Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(17)

Side by Side Diff: webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc

Issue 1979443004: Add H264 bitstream rewriting to limit frame reordering marker in header (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Comments Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h"
12
11 #include <string.h> 13 #include <string.h>
14 #include <vector>
12 15
16 #include "webrtc/base/checks.h"
13 #include "webrtc/base/logging.h" 17 #include "webrtc/base/logging.h"
14 #include "webrtc/modules/include/module_common_types.h" 18 #include "webrtc/modules/include/module_common_types.h"
15 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" 19 #include "webrtc/modules/rtp_rtcp/source/byte_io.h"
16 #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" 20 #include "webrtc/common_video/h264/sps_vui_rewriter.h"
17 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" 21 #include "webrtc/common_video/h264/h264_common.h"
22 #include "webrtc/common_video/h264/sps_parser.h"
23 #include "webrtc/system_wrappers/include/metrics.h"
18 24
19 namespace webrtc { 25 namespace webrtc {
20 namespace { 26 namespace {
21 27
22 enum Nalu {
23 kSlice = 1,
24 kIdr = 5,
25 kSei = 6,
26 kSps = 7,
27 kPps = 8,
28 kStapA = 24,
29 kFuA = 28
30 };
31
32 static const size_t kNalHeaderSize = 1; 28 static const size_t kNalHeaderSize = 1;
33 static const size_t kFuAHeaderSize = 2; 29 static const size_t kFuAHeaderSize = 2;
34 static const size_t kLengthFieldSize = 2; 30 static const size_t kLengthFieldSize = 2;
35 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; 31 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize;
36 32
33 static const char* kSpsValidHistogramName = "WebRTC.Video.H264.SpsValid";
34 enum SpsValidEvent {
35 kReceiveSpsOk = 0,
36 kReceiveSpsRewritten = 1,
37 kSentSpsOk = 2,
38 kSentSpsRewritten = 3,
39 kSpsRewrittenMax = 4
40 };
41
37 // Bit masks for FU (A and B) indicators. 42 // Bit masks for FU (A and B) indicators.
38 enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; 43 enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
39 44
40 // Bit masks for FU (A and B) headers. 45 // Bit masks for FU (A and B) headers.
41 enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; 46 enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
42 47
43 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. 48 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer.
44 bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) { 49 bool ParseStapAStartOffsets(const uint8_t* nalu_ptr,
50 size_t length_remaining,
51 std::vector<size_t>* offsets) {
52 size_t offset = 0;
45 while (length_remaining > 0) { 53 while (length_remaining > 0) {
46 // Buffer doesn't contain room for additional nalu length. 54 // Buffer doesn't contain room for additional nalu length.
47 if (length_remaining < sizeof(uint16_t)) 55 if (length_remaining < sizeof(uint16_t))
48 return false; 56 return false;
49 uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1]; 57 uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr);
50 nalu_ptr += sizeof(uint16_t); 58 nalu_ptr += sizeof(uint16_t);
51 length_remaining -= sizeof(uint16_t); 59 length_remaining -= sizeof(uint16_t);
52 if (nalu_size > length_remaining) 60 if (nalu_size > length_remaining)
53 return false; 61 return false;
54 nalu_ptr += nalu_size; 62 nalu_ptr += nalu_size;
55 length_remaining -= nalu_size; 63 length_remaining -= nalu_size;
64
65 offsets->push_back(offset + kStapAHeaderSize);
66 offset += kLengthFieldSize + nalu_size;
56 } 67 }
57 return true; 68 return true;
58 } 69 }
59 70
60 bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
61 const uint8_t* payload_data,
62 size_t payload_data_length) {
63 parsed_payload->type.Video.width = 0;
64 parsed_payload->type.Video.height = 0;
65 parsed_payload->type.Video.codec = kRtpVideoH264;
66 parsed_payload->type.Video.isFirstPacket = true;
67 RTPVideoHeaderH264* h264_header =
68 &parsed_payload->type.Video.codecHeader.H264;
69
70 const uint8_t* nalu_start = payload_data + kNalHeaderSize;
71 size_t nalu_length = payload_data_length - kNalHeaderSize;
72 uint8_t nal_type = payload_data[0] & kTypeMask;
73 if (nal_type == kStapA) {
74 // Skip the StapA header (StapA nal type + length).
75 if (payload_data_length <= kStapAHeaderSize) {
76 LOG(LS_ERROR) << "StapA header truncated.";
77 return false;
78 }
79 if (!VerifyStapANaluLengths(nalu_start, nalu_length)) {
80 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
81 return false;
82 }
83
84 nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
85 nalu_start += kStapAHeaderSize;
86 nalu_length -= kStapAHeaderSize;
87 h264_header->packetization_type = kH264StapA;
88 } else {
89 h264_header->packetization_type = kH264SingleNalu;
90 }
91 h264_header->nalu_type = nal_type;
92
93 // We can read resolution out of sps packets.
94 if (nal_type == kSps) {
95 H264SpsParser parser(nalu_start, nalu_length);
96 if (parser.Parse()) {
97 parsed_payload->type.Video.width = parser.width();
98 parsed_payload->type.Video.height = parser.height();
99 }
100 }
101 switch (nal_type) {
102 case kSps:
103 case kPps:
104 case kSei:
105 case kIdr:
106 parsed_payload->frame_type = kVideoFrameKey;
107 break;
108 default:
109 parsed_payload->frame_type = kVideoFrameDelta;
110 break;
111 }
112 return true;
113 }
114
115 bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
116 const uint8_t* payload_data,
117 size_t payload_data_length,
118 size_t* offset) {
119 if (payload_data_length < kFuAHeaderSize) {
120 LOG(LS_ERROR) << "FU-A NAL units truncated.";
121 return false;
122 }
123 uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
124 uint8_t original_nal_type = payload_data[1] & kTypeMask;
125 bool first_fragment = (payload_data[1] & kSBit) > 0;
126
127 uint8_t original_nal_header = fnri | original_nal_type;
128 if (first_fragment) {
129 *offset = kNalHeaderSize;
130 uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset);
131 payload[0] = original_nal_header;
132 } else {
133 *offset = kFuAHeaderSize;
134 }
135
136 if (original_nal_type == kIdr) {
137 parsed_payload->frame_type = kVideoFrameKey;
138 } else {
139 parsed_payload->frame_type = kVideoFrameDelta;
140 }
141 parsed_payload->type.Video.width = 0;
142 parsed_payload->type.Video.height = 0;
143 parsed_payload->type.Video.codec = kRtpVideoH264;
144 parsed_payload->type.Video.isFirstPacket = first_fragment;
145 RTPVideoHeaderH264* h264_header =
146 &parsed_payload->type.Video.codecHeader.H264;
147 h264_header->packetization_type = kH264FuA;
148 h264_header->nalu_type = original_nal_type;
149 return true;
150 }
151 } // namespace 71 } // namespace
152 72
153 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, 73 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type,
154 size_t max_payload_len) 74 size_t max_payload_len)
155 : payload_data_(NULL), 75 : max_payload_len_(max_payload_len) {}
156 payload_size_(0),
157 max_payload_len_(max_payload_len) {
158 }
159 76
160 RtpPacketizerH264::~RtpPacketizerH264() { 77 RtpPacketizerH264::~RtpPacketizerH264() {
161 } 78 }
162 79
80 RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length)
81 : buffer(buffer), length(length) {}
82 RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment)
83 : buffer(fragment.buffer), length(fragment.length) {}
84
163 void RtpPacketizerH264::SetPayloadData( 85 void RtpPacketizerH264::SetPayloadData(
164 const uint8_t* payload_data, 86 const uint8_t* payload_data,
165 size_t payload_size, 87 size_t payload_size,
166 const RTPFragmentationHeader* fragmentation) { 88 const RTPFragmentationHeader* fragmentation) {
167 assert(packets_.empty()); 89 RTC_DCHECK(packets_.empty());
168 assert(fragmentation); 90 RTC_DCHECK(input_fragments_.empty());
169 payload_data_ = payload_data; 91 RTC_DCHECK(fragmentation);
170 payload_size_ = payload_size; 92 for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) {
171 fragmentation_.CopyFrom(*fragmentation); 93 const uint8_t* buffer =
94 &payload_data[fragmentation->fragmentationOffset[i]];
95 size_t length = fragmentation->fragmentationLength[i];
96
97 bool updated_sps = false;
98 H264::NaluType nalu_type = H264::ParseNaluType(buffer[0]);
99 if (nalu_type == H264::NaluType::kSps) {
100 // Check if stream uses picture order count type 0, and if so rewrite it
101 // to enable faster decoding. Streams in that format incur additional
102 // delay because it allows decode order to differ from render order.
103 // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain
104 // restrictions on the maximum number of reordered pictures. This reduces
105 // latency significantly, though it still adds about a frame of latency to
106 // decoding.
107 // Note that we do this rewriting both here (send side, in order to
108 // protect legacy receive clients) and below in
109 // RtpDepacketizerH264::ParseSingleNalu (receive side, in oter to protect
noahric 2016/06/01 17:56:43 order
sprang_webrtc 2016/06/02 08:53:14 Done.
110 // us from legacy send clients).
noahric 2016/06/01 17:56:43 maybe "unknown or legacy", since the other side ma
sprang_webrtc 2016/06/02 08:53:14 Done.
111
112 // Create temporary RBSP decoded buffer of the payload (exlcuding the
113 // leading nalu type header byte (the SpsParser uses only the payload).
114 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp(
115 buffer + H264::kNaluTypeSize, length - H264::kNaluTypeSize);
116 rtc::Optional<SpsParser::SpsState> sps;
117
118 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer());
119 // Add the type header to the output buffer first, so that the rewriter
120 // can append modified payload on top of that.
121 output_buffer->AppendData(buffer[0]);
122 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps(
123 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get());
124
125 if (result == SpsVuiRewriter::ParseResult::kParsedAndModified) {
126 input_fragments_.push_back(
127 Fragment(output_buffer->data(), output_buffer->size()));
128 input_fragments_.rbegin()->tmp_buffer = std::move(output_buffer);
129 updated_sps = true;
130 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
131 SpsValidEvent::kSentSpsRewritten,
132 SpsValidEvent::kSpsRewrittenMax);
133 } else {
134 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
noahric 2016/06/01 17:56:43 Consider adding histograms for the various states:
sprang_webrtc 2016/06/02 08:53:14 Done.
135 SpsValidEvent::kSentSpsOk,
136 SpsValidEvent::kSpsRewrittenMax);
137 }
138 }
139
140 if (!updated_sps)
141 input_fragments_.push_back(Fragment(buffer, length));
142 }
172 GeneratePackets(); 143 GeneratePackets();
173 } 144 }
174 145
175 void RtpPacketizerH264::GeneratePackets() { 146 void RtpPacketizerH264::GeneratePackets() {
176 for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) { 147 for (size_t i = 0; i < input_fragments_.size();) {
177 size_t fragment_offset = fragmentation_.fragmentationOffset[i]; 148 if (input_fragments_[i].length > max_payload_len_) {
178 size_t fragment_length = fragmentation_.fragmentationLength[i]; 149 PacketizeFuA(i);
179 if (fragment_length > max_payload_len_) {
180 PacketizeFuA(fragment_offset, fragment_length);
181 ++i; 150 ++i;
182 } else { 151 } else {
183 i = PacketizeStapA(i, fragment_offset, fragment_length); 152 i = PacketizeStapA(i);
184 } 153 }
185 } 154 }
186 } 155 }
187 156
188 void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset, 157 void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) {
189 size_t fragment_length) {
190 // Fragment payload into packets (FU-A). 158 // Fragment payload into packets (FU-A).
191 // Strip out the original header and leave room for the FU-A header. 159 // Strip out the original header and leave room for the FU-A header.
192 fragment_length -= kNalHeaderSize; 160 const Fragment& fragment = input_fragments_[fragment_index];
193 size_t offset = fragment_offset + kNalHeaderSize; 161
162 size_t fragment_length = fragment.length - kNalHeaderSize;
163 size_t offset = kNalHeaderSize;
194 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; 164 size_t bytes_available = max_payload_len_ - kFuAHeaderSize;
195 size_t fragments = 165 const size_t num_fragments =
196 (fragment_length + (bytes_available - 1)) / bytes_available; 166 (fragment_length + (bytes_available - 1)) / bytes_available;
197 size_t avg_size = (fragment_length + fragments - 1) / fragments; 167
168 const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments;
198 while (fragment_length > 0) { 169 while (fragment_length > 0) {
199 size_t packet_length = avg_size; 170 size_t packet_length = avg_size;
200 if (fragment_length < avg_size) 171 if (fragment_length < avg_size)
201 packet_length = fragment_length; 172 packet_length = fragment_length;
202 uint8_t header = payload_data_[fragment_offset]; 173 packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length),
203 packets_.push(Packet(offset, 174 offset - kNalHeaderSize == 0,
204 packet_length, 175 fragment_length == packet_length, false,
205 offset - kNalHeaderSize == fragment_offset, 176 fragment.buffer[0]));
206 fragment_length == packet_length,
207 false,
208 header));
209 offset += packet_length; 177 offset += packet_length;
210 fragment_length -= packet_length; 178 fragment_length -= packet_length;
211 } 179 }
180 RTC_CHECK_EQ(0u, fragment_length);
212 } 181 }
213 182
214 int RtpPacketizerH264::PacketizeStapA(size_t fragment_index, 183 size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) {
215 size_t fragment_offset,
216 size_t fragment_length) {
217 // Aggregate fragments into one packet (STAP-A). 184 // Aggregate fragments into one packet (STAP-A).
218 size_t payload_size_left = max_payload_len_; 185 size_t payload_size_left = max_payload_len_;
219 int aggregated_fragments = 0; 186 int aggregated_fragments = 0;
220 size_t fragment_headers_length = 0; 187 size_t fragment_headers_length = 0;
221 assert(payload_size_left >= fragment_length); 188 const Fragment* fragment = &input_fragments_[fragment_index];
222 while (payload_size_left >= fragment_length + fragment_headers_length) { 189 RTC_CHECK_GE(payload_size_left, fragment->length);
223 assert(fragment_length > 0); 190 while (payload_size_left >= fragment->length + fragment_headers_length) {
224 uint8_t header = payload_data_[fragment_offset]; 191 RTC_CHECK_GT(fragment->length, 0u);
225 packets_.push(Packet(fragment_offset, 192 packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true,
226 fragment_length, 193 fragment->buffer[0]));
227 aggregated_fragments == 0, 194 payload_size_left -= fragment->length;
228 false,
229 true,
230 header));
231 payload_size_left -= fragment_length;
232 payload_size_left -= fragment_headers_length; 195 payload_size_left -= fragment_headers_length;
233 196
234 // Next fragment. 197 // Next fragment.
235 ++fragment_index; 198 ++fragment_index;
236 if (fragment_index == fragmentation_.fragmentationVectorSize) 199 if (fragment_index == input_fragments_.size())
237 break; 200 break;
238 fragment_offset = fragmentation_.fragmentationOffset[fragment_index]; 201 fragment = &input_fragments_[fragment_index];
239 fragment_length = fragmentation_.fragmentationLength[fragment_index];
240 202
241 fragment_headers_length = kLengthFieldSize; 203 fragment_headers_length = kLengthFieldSize;
242 // If we are going to try to aggregate more fragments into this packet 204 // If we are going to try to aggregate more fragments into this packet
243 // we need to add the STAP-A NALU header and a length field for the first 205 // we need to add the STAP-A NALU header and a length field for the first
244 // NALU of this packet. 206 // NALU of this packet.
245 if (aggregated_fragments == 0) 207 if (aggregated_fragments == 0)
246 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; 208 fragment_headers_length += kNalHeaderSize + kLengthFieldSize;
247 ++aggregated_fragments; 209 ++aggregated_fragments;
248 } 210 }
249 packets_.back().last_fragment = true; 211 packets_.back().last_fragment = true;
250 return fragment_index; 212 return fragment_index;
251 } 213 }
252 214
253 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, 215 bool RtpPacketizerH264::NextPacket(uint8_t* buffer,
254 size_t* bytes_to_send, 216 size_t* bytes_to_send,
255 bool* last_packet) { 217 bool* last_packet) {
256 *bytes_to_send = 0; 218 *bytes_to_send = 0;
257 if (packets_.empty()) { 219 if (packets_.empty()) {
258 *bytes_to_send = 0; 220 *bytes_to_send = 0;
259 *last_packet = true; 221 *last_packet = true;
260 return false; 222 return false;
261 } 223 }
262 224
263 Packet packet = packets_.front(); 225 PacketUnit packet = packets_.front();
264 226
265 if (packet.first_fragment && packet.last_fragment) { 227 if (packet.first_fragment && packet.last_fragment) {
266 // Single NAL unit packet. 228 // Single NAL unit packet.
267 *bytes_to_send = packet.size; 229 *bytes_to_send = packet.source_fragment.length;
268 memcpy(buffer, &payload_data_[packet.offset], packet.size); 230 memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send);
269 packets_.pop(); 231 packets_.pop();
270 assert(*bytes_to_send <= max_payload_len_); 232 input_fragments_.pop_front();
233 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
271 } else if (packet.aggregated) { 234 } else if (packet.aggregated) {
272 NextAggregatePacket(buffer, bytes_to_send); 235 NextAggregatePacket(buffer, bytes_to_send);
273 assert(*bytes_to_send <= max_payload_len_); 236 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
274 } else { 237 } else {
275 NextFragmentPacket(buffer, bytes_to_send); 238 NextFragmentPacket(buffer, bytes_to_send);
276 assert(*bytes_to_send <= max_payload_len_); 239 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
277 } 240 }
278 *last_packet = packets_.empty(); 241 *last_packet = packets_.empty();
279 return true; 242 return true;
280 } 243 }
281 244
282 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, 245 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer,
283 size_t* bytes_to_send) { 246 size_t* bytes_to_send) {
284 Packet packet = packets_.front(); 247 PacketUnit* packet = &packets_.front();
285 assert(packet.first_fragment); 248 RTC_CHECK(packet->first_fragment);
286 // STAP-A NALU header. 249 // STAP-A NALU header.
287 buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA; 250 buffer[0] = (packet->header & (kFBit | kNriMask)) | H264::NaluType::kStapA;
288 int index = kNalHeaderSize; 251 int index = kNalHeaderSize;
289 *bytes_to_send += kNalHeaderSize; 252 *bytes_to_send += kNalHeaderSize;
290 while (packet.aggregated) { 253 while (packet->aggregated) {
254 const Fragment& fragment = packet->source_fragment;
291 // Add NAL unit length field. 255 // Add NAL unit length field.
292 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size); 256 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length);
293 index += kLengthFieldSize; 257 index += kLengthFieldSize;
294 *bytes_to_send += kLengthFieldSize; 258 *bytes_to_send += kLengthFieldSize;
295 // Add NAL unit. 259 // Add NAL unit.
296 memcpy(&buffer[index], &payload_data_[packet.offset], packet.size); 260 memcpy(&buffer[index], fragment.buffer, fragment.length);
297 index += packet.size; 261 index += fragment.length;
298 *bytes_to_send += packet.size; 262 *bytes_to_send += fragment.length;
299 packets_.pop(); 263 packets_.pop();
300 if (packet.last_fragment) 264 input_fragments_.pop_front();
265 if (packet->last_fragment)
301 break; 266 break;
302 packet = packets_.front(); 267 packet = &packets_.front();
303 } 268 }
304 assert(packet.last_fragment); 269 RTC_CHECK(packet->last_fragment);
305 } 270 }
306 271
307 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, 272 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer,
308 size_t* bytes_to_send) { 273 size_t* bytes_to_send) {
309 Packet packet = packets_.front(); 274 PacketUnit* packet = &packets_.front();
310 // NAL unit fragmented over multiple packets (FU-A). 275 // NAL unit fragmented over multiple packets (FU-A).
311 // We do not send original NALU header, so it will be replaced by the 276 // We do not send original NALU header, so it will be replaced by the
312 // FU indicator header of the first packet. 277 // FU indicator header of the first packet.
313 uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA; 278 uint8_t fu_indicator =
279 (packet->header & (kFBit | kNriMask)) | H264::NaluType::kFuA;
314 uint8_t fu_header = 0; 280 uint8_t fu_header = 0;
315 281
316 // S | E | R | 5 bit type. 282 // S | E | R | 5 bit type.
317 fu_header |= (packet.first_fragment ? kSBit : 0); 283 fu_header |= (packet->first_fragment ? kSBit : 0);
318 fu_header |= (packet.last_fragment ? kEBit : 0); 284 fu_header |= (packet->last_fragment ? kEBit : 0);
319 uint8_t type = packet.header & kTypeMask; 285 uint8_t type = packet->header & kTypeMask;
320 fu_header |= type; 286 fu_header |= type;
321 buffer[0] = fu_indicator; 287 buffer[0] = fu_indicator;
322 buffer[1] = fu_header; 288 buffer[1] = fu_header;
323 289
324 if (packet.last_fragment) { 290 const Fragment& fragment = packet->source_fragment;
325 *bytes_to_send = packet.size + kFuAHeaderSize; 291 *bytes_to_send = fragment.length + kFuAHeaderSize;
326 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); 292 memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length);
327 } else { 293 if (packet->last_fragment)
328 *bytes_to_send = packet.size + kFuAHeaderSize; 294 input_fragments_.pop_front();
329 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
330 }
331 packets_.pop(); 295 packets_.pop();
332 } 296 }
333 297
334 ProtectionType RtpPacketizerH264::GetProtectionType() { 298 ProtectionType RtpPacketizerH264::GetProtectionType() {
335 return kProtectedPacket; 299 return kProtectedPacket;
336 } 300 }
337 301
338 StorageType RtpPacketizerH264::GetStorageType( 302 StorageType RtpPacketizerH264::GetStorageType(
339 uint32_t retransmission_settings) { 303 uint32_t retransmission_settings) {
340 return kAllowRetransmission; 304 return kAllowRetransmission;
341 } 305 }
342 306
343 std::string RtpPacketizerH264::ToString() { 307 std::string RtpPacketizerH264::ToString() {
344 return "RtpPacketizerH264"; 308 return "RtpPacketizerH264";
345 } 309 }
346 310
311 RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {}
312 RtpDepacketizerH264::~RtpDepacketizerH264() {}
313
347 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, 314 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload,
348 const uint8_t* payload_data, 315 const uint8_t* payload_data,
349 size_t payload_data_length) { 316 size_t payload_data_length) {
350 assert(parsed_payload != NULL); 317 RTC_CHECK(parsed_payload != nullptr);
351 if (payload_data_length == 0) { 318 if (payload_data_length == 0) {
352 LOG(LS_ERROR) << "Empty payload."; 319 LOG(LS_ERROR) << "Empty payload.";
353 return false; 320 return false;
354 } 321 }
355 322
323 offset_ = 0;
324 length_ = payload_data_length;
325 modified_buffer_.reset();
326
356 uint8_t nal_type = payload_data[0] & kTypeMask; 327 uint8_t nal_type = payload_data[0] & kTypeMask;
357 size_t offset = 0; 328 if (nal_type == H264::NaluType::kFuA) {
358 if (nal_type == kFuA) {
359 // Fragmented NAL units (FU-A). 329 // Fragmented NAL units (FU-A).
360 if (!ParseFuaNalu( 330 if (!ParseFuaNalu(parsed_payload, payload_data))
361 parsed_payload, payload_data, payload_data_length, &offset)) {
362 return false; 331 return false;
363 }
364 } else { 332 } else {
365 // We handle STAP-A and single NALU's the same way here. The jitter buffer 333 // We handle STAP-A and single NALU's the same way here. The jitter buffer
366 // will depacketize the STAP-A into NAL units later. 334 // will depacketize the STAP-A into NAL units later.
367 if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length)) 335 // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec.
336 if (!ProcessStapAOrSingleNalu(parsed_payload, payload_data))
368 return false; 337 return false;
369 } 338 }
370 339
371 parsed_payload->payload = payload_data + offset; 340 const uint8_t* payload =
372 parsed_payload->payload_length = payload_data_length - offset; 341 modified_buffer_ ? modified_buffer_->data() : payload_data;
342
343 parsed_payload->payload = payload + offset_;
344 parsed_payload->payload_length = length_;
373 return true; 345 return true;
374 } 346 }
347
348 bool RtpDepacketizerH264::ProcessStapAOrSingleNalu(
349 ParsedPayload* parsed_payload,
350 const uint8_t* payload_data) {
351 parsed_payload->type.Video.width = 0;
352 parsed_payload->type.Video.height = 0;
353 parsed_payload->type.Video.codec = kRtpVideoH264;
354 parsed_payload->type.Video.isFirstPacket = true;
355 RTPVideoHeaderH264* h264_header =
356 &parsed_payload->type.Video.codecHeader.H264;
357
358 const uint8_t* nalu_start = payload_data + kNalHeaderSize;
359 const size_t nalu_length = length_ - kNalHeaderSize;
360 uint8_t nal_type = payload_data[0] & kTypeMask;
361 std::vector<size_t> nalu_start_offsets;
362 if (nal_type == H264::NaluType::kStapA) {
363 // Skip the StapA header (StapA NAL type + length).
364 if (length_ <= kStapAHeaderSize) {
365 LOG(LS_ERROR) << "StapA header truncated.";
366 return false;
367 }
368
369 if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets)) {
370 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
371 return false;
372 }
373
374 h264_header->packetization_type = kH264StapA;
375 nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
376 } else {
377 h264_header->packetization_type = kH264SingleNalu;
378 nalu_start_offsets.push_back(0);
379 }
380 h264_header->nalu_type = nal_type;
381 parsed_payload->frame_type = kVideoFrameDelta;
382
383 nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset.
384 for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) {
385 size_t start_offset = nalu_start_offsets[i];
386 // End offset is actually start offset for next unit, excluding length field
387 // so remove that from this units length.
388 size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize;
389 nal_type = payload_data[start_offset] & kTypeMask;
390 start_offset += H264::kNaluTypeSize;
391
392 if (nal_type == H264::NaluType::kSps) {
393 // Check if VUI is present in SPS and if it needs to be modified to avoid
394 // excessive decoder latency.
395
396 // Copy any previous data first (likely just the first header).
397 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer());
398 if (start_offset)
399 output_buffer->AppendData(payload_data, start_offset);
400
401 // RBSP decode of payload data.
402 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp(
403 &payload_data[start_offset], end_offset - start_offset);
404 rtc::Optional<SpsParser::SpsState> sps;
405
406 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps(
407 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get());
408 if (result == SpsVuiRewriter::ParseResult::kParsedAndModified) {
409 if (modified_buffer_) {
410 LOG(LS_WARNING) << "More than one H264 SPS NAL units needing "
411 "rewriting found within a single STAP-A packet. "
412 "Keeping the first and rewriting the last.";
413 }
414
415 // Rewrite length field to new SPS size.
416 if (h264_header->packetization_type == kH264StapA) {
417 size_t length_field_offset =
418 start_offset - (H264::kNaluTypeSize + kLengthFieldSize);
419 // Stap-A Length includes payload data and type header.
420 size_t rewritten_size =
421 output_buffer->size() - start_offset + H264::kNaluTypeSize;
422 ByteWriter<uint16_t>::WriteBigEndian(
423 &(*output_buffer)[length_field_offset], rewritten_size);
424 }
425
426 // Append rest of packet.
427 output_buffer->AppendData(&payload_data[end_offset],
428 nalu_length + kNalHeaderSize - end_offset);
429
430 modified_buffer_ = std::move(output_buffer);
431 length_ = modified_buffer_->size();
432
433 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
434 SpsValidEvent::kReceiveSpsRewritten,
435 SpsValidEvent::kSpsRewrittenMax);
436 } else if (result == SpsVuiRewriter::ParseResult::kParsedOk) {
437 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
438 SpsValidEvent::kReceiveSpsOk,
439 SpsValidEvent::kSpsRewrittenMax);
440 }
noahric 2016/06/01 17:56:43 consider else histogram for failed parsing
sprang_webrtc 2016/06/02 08:53:14 Done.
441
442 if (sps) {
443 parsed_payload->type.Video.width = sps->width;
444 parsed_payload->type.Video.height = sps->height;
445 }
446 parsed_payload->frame_type = kVideoFrameKey;
447 } else if (nal_type == H264::NaluType::kPps ||
448 nal_type == H264::NaluType::kSei ||
449 nal_type == H264::NaluType::kIdr) {
450 parsed_payload->frame_type = kVideoFrameKey;
451 }
452 }
453
454 return true;
455 }
456
457 bool RtpDepacketizerH264::ParseFuaNalu(
458 RtpDepacketizer::ParsedPayload* parsed_payload,
459 const uint8_t* payload_data) {
460 if (length_ < kFuAHeaderSize) {
461 LOG(LS_ERROR) << "FU-A NAL units truncated.";
462 return false;
463 }
464 uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
465 uint8_t original_nal_type = payload_data[1] & kTypeMask;
466 bool first_fragment = (payload_data[1] & kSBit) > 0;
467
468 if (first_fragment) {
469 offset_ = 0;
470 length_ -= kNalHeaderSize;
471 uint8_t original_nal_header = fnri | original_nal_type;
472 modified_buffer_.reset(new rtc::Buffer());
473 modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_);
474 (*modified_buffer_)[0] = original_nal_header;
475 } else {
476 offset_ = kFuAHeaderSize;
477 length_ -= kFuAHeaderSize;
478 }
479
480 if (original_nal_type == H264::NaluType::kIdr) {
481 parsed_payload->frame_type = kVideoFrameKey;
482 } else {
483 parsed_payload->frame_type = kVideoFrameDelta;
484 }
485 parsed_payload->type.Video.width = 0;
486 parsed_payload->type.Video.height = 0;
487 parsed_payload->type.Video.codec = kRtpVideoH264;
488 parsed_payload->type.Video.isFirstPacket = first_fragment;
489 RTPVideoHeaderH264* h264_header =
490 &parsed_payload->type.Video.codecHeader.H264;
491 h264_header->packetization_type = kH264FuA;
492 h264_header->nalu_type = original_nal_type;
493 return true;
494 }
495
375 } // namespace webrtc 496 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698