Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(73)

Side by Side Diff: webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc

Issue 1979443004: Add H264 bitstream rewriting to limit frame reordering marker in header (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Rewriting on the receiver side as well Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h"
12
11 #include <string.h> 13 #include <string.h>
14 #include <vector>
12 15
16 #include "webrtc/base/checks.h"
13 #include "webrtc/base/logging.h" 17 #include "webrtc/base/logging.h"
14 #include "webrtc/modules/include/module_common_types.h" 18 #include "webrtc/modules/include/module_common_types.h"
15 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" 19 #include "webrtc/modules/rtp_rtcp/source/byte_io.h"
16 #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" 20 #include "webrtc/modules/rtp_rtcp/source/h264/bitstream_rewriter.h"
17 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" 21 #include "webrtc/modules/rtp_rtcp/source/h264/h264_common.h"
22 #include "webrtc/modules/rtp_rtcp/source/h264/sps_parser.h"
18 23
19 namespace webrtc { 24 namespace webrtc {
20 namespace { 25 namespace {
21 26
22 enum Nalu { 27 enum Nalu {
23 kSlice = 1, 28 kSlice = 1,
24 kIdr = 5, 29 kIdr = 5,
25 kSei = 6, 30 kSei = 6,
26 kSps = 7, 31 kSps = 7,
27 kPps = 8, 32 kPps = 8,
28 kStapA = 24, 33 kStapA = 24,
29 kFuA = 28 34 kFuA = 28
30 }; 35 };
31 36
32 static const size_t kNalHeaderSize = 1; 37 static const size_t kNalHeaderSize = 1;
33 static const size_t kFuAHeaderSize = 2; 38 static const size_t kFuAHeaderSize = 2;
34 static const size_t kLengthFieldSize = 2; 39 static const size_t kLengthFieldSize = 2;
35 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; 40 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize;
36 41
37 // Bit masks for FU (A and B) indicators. 42 // Bit masks for FU (A and B) indicators.
38 enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; 43 enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
39 44
40 // Bit masks for FU (A and B) headers. 45 // Bit masks for FU (A and B) headers.
41 enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; 46 enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
42 47
43 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. 48 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer.
44 bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) { 49 bool ParseStapAStartOffsets(const uint8_t* nalu_ptr,
50 size_t length_remaining,
51 std::vector<size_t>* offsets,
52 size_t base_offset) {
53 size_t offset = 0;
45 while (length_remaining > 0) { 54 while (length_remaining > 0) {
46 // Buffer doesn't contain room for additional nalu length. 55 // Buffer doesn't contain room for additional nalu length.
47 if (length_remaining < sizeof(uint16_t)) 56 if (length_remaining < sizeof(uint16_t))
48 return false; 57 return false;
49 uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1]; 58 uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr);
50 nalu_ptr += sizeof(uint16_t); 59 nalu_ptr += sizeof(uint16_t);
51 length_remaining -= sizeof(uint16_t); 60 length_remaining -= sizeof(uint16_t);
52 if (nalu_size > length_remaining) 61 if (nalu_size > length_remaining)
53 return false; 62 return false;
54 nalu_ptr += nalu_size; 63 nalu_ptr += nalu_size;
55 length_remaining -= nalu_size; 64 length_remaining -= nalu_size;
65
66 offsets->push_back(offset + kLengthFieldSize + base_offset);
67 offset += kLengthFieldSize + nalu_size;
56 } 68 }
57 return true; 69 return true;
58 } 70 }
59 71
60 bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
61 const uint8_t* payload_data,
62 size_t payload_data_length) {
63 parsed_payload->type.Video.width = 0;
64 parsed_payload->type.Video.height = 0;
65 parsed_payload->type.Video.codec = kRtpVideoH264;
66 parsed_payload->type.Video.isFirstPacket = true;
67 RTPVideoHeaderH264* h264_header =
68 &parsed_payload->type.Video.codecHeader.H264;
69
70 const uint8_t* nalu_start = payload_data + kNalHeaderSize;
71 size_t nalu_length = payload_data_length - kNalHeaderSize;
72 uint8_t nal_type = payload_data[0] & kTypeMask;
73 if (nal_type == kStapA) {
74 // Skip the StapA header (StapA nal type + length).
75 if (payload_data_length <= kStapAHeaderSize) {
76 LOG(LS_ERROR) << "StapA header truncated.";
77 return false;
78 }
79 if (!VerifyStapANaluLengths(nalu_start, nalu_length)) {
80 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
81 return false;
82 }
83
84 nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
85 nalu_start += kStapAHeaderSize;
86 nalu_length -= kStapAHeaderSize;
87 h264_header->packetization_type = kH264StapA;
88 } else {
89 h264_header->packetization_type = kH264SingleNalu;
90 }
91 h264_header->nalu_type = nal_type;
92
93 // We can read resolution out of sps packets.
94 if (nal_type == kSps) {
95 H264SpsParser parser(nalu_start, nalu_length);
96 if (parser.Parse()) {
97 parsed_payload->type.Video.width = parser.width();
98 parsed_payload->type.Video.height = parser.height();
99 }
100 }
101 switch (nal_type) {
102 case kSps:
103 case kPps:
104 case kSei:
105 case kIdr:
106 parsed_payload->frame_type = kVideoFrameKey;
107 break;
108 default:
109 parsed_payload->frame_type = kVideoFrameDelta;
110 break;
111 }
112 return true;
113 }
114
115 bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
116 const uint8_t* payload_data,
117 size_t payload_data_length,
118 size_t* offset) {
119 if (payload_data_length < kFuAHeaderSize) {
120 LOG(LS_ERROR) << "FU-A NAL units truncated.";
121 return false;
122 }
123 uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
124 uint8_t original_nal_type = payload_data[1] & kTypeMask;
125 bool first_fragment = (payload_data[1] & kSBit) > 0;
126
127 uint8_t original_nal_header = fnri | original_nal_type;
128 if (first_fragment) {
129 *offset = kNalHeaderSize;
130 uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset);
131 payload[0] = original_nal_header;
132 } else {
133 *offset = kFuAHeaderSize;
134 }
135
136 if (original_nal_type == kIdr) {
137 parsed_payload->frame_type = kVideoFrameKey;
138 } else {
139 parsed_payload->frame_type = kVideoFrameDelta;
140 }
141 parsed_payload->type.Video.width = 0;
142 parsed_payload->type.Video.height = 0;
143 parsed_payload->type.Video.codec = kRtpVideoH264;
144 parsed_payload->type.Video.isFirstPacket = first_fragment;
145 RTPVideoHeaderH264* h264_header =
146 &parsed_payload->type.Video.codecHeader.H264;
147 h264_header->packetization_type = kH264FuA;
148 h264_header->nalu_type = original_nal_type;
149 return true;
150 }
151 } // namespace 72 } // namespace
152 73
153 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, 74 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type,
154 size_t max_payload_len) 75 size_t max_payload_len)
155 : payload_data_(NULL), 76 : max_payload_len_(max_payload_len) {}
156 payload_size_(0),
157 max_payload_len_(max_payload_len) {
158 }
159 77
160 RtpPacketizerH264::~RtpPacketizerH264() { 78 RtpPacketizerH264::~RtpPacketizerH264() {
161 } 79 }
162 80
81 RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length)
82 : buffer(buffer), length(length) {}
83 RtpPacketizerH264::Fragment::Fragment(
84 std::unique_ptr<rtc::ByteBufferWriter> buffer_writer)
85 : buffer(reinterpret_cast<const uint8_t*>(buffer_writer->Data())),
86 length(buffer_writer->Length()),
87 tmp_buffer(buffer) {}
88 RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment)
89 : buffer(fragment.buffer), length(fragment.length) {}
90
163 void RtpPacketizerH264::SetPayloadData( 91 void RtpPacketizerH264::SetPayloadData(
164 const uint8_t* payload_data, 92 const uint8_t* payload_data,
165 size_t payload_size, 93 size_t payload_size,
166 const RTPFragmentationHeader* fragmentation) { 94 const RTPFragmentationHeader* fragmentation) {
167 assert(packets_.empty()); 95 RTC_DCHECK(packets_.empty());
168 assert(fragmentation); 96 RTC_DCHECK(input_fragments_.empty());
169 payload_data_ = payload_data; 97 RTC_DCHECK(fragmentation);
170 payload_size_ = payload_size; 98 for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) {
171 fragmentation_.CopyFrom(*fragmentation); 99 const uint8_t* buffer =
100 &payload_data[fragmentation->fragmentationOffset[i]];
101 size_t length = fragmentation->fragmentationLength[i];
102
103 bool updated_sps = false;
104 H264Common::NaluType nalu_type = H264Common::ParseNaluType(buffer[0]);
105 if (nalu_type == H264Common::NaluType::kSps) {
106 // Check if stream uses picture order count type 0, and if so rewrite it
107 // to enable faster decoding. Streams in that format incur additional
108 // delay because it allows decode order to differ from render order.
109 // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain
110 // restrictions on the maximum number of reordered pictures. This reduces
111 // latency significantly, though it still adds about a frame of latency to
112 // decoding.
113 H264BitstreamRewriter rewriter;
114 if (rewriter.ParseAndRewriteSps(buffer, length)) {
115 input_fragments_.push_back(
116 Fragment(std::move(rewriter.output_buffer_)));
117 updated_sps = true;
118 }
119 }
120
121 if (!updated_sps)
122 input_fragments_.push_back(Fragment(buffer, length));
123 }
172 GeneratePackets(); 124 GeneratePackets();
173 } 125 }
174 126
175 void RtpPacketizerH264::GeneratePackets() { 127 void RtpPacketizerH264::GeneratePackets() {
176 for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) { 128 for (size_t i = 0; i < input_fragments_.size();) {
177 size_t fragment_offset = fragmentation_.fragmentationOffset[i]; 129 if (input_fragments_[i].length > max_payload_len_) {
178 size_t fragment_length = fragmentation_.fragmentationLength[i]; 130 PacketizeFuA(i);
179 if (fragment_length > max_payload_len_) {
180 PacketizeFuA(fragment_offset, fragment_length);
181 ++i; 131 ++i;
182 } else { 132 } else {
183 i = PacketizeStapA(i, fragment_offset, fragment_length); 133 i = PacketizeStapA(i);
184 } 134 }
185 } 135 }
186 } 136 }
187 137
188 void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset, 138 void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) {
189 size_t fragment_length) {
190 // Fragment payload into packets (FU-A). 139 // Fragment payload into packets (FU-A).
191 // Strip out the original header and leave room for the FU-A header. 140 // Strip out the original header and leave room for the FU-A header.
192 fragment_length -= kNalHeaderSize; 141 const Fragment& fragment = input_fragments_[fragment_index];
193 size_t offset = fragment_offset + kNalHeaderSize; 142
143 size_t fragment_length = fragment.length - kNalHeaderSize;
144 size_t offset = kNalHeaderSize;
194 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; 145 size_t bytes_available = max_payload_len_ - kFuAHeaderSize;
195 size_t fragments = 146 const size_t num_fragments =
196 (fragment_length + (bytes_available - 1)) / bytes_available; 147 (fragment_length + (bytes_available - 1)) / bytes_available;
197 size_t avg_size = (fragment_length + fragments - 1) / fragments; 148
149 const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments;
198 while (fragment_length > 0) { 150 while (fragment_length > 0) {
199 size_t packet_length = avg_size; 151 size_t packet_length = avg_size;
200 if (fragment_length < avg_size) 152 if (fragment_length < avg_size)
201 packet_length = fragment_length; 153 packet_length = fragment_length;
202 uint8_t header = payload_data_[fragment_offset]; 154 packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length),
203 packets_.push(Packet(offset, 155 offset - kNalHeaderSize == 0,
204 packet_length, 156 fragment_length == packet_length, false,
205 offset - kNalHeaderSize == fragment_offset, 157 fragment.buffer[0]));
206 fragment_length == packet_length,
207 false,
208 header));
209 offset += packet_length; 158 offset += packet_length;
210 fragment_length -= packet_length; 159 fragment_length -= packet_length;
211 } 160 }
161 RTC_CHECK_EQ(0u, fragment_length);
212 } 162 }
213 163
214 int RtpPacketizerH264::PacketizeStapA(size_t fragment_index, 164 size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) {
215 size_t fragment_offset,
216 size_t fragment_length) {
217 // Aggregate fragments into one packet (STAP-A). 165 // Aggregate fragments into one packet (STAP-A).
218 size_t payload_size_left = max_payload_len_; 166 size_t payload_size_left = max_payload_len_;
219 int aggregated_fragments = 0; 167 int aggregated_fragments = 0;
220 size_t fragment_headers_length = 0; 168 size_t fragment_headers_length = 0;
221 assert(payload_size_left >= fragment_length); 169 const Fragment* fragment = &input_fragments_[fragment_index];
222 while (payload_size_left >= fragment_length + fragment_headers_length) { 170 RTC_CHECK_GE(payload_size_left, fragment->length);
223 assert(fragment_length > 0); 171 while (payload_size_left >= fragment->length + fragment_headers_length) {
224 uint8_t header = payload_data_[fragment_offset]; 172 RTC_CHECK_GT(fragment->length, 0u);
225 packets_.push(Packet(fragment_offset, 173 packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true,
226 fragment_length, 174 fragment->buffer[0]));
227 aggregated_fragments == 0, 175 payload_size_left -= fragment->length;
228 false,
229 true,
230 header));
231 payload_size_left -= fragment_length;
232 payload_size_left -= fragment_headers_length; 176 payload_size_left -= fragment_headers_length;
233 177
234 // Next fragment. 178 // Next fragment.
235 ++fragment_index; 179 ++fragment_index;
236 if (fragment_index == fragmentation_.fragmentationVectorSize) 180 if (fragment_index == input_fragments_.size())
237 break; 181 break;
238 fragment_offset = fragmentation_.fragmentationOffset[fragment_index]; 182 fragment = &input_fragments_[fragment_index];
239 fragment_length = fragmentation_.fragmentationLength[fragment_index];
240 183
241 fragment_headers_length = kLengthFieldSize; 184 fragment_headers_length = kLengthFieldSize;
242 // If we are going to try to aggregate more fragments into this packet 185 // If we are going to try to aggregate more fragments into this packet
243 // we need to add the STAP-A NALU header and a length field for the first 186 // we need to add the STAP-A NALU header and a length field for the first
244 // NALU of this packet. 187 // NALU of this packet.
245 if (aggregated_fragments == 0) 188 if (aggregated_fragments == 0)
246 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; 189 fragment_headers_length += kNalHeaderSize + kLengthFieldSize;
247 ++aggregated_fragments; 190 ++aggregated_fragments;
248 } 191 }
249 packets_.back().last_fragment = true; 192 packets_.back().last_fragment = true;
250 return fragment_index; 193 return fragment_index;
251 } 194 }
252 195
253 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, 196 bool RtpPacketizerH264::NextPacket(uint8_t* buffer,
254 size_t* bytes_to_send, 197 size_t* bytes_to_send,
255 bool* last_packet) { 198 bool* last_packet) {
256 *bytes_to_send = 0; 199 *bytes_to_send = 0;
257 if (packets_.empty()) { 200 if (packets_.empty()) {
258 *bytes_to_send = 0; 201 *bytes_to_send = 0;
259 *last_packet = true; 202 *last_packet = true;
260 return false; 203 return false;
261 } 204 }
262 205
263 Packet packet = packets_.front(); 206 PacketUnit packet = packets_.front();
264 207
265 if (packet.first_fragment && packet.last_fragment) { 208 if (packet.first_fragment && packet.last_fragment) {
266 // Single NAL unit packet. 209 // Single NAL unit packet.
267 *bytes_to_send = packet.size; 210 *bytes_to_send = packet.source_fragment.length;
268 memcpy(buffer, &payload_data_[packet.offset], packet.size); 211 memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send);
269 packets_.pop(); 212 packets_.pop();
270 assert(*bytes_to_send <= max_payload_len_); 213 input_fragments_.pop_front();
214 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
271 } else if (packet.aggregated) { 215 } else if (packet.aggregated) {
272 NextAggregatePacket(buffer, bytes_to_send); 216 NextAggregatePacket(buffer, bytes_to_send);
273 assert(*bytes_to_send <= max_payload_len_); 217 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
274 } else { 218 } else {
275 NextFragmentPacket(buffer, bytes_to_send); 219 NextFragmentPacket(buffer, bytes_to_send);
276 assert(*bytes_to_send <= max_payload_len_); 220 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
277 } 221 }
278 *last_packet = packets_.empty(); 222 *last_packet = packets_.empty();
279 return true; 223 return true;
280 } 224 }
281 225
282 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, 226 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer,
283 size_t* bytes_to_send) { 227 size_t* bytes_to_send) {
284 Packet packet = packets_.front(); 228 PacketUnit* packet = &packets_.front();
285 assert(packet.first_fragment); 229 RTC_CHECK(packet->first_fragment);
286 // STAP-A NALU header. 230 // STAP-A NALU header.
287 buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA; 231 buffer[0] = (packet->header & (kFBit | kNriMask)) | kStapA;
288 int index = kNalHeaderSize; 232 int index = kNalHeaderSize;
289 *bytes_to_send += kNalHeaderSize; 233 *bytes_to_send += kNalHeaderSize;
290 while (packet.aggregated) { 234 while (packet->aggregated) {
235 const Fragment& fragment = packet->source_fragment;
291 // Add NAL unit length field. 236 // Add NAL unit length field.
292 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size); 237 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length);
293 index += kLengthFieldSize; 238 index += kLengthFieldSize;
294 *bytes_to_send += kLengthFieldSize; 239 *bytes_to_send += kLengthFieldSize;
295 // Add NAL unit. 240 // Add NAL unit.
296 memcpy(&buffer[index], &payload_data_[packet.offset], packet.size); 241 memcpy(&buffer[index], fragment.buffer, fragment.length);
297 index += packet.size; 242 index += fragment.length;
298 *bytes_to_send += packet.size; 243 *bytes_to_send += fragment.length;
299 packets_.pop(); 244 packets_.pop();
300 if (packet.last_fragment) 245 input_fragments_.pop_front();
246 if (packet->last_fragment)
301 break; 247 break;
302 packet = packets_.front(); 248 packet = &packets_.front();
303 } 249 }
304 assert(packet.last_fragment); 250 RTC_CHECK(packet->last_fragment);
305 } 251 }
306 252
307 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, 253 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer,
308 size_t* bytes_to_send) { 254 size_t* bytes_to_send) {
309 Packet packet = packets_.front(); 255 PacketUnit* packet = &packets_.front();
310 // NAL unit fragmented over multiple packets (FU-A). 256 // NAL unit fragmented over multiple packets (FU-A).
311 // We do not send original NALU header, so it will be replaced by the 257 // We do not send original NALU header, so it will be replaced by the
312 // FU indicator header of the first packet. 258 // FU indicator header of the first packet.
313 uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA; 259 uint8_t fu_indicator = (packet->header & (kFBit | kNriMask)) | kFuA;
314 uint8_t fu_header = 0; 260 uint8_t fu_header = 0;
315 261
316 // S | E | R | 5 bit type. 262 // S | E | R | 5 bit type.
317 fu_header |= (packet.first_fragment ? kSBit : 0); 263 fu_header |= (packet->first_fragment ? kSBit : 0);
318 fu_header |= (packet.last_fragment ? kEBit : 0); 264 fu_header |= (packet->last_fragment ? kEBit : 0);
319 uint8_t type = packet.header & kTypeMask; 265 uint8_t type = packet->header & kTypeMask;
320 fu_header |= type; 266 fu_header |= type;
321 buffer[0] = fu_indicator; 267 buffer[0] = fu_indicator;
322 buffer[1] = fu_header; 268 buffer[1] = fu_header;
323 269
324 if (packet.last_fragment) { 270 const Fragment& fragment = packet->source_fragment;
325 *bytes_to_send = packet.size + kFuAHeaderSize; 271 *bytes_to_send = fragment.length + kFuAHeaderSize;
326 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); 272 memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length);
327 } else { 273 if (packet->last_fragment)
328 *bytes_to_send = packet.size + kFuAHeaderSize; 274 input_fragments_.pop_front();
329 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
330 }
331 packets_.pop(); 275 packets_.pop();
332 } 276 }
333 277
334 ProtectionType RtpPacketizerH264::GetProtectionType() { 278 ProtectionType RtpPacketizerH264::GetProtectionType() {
335 return kProtectedPacket; 279 return kProtectedPacket;
336 } 280 }
337 281
338 StorageType RtpPacketizerH264::GetStorageType( 282 StorageType RtpPacketizerH264::GetStorageType(
339 uint32_t retransmission_settings) { 283 uint32_t retransmission_settings) {
340 return kAllowRetransmission; 284 return kAllowRetransmission;
341 } 285 }
342 286
343 std::string RtpPacketizerH264::ToString() { 287 std::string RtpPacketizerH264::ToString() {
344 return "RtpPacketizerH264"; 288 return "RtpPacketizerH264";
345 } 289 }
346 290
291 RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {}
292 RtpDepacketizerH264::~RtpDepacketizerH264() {}
293
347 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, 294 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload,
348 const uint8_t* payload_data, 295 const uint8_t* payload_data,
349 size_t payload_data_length) { 296 size_t payload_data_length) {
350 assert(parsed_payload != NULL); 297 RTC_CHECK(parsed_payload != nullptr);
351 if (payload_data_length == 0) { 298 if (payload_data_length == 0) {
352 LOG(LS_ERROR) << "Empty payload."; 299 LOG(LS_ERROR) << "Empty payload.";
353 return false; 300 return false;
354 } 301 }
355 302
303 offset_ = 0;
304 length_ = payload_data_length;
305 modified_buffer_.reset();
306
356 uint8_t nal_type = payload_data[0] & kTypeMask; 307 uint8_t nal_type = payload_data[0] & kTypeMask;
357 size_t offset = 0;
358 if (nal_type == kFuA) { 308 if (nal_type == kFuA) {
359 // Fragmented NAL units (FU-A). 309 // Fragmented NAL units (FU-A).
360 if (!ParseFuaNalu( 310 if (!ParseFuaNalu(parsed_payload, payload_data))
361 parsed_payload, payload_data, payload_data_length, &offset)) {
362 return false; 311 return false;
363 }
364 } else { 312 } else {
365 // We handle STAP-A and single NALU's the same way here. The jitter buffer 313 // We handle STAP-A and single NALU's the same way here. The jitter buffer
366 // will depacketize the STAP-A into NAL units later. 314 // will depacketize the STAP-A into NAL units later.
367 if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length)) 315 // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec.
316 if (!ParseSingleNalu(parsed_payload, payload_data))
368 return false; 317 return false;
369 } 318 }
370 319
371 parsed_payload->payload = payload_data + offset; 320 const uint8_t* payload =
372 parsed_payload->payload_length = payload_data_length - offset; 321 modified_buffer_ ? modified_buffer_.get() : payload_data;
322
323 parsed_payload->payload = payload + offset_;
324 parsed_payload->payload_length = length_;
373 return true; 325 return true;
374 } 326 }
327
328 bool RtpDepacketizerH264::ParseSingleNalu(ParsedPayload* parsed_payload,
329 const uint8_t* payload_data) {
330 parsed_payload->type.Video.width = 0;
331 parsed_payload->type.Video.height = 0;
332 parsed_payload->type.Video.codec = kRtpVideoH264;
333 parsed_payload->type.Video.isFirstPacket = true;
334 RTPVideoHeaderH264* h264_header =
335 &parsed_payload->type.Video.codecHeader.H264;
336
337 const uint8_t* nalu_start = payload_data + kNalHeaderSize;
338 size_t nalu_length = length_ - kNalHeaderSize;
339 uint8_t nal_type = payload_data[0] & kTypeMask;
340 std::vector<size_t> nalu_start_offsets;
341 if (nal_type == kStapA) {
342 // Skip the StapA header (StapA NAL type + length).
343 if (length_ <= kStapAHeaderSize) {
344 LOG(LS_ERROR) << "StapA header truncated.";
345 return false;
346 }
347
348 if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets,
349 kNalHeaderSize)) {
350 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
351 return false;
352 }
353
354 h264_header->packetization_type = kH264StapA;
355 nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
356 } else {
357 h264_header->packetization_type = kH264SingleNalu;
358 nalu_start_offsets.push_back(0);
359 }
360 h264_header->nalu_type = nal_type;
361 parsed_payload->frame_type = kVideoFrameDelta;
362
363 nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset.
364 for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) {
365 size_t start_offset = nalu_start_offsets[i];
366 // End offset is actually start offset for next unit, excluding length field
367 // so remove that from this units length.
368 size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize;
369 nal_type = payload_data[start_offset] & kTypeMask;
370
371 if (nal_type == kSps) {
372 // Check if VUI is present in SPS and if it needs to be modified to avoid
373 // excessive decoder latency.
374 H264BitstreamRewriter rewriter;
375 bool rewritten_sps = rewriter.ParseAndRewriteSps(
376 &payload_data[start_offset], end_offset - start_offset);
377 if (rewritten_sps) {
378 // No support for TWO modified SPS in one RTP packet. Who DOES that?!
379 RTC_CHECK(!modified_buffer_);
380 size_t rewritten_size = rewriter.output_buffer_->Length();
381 size_t new_buffer_size =
382 length_ - (end_offset - start_offset) + rewritten_size;
383 modified_buffer_.reset(new uint8_t[new_buffer_size]);
384
385 // If StapA, copy any previous data first.
386 if (h264_header->packetization_type == kH264StapA) {
387 memcpy(modified_buffer_.get(), payload_data,
388 start_offset - kLengthFieldSize);
389 }
390
391 // Rewrite length field to new SPS size.
392 if (h264_header->packetization_type == kH264StapA) {
393 ByteWriter<uint16_t>::WriteBigEndian(
394 &modified_buffer_[start_offset - kLengthFieldSize],
395 rewritten_size);
396 }
397
398 // Copy the written NALu itself.
399 memcpy(&modified_buffer_[start_offset], rewriter.output_buffer_->Data(),
400 rewritten_size);
401
402 // Append rest of packet.
403 memcpy(&modified_buffer_[start_offset + rewritten_size],
404 &payload_data[end_offset], length_ - end_offset);
405
406 length_ = new_buffer_size;
407 }
408
409 if (rewriter.sps_state_) {
410 parsed_payload->type.Video.width = rewriter.sps_state_->width;
411 parsed_payload->type.Video.height = rewriter.sps_state_->height;
412 }
413 parsed_payload->frame_type = kVideoFrameKey;
414 } else if (nal_type == kPps || nal_type == kSei || nal_type == kIdr) {
415 parsed_payload->frame_type = kVideoFrameKey;
416 }
417 }
418
419 return true;
420 }
421
422 bool RtpDepacketizerH264::ParseFuaNalu(
423 RtpDepacketizer::ParsedPayload* parsed_payload,
424 const uint8_t* payload_data) {
425 if (length_ < kFuAHeaderSize) {
426 LOG(LS_ERROR) << "FU-A NAL units truncated.";
427 return false;
428 }
429 uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
430 uint8_t original_nal_type = payload_data[1] & kTypeMask;
431 bool first_fragment = (payload_data[1] & kSBit) > 0;
432
433 if (first_fragment) {
434 offset_ = 0;
435 length_ -= kNalHeaderSize;
436 uint8_t original_nal_header = fnri | original_nal_type;
437 modified_buffer_.reset(new uint8_t[length_]);
438 memcpy(modified_buffer_.get(), payload_data + kNalHeaderSize, length_);
439 modified_buffer_[0] = original_nal_header;
440 } else {
441 offset_ = kFuAHeaderSize;
442 length_ -= kFuAHeaderSize;
443 }
444
445 if (original_nal_type == kIdr) {
446 parsed_payload->frame_type = kVideoFrameKey;
447 } else {
448 parsed_payload->frame_type = kVideoFrameDelta;
449 }
450 parsed_payload->type.Video.width = 0;
451 parsed_payload->type.Video.height = 0;
452 parsed_payload->type.Video.codec = kRtpVideoH264;
453 parsed_payload->type.Video.isFirstPacket = first_fragment;
454 RTPVideoHeaderH264* h264_header =
455 &parsed_payload->type.Video.codecHeader.H264;
456 h264_header->packetization_type = kH264FuA;
457 h264_header->nalu_type = original_nal_type;
458 return true;
459 }
460
375 } // namespace webrtc 461 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698