| Index: webrtc/modules/rtp_rtcp/source/h264_sps_parser.cc
|
| diff --git a/webrtc/modules/rtp_rtcp/source/h264_sps_parser.cc b/webrtc/modules/rtp_rtcp/source/h264_sps_parser.cc
|
| deleted file mode 100644
|
| index 904a9e2562b50ef6c8393b22c709572188578030..0000000000000000000000000000000000000000
|
| --- a/webrtc/modules/rtp_rtcp/source/h264_sps_parser.cc
|
| +++ /dev/null
|
| @@ -1,232 +0,0 @@
|
| -/*
|
| - * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -#include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h"
|
| -
|
| -#include "webrtc/base/bitbuffer.h"
|
| -#include "webrtc/base/bytebuffer.h"
|
| -#include "webrtc/base/logging.h"
|
| -
|
| -#define RETURN_FALSE_ON_FAIL(x) \
|
| - if (!(x)) { \
|
| - return false; \
|
| - }
|
| -
|
| -namespace webrtc {
|
| -
|
| -H264SpsParser::H264SpsParser(const uint8_t* sps, size_t byte_length)
|
| - : sps_(sps), byte_length_(byte_length), width_(), height_() {
|
| -}
|
| -
|
| -bool H264SpsParser::Parse() {
|
| - // General note: this is based off the 02/2014 version of the H.264 standard.
|
| - // You can find it on this page:
|
| - // http://www.itu.int/rec/T-REC-H.264
|
| -
|
| - const char* sps_bytes = reinterpret_cast<const char*>(sps_);
|
| - // First, parse out rbsp, which is basically the source buffer minus emulation
|
| - // bytes (the last byte of a 0x00 0x00 0x03 sequence). RBSP is defined in
|
| - // section 7.3.1 of the H.264 standard.
|
| - rtc::ByteBufferWriter rbsp_buffer;
|
| - for (size_t i = 0; i < byte_length_;) {
|
| - // Be careful about over/underflow here. byte_length_ - 3 can underflow, and
|
| - // i + 3 can overflow, but byte_length_ - i can't, because i < byte_length_
|
| - // above, and that expression will produce the number of bytes left in
|
| - // the stream including the byte at i.
|
| - if (byte_length_ - i >= 3 && sps_[i] == 0 && sps_[i + 1] == 0 &&
|
| - sps_[i + 2] == 3) {
|
| - // Two rbsp bytes + the emulation byte.
|
| - rbsp_buffer.WriteBytes(sps_bytes + i, 2);
|
| - i += 3;
|
| - } else {
|
| - // Single rbsp byte.
|
| - rbsp_buffer.WriteBytes(sps_bytes + i, 1);
|
| - i++;
|
| - }
|
| - }
|
| -
|
| - // Now, we need to use a bit buffer to parse through the actual AVC SPS
|
| - // format. See Section 7.3.2.1.1 ("Sequence parameter set data syntax") of the
|
| - // H.264 standard for a complete description.
|
| - // Since we only care about resolution, we ignore the majority of fields, but
|
| - // we still have to actively parse through a lot of the data, since many of
|
| - // the fields have variable size.
|
| - // We're particularly interested in:
|
| - // chroma_format_idc -> affects crop units
|
| - // pic_{width,height}_* -> resolution of the frame in macroblocks (16x16).
|
| - // frame_crop_*_offset -> crop information
|
| - rtc::BitBuffer parser(reinterpret_cast<const uint8_t*>(rbsp_buffer.Data()),
|
| - rbsp_buffer.Length());
|
| -
|
| - // The golomb values we have to read, not just consume.
|
| - uint32_t golomb_ignored;
|
| -
|
| - // separate_colour_plane_flag is optional (assumed 0), but has implications
|
| - // about the ChromaArrayType, which modifies how we treat crop coordinates.
|
| - uint32_t separate_colour_plane_flag = 0;
|
| - // chroma_format_idc will be ChromaArrayType if separate_colour_plane_flag is
|
| - // 0. It defaults to 1, when not specified.
|
| - uint32_t chroma_format_idc = 1;
|
| -
|
| - // profile_idc: u(8). We need it to determine if we need to read/skip chroma
|
| - // formats.
|
| - uint8_t profile_idc;
|
| - RETURN_FALSE_ON_FAIL(parser.ReadUInt8(&profile_idc));
|
| - // constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits
|
| - // 1 bit each for the flags + 2 bits = 8 bits = 1 byte.
|
| - RETURN_FALSE_ON_FAIL(parser.ConsumeBytes(1));
|
| - // level_idc: u(8)
|
| - RETURN_FALSE_ON_FAIL(parser.ConsumeBytes(1));
|
| - // seq_parameter_set_id: ue(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - // See if profile_idc has chroma format information.
|
| - if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 ||
|
| - profile_idc == 244 || profile_idc == 44 || profile_idc == 83 ||
|
| - profile_idc == 86 || profile_idc == 118 || profile_idc == 128 ||
|
| - profile_idc == 138 || profile_idc == 139 || profile_idc == 134) {
|
| - // chroma_format_idc: ue(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&chroma_format_idc));
|
| - if (chroma_format_idc == 3) {
|
| - // separate_colour_plane_flag: u(1)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadBits(&separate_colour_plane_flag, 1));
|
| - }
|
| - // bit_depth_luma_minus8: ue(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - // bit_depth_chroma_minus8: ue(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - // qpprime_y_zero_transform_bypass_flag: u(1)
|
| - RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1));
|
| - // seq_scaling_matrix_present_flag: u(1)
|
| - uint32_t seq_scaling_matrix_present_flag;
|
| - RETURN_FALSE_ON_FAIL(parser.ReadBits(&seq_scaling_matrix_present_flag, 1));
|
| - if (seq_scaling_matrix_present_flag) {
|
| - // seq_scaling_list_present_flags. Either 8 or 12, depending on
|
| - // chroma_format_idc.
|
| - uint32_t seq_scaling_list_present_flags;
|
| - if (chroma_format_idc != 3) {
|
| - RETURN_FALSE_ON_FAIL(
|
| - parser.ReadBits(&seq_scaling_list_present_flags, 8));
|
| - } else {
|
| - RETURN_FALSE_ON_FAIL(
|
| - parser.ReadBits(&seq_scaling_list_present_flags, 12));
|
| - }
|
| - // We don't support reading the sequence scaling list, and we don't really
|
| - // see/use them in practice, so we'll just reject the full sps if we see
|
| - // any provided.
|
| - if (seq_scaling_list_present_flags > 0) {
|
| - LOG(LS_WARNING) << "SPS contains scaling lists, which are unsupported.";
|
| - return false;
|
| - }
|
| - }
|
| - }
|
| - // log2_max_frame_num_minus4: ue(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - // pic_order_cnt_type: ue(v)
|
| - uint32_t pic_order_cnt_type;
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&pic_order_cnt_type));
|
| - if (pic_order_cnt_type == 0) {
|
| - // log2_max_pic_order_cnt_lsb_minus4: ue(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - } else if (pic_order_cnt_type == 1) {
|
| - // delta_pic_order_always_zero_flag: u(1)
|
| - RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1));
|
| - // offset_for_non_ref_pic: se(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - // offset_for_top_to_bottom_field: se(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - // num_ref_frames_in_pic_order_cnt_cycle: ue(v)
|
| - uint32_t num_ref_frames_in_pic_order_cnt_cycle;
|
| - RETURN_FALSE_ON_FAIL(
|
| - parser.ReadExponentialGolomb(&num_ref_frames_in_pic_order_cnt_cycle));
|
| - for (size_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; ++i) {
|
| - // offset_for_ref_frame[i]: se(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - }
|
| - }
|
| - // max_num_ref_frames: ue(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
| - // gaps_in_frame_num_value_allowed_flag: u(1)
|
| - RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1));
|
| - //
|
| - // IMPORTANT ONES! Now we're getting to resolution. First we read the pic
|
| - // width/height in macroblocks (16x16), which gives us the base resolution,
|
| - // and then we continue on until we hit the frame crop offsets, which are used
|
| - // to signify resolutions that aren't multiples of 16.
|
| - //
|
| - // pic_width_in_mbs_minus1: ue(v)
|
| - uint32_t pic_width_in_mbs_minus1;
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&pic_width_in_mbs_minus1));
|
| - // pic_height_in_map_units_minus1: ue(v)
|
| - uint32_t pic_height_in_map_units_minus1;
|
| - RETURN_FALSE_ON_FAIL(
|
| - parser.ReadExponentialGolomb(&pic_height_in_map_units_minus1));
|
| - // frame_mbs_only_flag: u(1)
|
| - uint32_t frame_mbs_only_flag;
|
| - RETURN_FALSE_ON_FAIL(parser.ReadBits(&frame_mbs_only_flag, 1));
|
| - if (!frame_mbs_only_flag) {
|
| - // mb_adaptive_frame_field_flag: u(1)
|
| - RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1));
|
| - }
|
| - // direct_8x8_inference_flag: u(1)
|
| - RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1));
|
| - //
|
| - // MORE IMPORTANT ONES! Now we're at the frame crop information.
|
| - //
|
| - // frame_cropping_flag: u(1)
|
| - uint32_t frame_cropping_flag;
|
| - uint32_t frame_crop_left_offset = 0;
|
| - uint32_t frame_crop_right_offset = 0;
|
| - uint32_t frame_crop_top_offset = 0;
|
| - uint32_t frame_crop_bottom_offset = 0;
|
| - RETURN_FALSE_ON_FAIL(parser.ReadBits(&frame_cropping_flag, 1));
|
| - if (frame_cropping_flag) {
|
| - // frame_crop_{left, right, top, bottom}_offset: ue(v)
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&frame_crop_left_offset));
|
| - RETURN_FALSE_ON_FAIL(
|
| - parser.ReadExponentialGolomb(&frame_crop_right_offset));
|
| - RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&frame_crop_top_offset));
|
| - RETURN_FALSE_ON_FAIL(
|
| - parser.ReadExponentialGolomb(&frame_crop_bottom_offset));
|
| - }
|
| -
|
| - // Far enough! We don't use the rest of the SPS.
|
| -
|
| - // Start with the resolution determined by the pic_width/pic_height fields.
|
| - int width = 16 * (pic_width_in_mbs_minus1 + 1);
|
| - int height =
|
| - 16 * (2 - frame_mbs_only_flag) * (pic_height_in_map_units_minus1 + 1);
|
| -
|
| - // Figure out the crop units in pixels. That's based on the chroma format's
|
| - // sampling, which is indicated by chroma_format_idc.
|
| - if (separate_colour_plane_flag || chroma_format_idc == 0) {
|
| - frame_crop_bottom_offset *= (2 - frame_mbs_only_flag);
|
| - frame_crop_top_offset *= (2 - frame_mbs_only_flag);
|
| - } else if (!separate_colour_plane_flag && chroma_format_idc > 0) {
|
| - // Width multipliers for formats 1 (4:2:0) and 2 (4:2:2).
|
| - if (chroma_format_idc == 1 || chroma_format_idc == 2) {
|
| - frame_crop_left_offset *= 2;
|
| - frame_crop_right_offset *= 2;
|
| - }
|
| - // Height multipliers for format 1 (4:2:0).
|
| - if (chroma_format_idc == 1) {
|
| - frame_crop_top_offset *= 2;
|
| - frame_crop_bottom_offset *= 2;
|
| - }
|
| - }
|
| - // Subtract the crop for each dimension.
|
| - width -= (frame_crop_left_offset + frame_crop_right_offset);
|
| - height -= (frame_crop_top_offset + frame_crop_bottom_offset);
|
| -
|
| - width_ = width;
|
| - height_ = height;
|
| - return true;
|
| -}
|
| -
|
| -} // namespace webrtc
|
|
|