Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(16)

Side by Side Diff: webrtc/modules/video_coding/utility/h264_bitstream_parser.cc

Issue 1979443004: Add H264 bitstream rewriting to limit frame reordering marker in header (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Comments Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 #include "webrtc/modules/video_coding/utility/h264_bitstream_parser.h" 10 #include "webrtc/modules/video_coding/utility/h264_bitstream_parser.h"
11 11
12 #include <memory> 12 #include <memory>
13 #include <vector> 13 #include <vector>
14 14
15 #include "webrtc/base/bitbuffer.h" 15 #include "webrtc/base/bitbuffer.h"
16 #include "webrtc/base/bytebuffer.h" 16 #include "webrtc/base/bytebuffer.h"
17 #include "webrtc/base/checks.h" 17 #include "webrtc/base/checks.h"
18
19 #include "webrtc/common_video/h264/h264_common.h"
18 #include "webrtc/base/logging.h" 20 #include "webrtc/base/logging.h"
19 21
20 namespace webrtc { 22 namespace webrtc {
21 namespace {
22 // The size of a NALU header {0 0 0 1}.
23 static const size_t kNaluHeaderSize = 4;
24
25 // The size of a NALU header plus the type byte.
26 static const size_t kNaluHeaderAndTypeSize = kNaluHeaderSize + 1;
27
28 // The NALU type.
29 static const uint8_t kNaluSps = 0x7;
30 static const uint8_t kNaluPps = 0x8;
31 static const uint8_t kNaluIdr = 0x5;
32 static const uint8_t kNaluTypeMask = 0x1F;
33
34 static const uint8_t kSliceTypeP = 0x0;
35 static const uint8_t kSliceTypeB = 0x1;
36 static const uint8_t kSliceTypeSp = 0x3;
37
38 // Returns a vector of the NALU start sequences (0 0 0 1) in the given buffer.
39 std::vector<size_t> FindNaluStartSequences(const uint8_t* buffer,
40 size_t buffer_size) {
41 std::vector<size_t> sequences;
42 // This is sorta like Boyer-Moore, but with only the first optimization step:
43 // given a 4-byte sequence we're looking at, if the 4th byte isn't 1 or 0,
44 // skip ahead to the next 4-byte sequence. 0s and 1s are relatively rare, so
45 // this will skip the majority of reads/checks.
46 const uint8_t* end = buffer + buffer_size - 4;
47 for (const uint8_t* head = buffer; head < end;) {
48 if (head[3] > 1) {
49 head += 4;
50 } else if (head[3] == 1 && head[2] == 0 && head[1] == 0 && head[0] == 0) {
51 sequences.push_back(static_cast<size_t>(head - buffer));
52 head += 4;
53 } else {
54 head++;
55 }
56 }
57
58 return sequences;
59 }
60 } // namespace
61
62 // Parses RBSP from source bytes. Removes emulation bytes, but leaves the
63 // rbsp_trailing_bits() in the stream, since none of the parsing reads all the
64 // way to the end of a parsed RBSP sequence. When writing, that means the
65 // rbsp_trailing_bits() should be preserved and don't need to be restored (i.e.
66 // the rbsp_stop_one_bit, which is just a 1, then zero padded), and alignment
67 // should "just work".
68 // TODO(pbos): Make parsing RBSP something that can be integrated into BitBuffer
69 // so we don't have to copy the entire frames when only interested in the
70 // headers.
71 rtc::ByteBufferWriter* ParseRbsp(const uint8_t* bytes, size_t length) {
72 // Copied from webrtc::H264SpsParser::Parse.
73 rtc::ByteBufferWriter* rbsp_buffer = new rtc::ByteBufferWriter();
74 for (size_t i = 0; i < length;) {
75 if (length - i >= 3 && bytes[i] == 0 && bytes[i + 1] == 0 &&
76 bytes[i + 2] == 3) {
77 rbsp_buffer->WriteBytes(reinterpret_cast<const char*>(bytes) + i, 2);
78 i += 3;
79 } else {
80 rbsp_buffer->WriteBytes(reinterpret_cast<const char*>(bytes) + i, 1);
81 i++;
82 }
83 }
84 return rbsp_buffer;
85 }
86 23
87 #define RETURN_FALSE_ON_FAIL(x) \ 24 #define RETURN_FALSE_ON_FAIL(x) \
88 if (!(x)) { \ 25 if (!(x)) { \
89 LOG_F(LS_ERROR) << "FAILED: " #x; \ 26 LOG_F(LS_ERROR) << "FAILED: " #x; \
90 return false; \ 27 return false; \
91 } 28 }
92 29
93 H264BitstreamParser::PpsState::PpsState() {} 30 H264BitstreamParser::H264BitstreamParser() {}
94 31 H264BitstreamParser::~H264BitstreamParser() {}
95 H264BitstreamParser::SpsState::SpsState() {}
96
97 // These functions are similar to webrtc::H264SpsParser::Parse, and based on the
98 // same version of the H.264 standard. You can find it here:
99 // http://www.itu.int/rec/T-REC-H.264
100 bool H264BitstreamParser::ParseSpsNalu(const uint8_t* sps, size_t length) {
101 // Reset SPS state.
102 sps_ = SpsState();
103 sps_parsed_ = false;
104 // Parse out the SPS RBSP. It should be small, so it's ok that we create a
105 // copy. We'll eventually write this back.
106 std::unique_ptr<rtc::ByteBufferWriter> sps_rbsp(
107 ParseRbsp(sps + kNaluHeaderAndTypeSize, length - kNaluHeaderAndTypeSize));
108 rtc::BitBuffer sps_parser(reinterpret_cast<const uint8_t*>(sps_rbsp->Data()),
109 sps_rbsp->Length());
110
111 uint8_t byte_tmp;
112 uint32_t golomb_tmp;
113 uint32_t bits_tmp;
114
115 // profile_idc: u(8).
116 uint8_t profile_idc;
117 RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&profile_idc));
118 // constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits
119 // 1 bit each for the flags + 2 bits = 8 bits = 1 byte.
120 RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&byte_tmp));
121 // level_idc: u(8)
122 RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&byte_tmp));
123 // seq_parameter_set_id: ue(v)
124 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
125 sps_.separate_colour_plane_flag = 0;
126 // See if profile_idc has chroma format information.
127 if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 ||
128 profile_idc == 244 || profile_idc == 44 || profile_idc == 83 ||
129 profile_idc == 86 || profile_idc == 118 || profile_idc == 128 ||
130 profile_idc == 138 || profile_idc == 139 || profile_idc == 134) {
131 // chroma_format_idc: ue(v)
132 uint32_t chroma_format_idc;
133 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&chroma_format_idc));
134 if (chroma_format_idc == 3) {
135 // separate_colour_plane_flag: u(1)
136 RETURN_FALSE_ON_FAIL(
137 sps_parser.ReadBits(&sps_.separate_colour_plane_flag, 1));
138 }
139 // bit_depth_luma_minus8: ue(v)
140 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
141 // bit_depth_chroma_minus8: ue(v)
142 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
143 // qpprime_y_zero_transform_bypass_flag: u(1)
144 RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&bits_tmp, 1));
145 // seq_scaling_matrix_present_flag: u(1)
146 uint32_t seq_scaling_matrix_present_flag;
147 RETURN_FALSE_ON_FAIL(
148 sps_parser.ReadBits(&seq_scaling_matrix_present_flag, 1));
149 if (seq_scaling_matrix_present_flag) {
150 // seq_scaling_list_present_flags. Either 8 or 12, depending on
151 // chroma_format_idc.
152 uint32_t seq_scaling_list_present_flags;
153 if (chroma_format_idc != 3) {
154 RETURN_FALSE_ON_FAIL(
155 sps_parser.ReadBits(&seq_scaling_list_present_flags, 8));
156 } else {
157 RETURN_FALSE_ON_FAIL(
158 sps_parser.ReadBits(&seq_scaling_list_present_flags, 12));
159 }
160 // TODO(pbos): Support parsing scaling lists if they're seen in practice.
161 RTC_CHECK(seq_scaling_list_present_flags == 0)
162 << "SPS contains scaling lists, which are unsupported.";
163 }
164 }
165 // log2_max_frame_num_minus4: ue(v)
166 RETURN_FALSE_ON_FAIL(
167 sps_parser.ReadExponentialGolomb(&sps_.log2_max_frame_num_minus4));
168 // pic_order_cnt_type: ue(v)
169 RETURN_FALSE_ON_FAIL(
170 sps_parser.ReadExponentialGolomb(&sps_.pic_order_cnt_type));
171
172 if (sps_.pic_order_cnt_type == 0) {
173 // log2_max_pic_order_cnt_lsb_minus4: ue(v)
174 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(
175 &sps_.log2_max_pic_order_cnt_lsb_minus4));
176 } else if (sps_.pic_order_cnt_type == 1) {
177 // delta_pic_order_always_zero_flag: u(1)
178 RETURN_FALSE_ON_FAIL(
179 sps_parser.ReadBits(&sps_.delta_pic_order_always_zero_flag, 1));
180 // offset_for_non_ref_pic: se(v)
181 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
182 // offset_for_top_to_bottom_field: se(v)
183 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
184 uint32_t num_ref_frames_in_pic_order_cnt_cycle;
185 // num_ref_frames_in_pic_order_cnt_cycle: ue(v)
186 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(
187 &num_ref_frames_in_pic_order_cnt_cycle));
188 for (uint32_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++) {
189 // offset_for_ref_frame[i]: se(v)
190 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
191 }
192 }
193 // max_num_ref_frames: ue(v)
194 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
195 // gaps_in_frame_num_value_allowed_flag: u(1)
196 RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&bits_tmp, 1));
197 // pic_width_in_mbs_minus1: ue(v)
198 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
199 // pic_height_in_map_units_minus1: ue(v)
200 RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
201 // frame_mbs_only_flag: u(1)
202 RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&sps_.frame_mbs_only_flag, 1));
203 sps_parsed_ = true;
204 return true;
205 }
206
207 bool H264BitstreamParser::ParsePpsNalu(const uint8_t* pps, size_t length) {
208 RTC_CHECK(sps_parsed_);
209 // We're starting a new stream, so reset picture type rewriting values.
210 pps_ = PpsState();
211 pps_parsed_ = false;
212 std::unique_ptr<rtc::ByteBufferWriter> buffer(
213 ParseRbsp(pps + kNaluHeaderAndTypeSize, length - kNaluHeaderAndTypeSize));
214 rtc::BitBuffer parser(reinterpret_cast<const uint8_t*>(buffer->Data()),
215 buffer->Length());
216
217 uint32_t bits_tmp;
218 uint32_t golomb_ignored;
219 // pic_parameter_set_id: ue(v)
220 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
221 // seq_parameter_set_id: ue(v)
222 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
223 // entropy_coding_mode_flag: u(1)
224 uint32_t entropy_coding_mode_flag;
225 RETURN_FALSE_ON_FAIL(parser.ReadBits(&entropy_coding_mode_flag, 1));
226 // TODO(pbos): Implement CABAC support if spotted in the wild.
227 RTC_CHECK(entropy_coding_mode_flag == 0)
228 << "Don't know how to parse CABAC streams.";
229 // bottom_field_pic_order_in_frame_present_flag: u(1)
230 uint32_t bottom_field_pic_order_in_frame_present_flag;
231 RETURN_FALSE_ON_FAIL(
232 parser.ReadBits(&bottom_field_pic_order_in_frame_present_flag, 1));
233 pps_.bottom_field_pic_order_in_frame_present_flag =
234 bottom_field_pic_order_in_frame_present_flag != 0;
235
236 // num_slice_groups_minus1: ue(v)
237 uint32_t num_slice_groups_minus1;
238 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&num_slice_groups_minus1));
239 if (num_slice_groups_minus1 > 0) {
240 uint32_t slice_group_map_type;
241 // slice_group_map_type: ue(v)
242 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&slice_group_map_type));
243 if (slice_group_map_type == 0) {
244 for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1;
245 ++i_group) {
246 // run_length_minus1[iGroup]: ue(v)
247 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
248 }
249 } else if (slice_group_map_type == 2) {
250 for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1;
251 ++i_group) {
252 // top_left[iGroup]: ue(v)
253 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
254 // bottom_right[iGroup]: ue(v)
255 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
256 }
257 } else if (slice_group_map_type == 3 || slice_group_map_type == 4 ||
258 slice_group_map_type == 5) {
259 // slice_group_change_direction_flag: u(1)
260 RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, 1));
261 // slice_group_change_rate_minus1: ue(v)
262 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
263 } else if (slice_group_map_type == 6) {
264 // pic_size_in_map_units_minus1: ue(v)
265 uint32_t pic_size_in_map_units_minus1;
266 RETURN_FALSE_ON_FAIL(
267 parser.ReadExponentialGolomb(&pic_size_in_map_units_minus1));
268 uint32_t slice_group_id_bits = 0;
269 uint32_t num_slice_groups = num_slice_groups_minus1 + 1;
270 // If num_slice_groups is not a power of two an additional bit is required
271 // to account for the ceil() of log2() below.
272 if ((num_slice_groups & (num_slice_groups - 1)) != 0)
273 ++slice_group_id_bits;
274 while (num_slice_groups > 0) {
275 num_slice_groups >>= 1;
276 ++slice_group_id_bits;
277 }
278 for (uint32_t i = 0; i <= pic_size_in_map_units_minus1; i++) {
279 // slice_group_id[i]: u(v)
280 // Represented by ceil(log2(num_slice_groups_minus1 + 1)) bits.
281 RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, slice_group_id_bits));
282 }
283 }
284 }
285 // num_ref_idx_l0_default_active_minus1: ue(v)
286 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
287 // num_ref_idx_l1_default_active_minus1: ue(v)
288 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
289 // weighted_pred_flag: u(1)
290 uint32_t weighted_pred_flag;
291 RETURN_FALSE_ON_FAIL(parser.ReadBits(&weighted_pred_flag, 1));
292 pps_.weighted_pred_flag = weighted_pred_flag != 0;
293 // weighted_bipred_idc: u(2)
294 RETURN_FALSE_ON_FAIL(parser.ReadBits(&pps_.weighted_bipred_idc, 2));
295
296 // pic_init_qp_minus26: se(v)
297 RETURN_FALSE_ON_FAIL(
298 parser.ReadSignedExponentialGolomb(&pps_.pic_init_qp_minus26));
299 // pic_init_qs_minus26: se(v)
300 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
301 // chroma_qp_index_offset: se(v)
302 RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
303 // deblocking_filter_control_present_flag: u(1)
304 // constrained_intra_pred_flag: u(1)
305 RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, 2));
306 // redundant_pic_cnt_present_flag: u(1)
307 RETURN_FALSE_ON_FAIL(
308 parser.ReadBits(&pps_.redundant_pic_cnt_present_flag, 1));
309
310 pps_parsed_ = true;
311 return true;
312 }
313 32
314 bool H264BitstreamParser::ParseNonParameterSetNalu(const uint8_t* source, 33 bool H264BitstreamParser::ParseNonParameterSetNalu(const uint8_t* source,
315 size_t source_length, 34 size_t source_length,
316 uint8_t nalu_type) { 35 uint8_t nalu_type) {
317 RTC_CHECK(sps_parsed_); 36 RTC_CHECK(sps_);
318 RTC_CHECK(pps_parsed_); 37 RTC_CHECK(pps_);
319 last_slice_qp_delta_parsed_ = false; 38 last_slice_qp_delta_ = rtc::Optional<int32_t>();
320 std::unique_ptr<rtc::ByteBufferWriter> slice_rbsp(ParseRbsp( 39 std::unique_ptr<rtc::Buffer> slice_rbsp(
321 source + kNaluHeaderAndTypeSize, source_length - kNaluHeaderAndTypeSize)); 40 H264::ParseRbsp(source, source_length));
322 rtc::BitBuffer slice_reader( 41 rtc::BitBuffer slice_reader(slice_rbsp->data() + H264::kNaluTypeSize,
323 reinterpret_cast<const uint8_t*>(slice_rbsp->Data()), 42 slice_rbsp->size() - H264::kNaluTypeSize);
324 slice_rbsp->Length());
325 // Check to see if this is an IDR slice, which has an extra field to parse 43 // Check to see if this is an IDR slice, which has an extra field to parse
326 // out. 44 // out.
327 bool is_idr = (source[kNaluHeaderSize] & 0x0F) == kNaluIdr; 45 bool is_idr = (source[0] & 0x0F) == H264::NaluType::kIdr;
328 uint8_t nal_ref_idc = (source[kNaluHeaderSize] & 0x60) >> 5; 46 uint8_t nal_ref_idc = (source[0] & 0x60) >> 5;
329 uint32_t golomb_tmp; 47 uint32_t golomb_tmp;
330 uint32_t bits_tmp; 48 uint32_t bits_tmp;
331 49
332 // first_mb_in_slice: ue(v) 50 // first_mb_in_slice: ue(v)
333 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 51 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
334 // slice_type: ue(v) 52 // slice_type: ue(v)
335 uint32_t slice_type; 53 uint32_t slice_type;
336 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&slice_type)); 54 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&slice_type));
337 // slice_type's 5..9 range is used to indicate that all slices of a picture 55 // slice_type's 5..9 range is used to indicate that all slices of a picture
338 // have the same value of slice_type % 5, we don't care about that, so we map 56 // have the same value of slice_type % 5, we don't care about that, so we map
339 // to the corresponding 0..4 range. 57 // to the corresponding 0..4 range.
340 slice_type %= 5; 58 slice_type %= 5;
341 // pic_parameter_set_id: ue(v) 59 // pic_parameter_set_id: ue(v)
342 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 60 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
343 if (sps_.separate_colour_plane_flag == 1) { 61 if (sps_->separate_colour_plane_flag == 1) {
344 // colour_plane_id 62 // colour_plane_id
345 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2)); 63 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2));
346 } 64 }
347 // frame_num: u(v) 65 // frame_num: u(v)
348 // Represented by log2_max_frame_num_minus4 + 4 bits. 66 // Represented by log2_max_frame_num_minus4 + 4 bits.
349 RETURN_FALSE_ON_FAIL( 67 RETURN_FALSE_ON_FAIL(
350 slice_reader.ReadBits(&bits_tmp, sps_.log2_max_frame_num_minus4 + 4)); 68 slice_reader.ReadBits(&bits_tmp, sps_->log2_max_frame_num_minus4 + 4));
351 uint32_t field_pic_flag = 0; 69 uint32_t field_pic_flag = 0;
352 if (sps_.frame_mbs_only_flag == 0) { 70 if (sps_->frame_mbs_only_flag == 0) {
353 // field_pic_flag: u(1) 71 // field_pic_flag: u(1)
354 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&field_pic_flag, 1)); 72 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&field_pic_flag, 1));
355 if (field_pic_flag != 0) { 73 if (field_pic_flag != 0) {
356 // bottom_field_flag: u(1) 74 // bottom_field_flag: u(1)
357 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1)); 75 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1));
358 } 76 }
359 } 77 }
360 if (is_idr) { 78 if (is_idr) {
361 // idr_pic_id: ue(v) 79 // idr_pic_id: ue(v)
362 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 80 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
363 } 81 }
364 // pic_order_cnt_lsb: u(v) 82 // pic_order_cnt_lsb: u(v)
365 // Represented by sps_.log2_max_pic_order_cnt_lsb_minus4 + 4 bits. 83 // Represented by sps_.log2_max_pic_order_cnt_lsb_minus4 + 4 bits.
366 if (sps_.pic_order_cnt_type == 0) { 84 if (sps_->pic_order_cnt_type == 0) {
367 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits( 85 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(
368 &bits_tmp, sps_.log2_max_pic_order_cnt_lsb_minus4 + 4)); 86 &bits_tmp, sps_->log2_max_pic_order_cnt_lsb_minus4 + 4));
369 if (pps_.bottom_field_pic_order_in_frame_present_flag && 87 if (pps_->bottom_field_pic_order_in_frame_present_flag &&
370 field_pic_flag == 0) { 88 field_pic_flag == 0) {
371 // delta_pic_order_cnt_bottom: se(v) 89 // delta_pic_order_cnt_bottom: se(v)
372 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 90 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
373 } 91 }
374 } 92 }
375 if (sps_.pic_order_cnt_type == 1 && !sps_.delta_pic_order_always_zero_flag) { 93 if (sps_->pic_order_cnt_type == 1 &&
94 !sps_->delta_pic_order_always_zero_flag) {
376 // delta_pic_order_cnt[0]: se(v) 95 // delta_pic_order_cnt[0]: se(v)
377 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 96 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
378 if (pps_.bottom_field_pic_order_in_frame_present_flag && !field_pic_flag) { 97 if (pps_->bottom_field_pic_order_in_frame_present_flag && !field_pic_flag) {
379 // delta_pic_order_cnt[1]: se(v) 98 // delta_pic_order_cnt[1]: se(v)
380 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 99 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
381 } 100 }
382 } 101 }
383 if (pps_.redundant_pic_cnt_present_flag) { 102 if (pps_->redundant_pic_cnt_present_flag) {
384 // redundant_pic_cnt: ue(v) 103 // redundant_pic_cnt: ue(v)
385 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 104 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
386 } 105 }
387 if (slice_type == kSliceTypeB) { 106 if (slice_type == H264::SliceType::kB) {
388 // direct_spatial_mv_pred_flag: u(1) 107 // direct_spatial_mv_pred_flag: u(1)
389 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1)); 108 RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1));
390 } 109 }
391 if (slice_type == kSliceTypeP || slice_type == kSliceTypeSp || 110 switch (slice_type) {
392 slice_type == kSliceTypeB) { 111 case H264::SliceType::kP:
393 uint32_t num_ref_idx_active_override_flag; 112 case H264::SliceType::kB:
394 // num_ref_idx_active_override_flag: u(1) 113 case H264::SliceType::kSp:
395 RETURN_FALSE_ON_FAIL( 114 uint32_t num_ref_idx_active_override_flag;
396 slice_reader.ReadBits(&num_ref_idx_active_override_flag, 1)); 115 // num_ref_idx_active_override_flag: u(1)
397 if (num_ref_idx_active_override_flag != 0) { 116 RETURN_FALSE_ON_FAIL(
398 // num_ref_idx_l0_active_minus1: ue(v) 117 slice_reader.ReadBits(&num_ref_idx_active_override_flag, 1));
399 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 118 if (num_ref_idx_active_override_flag != 0) {
400 if (slice_type == kSliceTypeB) { 119 // num_ref_idx_l0_active_minus1: ue(v)
401 // num_ref_idx_l1_active_minus1: ue(v)
402 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); 120 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
121 if (slice_type == H264::SliceType::kB) {
122 // num_ref_idx_l1_active_minus1: ue(v)
123 RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
124 }
403 } 125 }
404 } 126 break;
127 default:
128 break;
405 } 129 }
406 // assume nal_unit_type != 20 && nal_unit_type != 21: 130 // assume nal_unit_type != 20 && nal_unit_type != 21:
407 RTC_CHECK_NE(nalu_type, 20); 131 RTC_CHECK_NE(nalu_type, 20);
408 RTC_CHECK_NE(nalu_type, 21); 132 RTC_CHECK_NE(nalu_type, 21);
409 // if (nal_unit_type == 20 || nal_unit_type == 21) 133 // if (nal_unit_type == 20 || nal_unit_type == 21)
410 // ref_pic_list_mvc_modification() 134 // ref_pic_list_mvc_modification()
411 // else 135 // else
412 { 136 {
413 // ref_pic_list_modification(): 137 // ref_pic_list_modification():
414 // |slice_type| checks here don't use named constants as they aren't named 138 // |slice_type| checks here don't use named constants as they aren't named
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after
457 } else if (modification_of_pic_nums_idc == 2) { 181 } else if (modification_of_pic_nums_idc == 2) {
458 // long_term_pic_num: ue(v) 182 // long_term_pic_num: ue(v)
459 RETURN_FALSE_ON_FAIL( 183 RETURN_FALSE_ON_FAIL(
460 slice_reader.ReadExponentialGolomb(&golomb_tmp)); 184 slice_reader.ReadExponentialGolomb(&golomb_tmp));
461 } 185 }
462 } while (modification_of_pic_nums_idc != 3); 186 } while (modification_of_pic_nums_idc != 3);
463 } 187 }
464 } 188 }
465 } 189 }
466 // TODO(pbos): Do we need support for pred_weight_table()? 190 // TODO(pbos): Do we need support for pred_weight_table()?
467 RTC_CHECK(!((pps_.weighted_pred_flag && 191 RTC_CHECK(
468 (slice_type == kSliceTypeP || slice_type == kSliceTypeSp)) || 192 !((pps_->weighted_pred_flag && (slice_type == H264::SliceType::kP ||
469 (pps_.weighted_bipred_idc != 0 && slice_type == kSliceTypeB))) 193 slice_type == H264::SliceType::kSp)) ||
194 (pps_->weighted_bipred_idc != 0 && slice_type == H264::SliceType::kB)))
470 << "Missing support for pred_weight_table()."; 195 << "Missing support for pred_weight_table().";
471 // if ((weighted_pred_flag && (slice_type == P || slice_type == SP)) || 196 // if ((weighted_pred_flag && (slice_type == P || slice_type == SP)) ||
472 // (weighted_bipred_idc == 1 && slice_type == B)) { 197 // (weighted_bipred_idc == 1 && slice_type == B)) {
473 // pred_weight_table() 198 // pred_weight_table()
474 // } 199 // }
475 if (nal_ref_idc != 0) { 200 if (nal_ref_idc != 0) {
476 // dec_ref_pic_marking(): 201 // dec_ref_pic_marking():
477 if (is_idr) { 202 if (is_idr) {
478 // no_output_of_prior_pics_flag: u(1) 203 // no_output_of_prior_pics_flag: u(1)
479 // long_term_reference_flag: u(1) 204 // long_term_reference_flag: u(1)
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after
511 RETURN_FALSE_ON_FAIL( 236 RETURN_FALSE_ON_FAIL(
512 slice_reader.ReadExponentialGolomb(&golomb_tmp)); 237 slice_reader.ReadExponentialGolomb(&golomb_tmp));
513 } 238 }
514 } while (memory_management_control_operation != 0); 239 } while (memory_management_control_operation != 0);
515 } 240 }
516 } 241 }
517 } 242 }
518 // cabac not supported: entropy_coding_mode_flag == 0 asserted above. 243 // cabac not supported: entropy_coding_mode_flag == 0 asserted above.
519 // if (entropy_coding_mode_flag && slice_type != I && slice_type != SI) 244 // if (entropy_coding_mode_flag && slice_type != I && slice_type != SI)
520 // cabac_init_idc 245 // cabac_init_idc
246 int32_t last_slice_qp_delta;
521 RETURN_FALSE_ON_FAIL( 247 RETURN_FALSE_ON_FAIL(
522 slice_reader.ReadSignedExponentialGolomb(&last_slice_qp_delta_)); 248 slice_reader.ReadSignedExponentialGolomb(&last_slice_qp_delta));
523 last_slice_qp_delta_parsed_ = true; 249 last_slice_qp_delta_ = rtc::Optional<int32_t>(last_slice_qp_delta);
524 return true; 250 return true;
525 } 251 }
526 252
527 void H264BitstreamParser::ParseSlice(const uint8_t* slice, size_t length) { 253 void H264BitstreamParser::ParseSlice(const uint8_t* slice, size_t length) {
528 uint8_t nalu_type = slice[4] & kNaluTypeMask; 254 H264::NaluType nalu_type = H264::ParseNaluType(slice[0]);
529 switch (nalu_type) { 255 switch (nalu_type) {
530 case kNaluSps: 256 case H264::NaluType::kSps: {
531 RTC_CHECK(ParseSpsNalu(slice, length)) 257 sps_ = SpsParser::ParseSps(slice + H264::kNaluTypeSize,
532 << "Failed to parse bitstream SPS."; 258 length - H264::kNaluTypeSize);
259 if (!sps_)
260 FATAL() << "Unable to parse SPS from H264 bitstream.";
533 break; 261 break;
534 case kNaluPps: 262 }
535 RTC_CHECK(ParsePpsNalu(slice, length)) 263 case H264::NaluType::kPps: {
536 << "Failed to parse bitstream PPS."; 264 pps_ = PpsParser::ParsePps(slice + H264::kNaluTypeSize,
265 length - H264::kNaluTypeSize);
266 if (!pps_)
267 FATAL() << "Unable to parse PPS from H264 bitstream.";
537 break; 268 break;
269 }
538 default: 270 default:
539 RTC_CHECK(ParseNonParameterSetNalu(slice, length, nalu_type)) 271 RTC_CHECK(ParseNonParameterSetNalu(slice, length, nalu_type))
540 << "Failed to parse picture slice."; 272 << "Failed to parse picture slice.";
541 break; 273 break;
542 } 274 }
543 } 275 }
544 276
545 void H264BitstreamParser::ParseBitstream(const uint8_t* bitstream, 277 void H264BitstreamParser::ParseBitstream(const uint8_t* bitstream,
546 size_t length) { 278 size_t length) {
547 RTC_CHECK_GE(length, 4u); 279 std::vector<H264::NaluIndex> nalu_indices =
548 std::vector<size_t> slice_markers = FindNaluStartSequences(bitstream, length); 280 H264::FindNaluIndices(bitstream, length);
549 RTC_CHECK(!slice_markers.empty()); 281 RTC_CHECK(!nalu_indices.empty());
550 for (size_t i = 0; i < slice_markers.size() - 1; ++i) { 282 for (const H264::NaluIndex& index : nalu_indices)
551 ParseSlice(bitstream + slice_markers[i], 283 ParseSlice(&bitstream[index.payload_start_offset], index.payload_size);
552 slice_markers[i + 1] - slice_markers[i]);
553 }
554 // Parse the last slice.
555 ParseSlice(bitstream + slice_markers.back(), length - slice_markers.back());
556 } 284 }
557 285
558 bool H264BitstreamParser::GetLastSliceQp(int* qp) const { 286 bool H264BitstreamParser::GetLastSliceQp(int* qp) const {
559 if (!last_slice_qp_delta_parsed_) 287 if (!last_slice_qp_delta_ || !pps_)
560 return false; 288 return false;
561 *qp = 26 + pps_.pic_init_qp_minus26 + last_slice_qp_delta_; 289 *qp = 26 + pps_->pic_init_qp_minus26 + *last_slice_qp_delta_;
562 return true; 290 return true;
563 } 291 }
564 292
565 } // namespace webrtc 293 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698