
204 template <class Closure>
205 void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
206 const Closure& reply) {
207 PostTaskAndReply(std::move(task), std::unique_ptr<QueuedTask>(
208 new ClosureTask<Closure>(reply)));
209 }
210
211 template <class Closure>
212 void PostTaskAndReply(const Closure& task,
213 std::unique_ptr<QueuedTask> reply) {
214 PostTaskAndReply(
215 std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(task)),
216 std::move(reply));
217 }
218
219 template <class Closure1, class Closure2>
220 void PostTaskAndReply(const Closure1& task, const Closure2& reply) {
221 PostTaskAndReply(
222 std::unique_ptr<QueuedTask>(new ClosureTask<Closure1>(task)),
223 std::unique_ptr<QueuedTask>(new ClosureTask<Closure2>(reply)));
224 }
225
226 private:
227 #if defined(WEBRTC_BUILD_LIBEVENT)
228 static bool ThreadMain(void* context);
229 static void OnWakeup(int socket, short flags, void* context); // NOLINT
230 static void RunTask(int fd, short flags, void* context); // NOLINT
231 static void RunTimer(int fd, short flags, void* context); // NOLINT
232
233 class PostAndReplyTask;
234 class SetTimerTask;
235
236 void PrepareReplyTask(PostAndReplyTask* reply_task);
237 void ReplyTaskDone(PostAndReplyTask* reply_task);
238
239 struct QueueContext;
240
241 int wakeup_pipe_in_ = -1;
242 int wakeup_pipe_out_ = -1;
243 event_base* event_base_;
244 std::unique_ptr<event> wakeup_event_;
245 PlatformThread thread_;
246 rtc::CriticalSection pending_lock_;
247 std::list<std::unique_ptr<QueuedTask>> pending_ GUARDED_BY(pending_lock_);
248 std::list<PostAndReplyTask*> pending_replies_ GUARDED_BY(pending_lock_);
249 #elif defined(WEBRTC_MAC)
250 struct QueueContext;
251 struct TaskContext;
252 struct PostTaskAndReplyContext;
253 dispatch_queue_t queue_;
254 QueueContext* const context_;
255 #elif defined(WEBRTC_WIN)
256 static bool ThreadMain(void* context);
257
258 class WorkerThread : public PlatformThread {
259 public:
260 WorkerThread(ThreadRunFunction func, void* obj, const char* thread_name)
261 : PlatformThread(func, obj, thread_name) {}
262
263 bool QueueAPC(PAPCFUNC apc_function, ULONG_PTR data) {
264 return PlatformThread::QueueAPC(apc_function, data);
265 }
266 };
267 WorkerThread thread_;
268 #else
269 #error not supported.
270 #endif
271
272 RTC_DISALLOW_COPY_AND_ASSIGN(TaskQueue);
273 };
274
275 } // namespace rtc
276
277 #endif // WEBRTC_BASE_TASK_QUEUE_H_
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698