OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" | |
12 | |
11 #include <string.h> | 13 #include <string.h> |
14 #include <vector> | |
12 | 15 |
16 #include "webrtc/base/checks.h" | |
13 #include "webrtc/base/logging.h" | 17 #include "webrtc/base/logging.h" |
14 #include "webrtc/modules/include/module_common_types.h" | 18 #include "webrtc/modules/include/module_common_types.h" |
15 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" | 19 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" |
16 #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" | 20 #include "webrtc/common_video/h264/sps_vui_rewriter.h" |
17 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" | 21 #include "webrtc/common_video/h264/h264_common.h" |
22 #include "webrtc/common_video/h264/sps_parser.h" | |
23 #include "webrtc/system_wrappers/include/metrics.h" | |
18 | 24 |
19 namespace webrtc { | 25 namespace webrtc { |
20 namespace { | 26 namespace { |
21 | 27 |
22 enum Nalu { | |
23 kSlice = 1, | |
24 kIdr = 5, | |
25 kSei = 6, | |
26 kSps = 7, | |
27 kPps = 8, | |
28 kStapA = 24, | |
29 kFuA = 28 | |
30 }; | |
31 | |
32 static const size_t kNalHeaderSize = 1; | 28 static const size_t kNalHeaderSize = 1; |
33 static const size_t kFuAHeaderSize = 2; | 29 static const size_t kFuAHeaderSize = 2; |
34 static const size_t kLengthFieldSize = 2; | 30 static const size_t kLengthFieldSize = 2; |
35 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; | 31 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; |
36 | 32 |
33 static const char* kSpsValidHistogramName = "WebRTC.Video.H264.SpsValid"; | |
34 enum SpsValidEvent { | |
35 kReceiveSpsOk = 0, | |
36 kReceiveSpsRewritten = 1, | |
37 kSentSpsOk = 2, | |
38 kSentSpsRewritten = 3, | |
39 kSpsRewrittenMax = 4 | |
40 }; | |
41 | |
37 // Bit masks for FU (A and B) indicators. | 42 // Bit masks for FU (A and B) indicators. |
38 enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; | 43 enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; |
39 | 44 |
40 // Bit masks for FU (A and B) headers. | 45 // Bit masks for FU (A and B) headers. |
41 enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; | 46 enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; |
42 | 47 |
43 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. | 48 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. |
44 bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) { | 49 bool ParseStapAStartOffsets(const uint8_t* nalu_ptr, |
50 size_t length_remaining, | |
51 std::vector<size_t>* offsets) { | |
52 size_t offset = 0; | |
45 while (length_remaining > 0) { | 53 while (length_remaining > 0) { |
46 // Buffer doesn't contain room for additional nalu length. | 54 // Buffer doesn't contain room for additional nalu length. |
47 if (length_remaining < sizeof(uint16_t)) | 55 if (length_remaining < sizeof(uint16_t)) |
48 return false; | 56 return false; |
49 uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1]; | 57 uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr); |
50 nalu_ptr += sizeof(uint16_t); | 58 nalu_ptr += sizeof(uint16_t); |
51 length_remaining -= sizeof(uint16_t); | 59 length_remaining -= sizeof(uint16_t); |
52 if (nalu_size > length_remaining) | 60 if (nalu_size > length_remaining) |
53 return false; | 61 return false; |
54 nalu_ptr += nalu_size; | 62 nalu_ptr += nalu_size; |
55 length_remaining -= nalu_size; | 63 length_remaining -= nalu_size; |
64 | |
65 offsets->push_back(offset + kStapAHeaderSize); | |
66 offset += kLengthFieldSize + nalu_size; | |
56 } | 67 } |
57 return true; | 68 return true; |
58 } | 69 } |
59 | 70 |
60 bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload, | |
61 const uint8_t* payload_data, | |
62 size_t payload_data_length) { | |
63 parsed_payload->type.Video.width = 0; | |
64 parsed_payload->type.Video.height = 0; | |
65 parsed_payload->type.Video.codec = kRtpVideoH264; | |
66 parsed_payload->type.Video.isFirstPacket = true; | |
67 RTPVideoHeaderH264* h264_header = | |
68 &parsed_payload->type.Video.codecHeader.H264; | |
69 | |
70 const uint8_t* nalu_start = payload_data + kNalHeaderSize; | |
71 size_t nalu_length = payload_data_length - kNalHeaderSize; | |
72 uint8_t nal_type = payload_data[0] & kTypeMask; | |
73 if (nal_type == kStapA) { | |
74 // Skip the StapA header (StapA nal type + length). | |
75 if (payload_data_length <= kStapAHeaderSize) { | |
76 LOG(LS_ERROR) << "StapA header truncated."; | |
77 return false; | |
78 } | |
79 if (!VerifyStapANaluLengths(nalu_start, nalu_length)) { | |
80 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; | |
81 return false; | |
82 } | |
83 | |
84 nal_type = payload_data[kStapAHeaderSize] & kTypeMask; | |
85 nalu_start += kStapAHeaderSize; | |
86 nalu_length -= kStapAHeaderSize; | |
87 h264_header->packetization_type = kH264StapA; | |
88 } else { | |
89 h264_header->packetization_type = kH264SingleNalu; | |
90 } | |
91 h264_header->nalu_type = nal_type; | |
92 | |
93 // We can read resolution out of sps packets. | |
94 if (nal_type == kSps) { | |
95 H264SpsParser parser(nalu_start, nalu_length); | |
96 if (parser.Parse()) { | |
97 parsed_payload->type.Video.width = parser.width(); | |
98 parsed_payload->type.Video.height = parser.height(); | |
99 } | |
100 } | |
101 switch (nal_type) { | |
102 case kSps: | |
103 case kPps: | |
104 case kSei: | |
105 case kIdr: | |
106 parsed_payload->frame_type = kVideoFrameKey; | |
107 break; | |
108 default: | |
109 parsed_payload->frame_type = kVideoFrameDelta; | |
110 break; | |
111 } | |
112 return true; | |
113 } | |
114 | |
115 bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload, | |
116 const uint8_t* payload_data, | |
117 size_t payload_data_length, | |
118 size_t* offset) { | |
119 if (payload_data_length < kFuAHeaderSize) { | |
120 LOG(LS_ERROR) << "FU-A NAL units truncated."; | |
121 return false; | |
122 } | |
123 uint8_t fnri = payload_data[0] & (kFBit | kNriMask); | |
124 uint8_t original_nal_type = payload_data[1] & kTypeMask; | |
125 bool first_fragment = (payload_data[1] & kSBit) > 0; | |
126 | |
127 uint8_t original_nal_header = fnri | original_nal_type; | |
128 if (first_fragment) { | |
129 *offset = kNalHeaderSize; | |
130 uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset); | |
131 payload[0] = original_nal_header; | |
132 } else { | |
133 *offset = kFuAHeaderSize; | |
134 } | |
135 | |
136 if (original_nal_type == kIdr) { | |
137 parsed_payload->frame_type = kVideoFrameKey; | |
138 } else { | |
139 parsed_payload->frame_type = kVideoFrameDelta; | |
140 } | |
141 parsed_payload->type.Video.width = 0; | |
142 parsed_payload->type.Video.height = 0; | |
143 parsed_payload->type.Video.codec = kRtpVideoH264; | |
144 parsed_payload->type.Video.isFirstPacket = first_fragment; | |
145 RTPVideoHeaderH264* h264_header = | |
146 &parsed_payload->type.Video.codecHeader.H264; | |
147 h264_header->packetization_type = kH264FuA; | |
148 h264_header->nalu_type = original_nal_type; | |
149 return true; | |
150 } | |
151 } // namespace | 71 } // namespace |
152 | 72 |
153 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, | 73 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, |
154 size_t max_payload_len) | 74 size_t max_payload_len) |
155 : payload_data_(NULL), | 75 : max_payload_len_(max_payload_len) {} |
156 payload_size_(0), | |
157 max_payload_len_(max_payload_len) { | |
158 } | |
159 | 76 |
160 RtpPacketizerH264::~RtpPacketizerH264() { | 77 RtpPacketizerH264::~RtpPacketizerH264() { |
161 } | 78 } |
162 | 79 |
80 RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length) | |
81 : buffer(buffer), length(length) {} | |
82 RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment) | |
83 : buffer(fragment.buffer), length(fragment.length) {} | |
84 | |
163 void RtpPacketizerH264::SetPayloadData( | 85 void RtpPacketizerH264::SetPayloadData( |
164 const uint8_t* payload_data, | 86 const uint8_t* payload_data, |
165 size_t payload_size, | 87 size_t payload_size, |
166 const RTPFragmentationHeader* fragmentation) { | 88 const RTPFragmentationHeader* fragmentation) { |
167 assert(packets_.empty()); | 89 RTC_DCHECK(packets_.empty()); |
168 assert(fragmentation); | 90 RTC_DCHECK(input_fragments_.empty()); |
169 payload_data_ = payload_data; | 91 RTC_DCHECK(fragmentation); |
170 payload_size_ = payload_size; | 92 for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) { |
171 fragmentation_.CopyFrom(*fragmentation); | 93 const uint8_t* buffer = |
94 &payload_data[fragmentation->fragmentationOffset[i]]; | |
95 size_t length = fragmentation->fragmentationLength[i]; | |
96 | |
97 bool updated_sps = false; | |
98 H264::NaluType nalu_type = H264::ParseNaluType(buffer[0]); | |
99 if (nalu_type == H264::NaluType::kSps) { | |
100 // Check if stream uses picture order count type 0, and if so rewrite it | |
101 // to enable faster decoding. Streams in that format incur additional | |
102 // delay because it allows decode order to differ from render order. | |
103 // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain | |
104 // restrictions on the maximum number of reordered pictures. This reduces | |
105 // latency significantly, though it still adds about a frame of latency to | |
106 // decoding. | |
107 // Note that we do this rewriting both here (send side, in order to | |
108 // protect legacy receive clients) and below in | |
109 // RtpDepacketizerH264::ParseSingleNalu (receive side, in oter to protect | |
noahric
2016/06/01 17:56:43
order
sprang_webrtc
2016/06/02 08:53:14
Done.
| |
110 // us from legacy send clients). | |
noahric
2016/06/01 17:56:43
maybe "unknown or legacy", since the other side ma
sprang_webrtc
2016/06/02 08:53:14
Done.
| |
111 | |
112 // Create temporary RBSP decoded buffer of the payload (exlcuding the | |
113 // leading nalu type header byte (the SpsParser uses only the payload). | |
114 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp( | |
115 buffer + H264::kNaluTypeSize, length - H264::kNaluTypeSize); | |
116 rtc::Optional<SpsParser::SpsState> sps; | |
117 | |
118 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); | |
119 // Add the type header to the output buffer first, so that the rewriter | |
120 // can append modified payload on top of that. | |
121 output_buffer->AppendData(buffer[0]); | |
122 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( | |
123 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); | |
124 | |
125 if (result == SpsVuiRewriter::ParseResult::kParsedAndModified) { | |
126 input_fragments_.push_back( | |
127 Fragment(output_buffer->data(), output_buffer->size())); | |
128 input_fragments_.rbegin()->tmp_buffer = std::move(output_buffer); | |
129 updated_sps = true; | |
130 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | |
131 SpsValidEvent::kSentSpsRewritten, | |
132 SpsValidEvent::kSpsRewrittenMax); | |
133 } else { | |
134 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | |
noahric
2016/06/01 17:56:43
Consider adding histograms for the various states:
sprang_webrtc
2016/06/02 08:53:14
Done.
| |
135 SpsValidEvent::kSentSpsOk, | |
136 SpsValidEvent::kSpsRewrittenMax); | |
137 } | |
138 } | |
139 | |
140 if (!updated_sps) | |
141 input_fragments_.push_back(Fragment(buffer, length)); | |
142 } | |
172 GeneratePackets(); | 143 GeneratePackets(); |
173 } | 144 } |
174 | 145 |
175 void RtpPacketizerH264::GeneratePackets() { | 146 void RtpPacketizerH264::GeneratePackets() { |
176 for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) { | 147 for (size_t i = 0; i < input_fragments_.size();) { |
177 size_t fragment_offset = fragmentation_.fragmentationOffset[i]; | 148 if (input_fragments_[i].length > max_payload_len_) { |
178 size_t fragment_length = fragmentation_.fragmentationLength[i]; | 149 PacketizeFuA(i); |
179 if (fragment_length > max_payload_len_) { | |
180 PacketizeFuA(fragment_offset, fragment_length); | |
181 ++i; | 150 ++i; |
182 } else { | 151 } else { |
183 i = PacketizeStapA(i, fragment_offset, fragment_length); | 152 i = PacketizeStapA(i); |
184 } | 153 } |
185 } | 154 } |
186 } | 155 } |
187 | 156 |
188 void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset, | 157 void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) { |
189 size_t fragment_length) { | |
190 // Fragment payload into packets (FU-A). | 158 // Fragment payload into packets (FU-A). |
191 // Strip out the original header and leave room for the FU-A header. | 159 // Strip out the original header and leave room for the FU-A header. |
192 fragment_length -= kNalHeaderSize; | 160 const Fragment& fragment = input_fragments_[fragment_index]; |
193 size_t offset = fragment_offset + kNalHeaderSize; | 161 |
162 size_t fragment_length = fragment.length - kNalHeaderSize; | |
163 size_t offset = kNalHeaderSize; | |
194 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; | 164 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; |
195 size_t fragments = | 165 const size_t num_fragments = |
196 (fragment_length + (bytes_available - 1)) / bytes_available; | 166 (fragment_length + (bytes_available - 1)) / bytes_available; |
197 size_t avg_size = (fragment_length + fragments - 1) / fragments; | 167 |
168 const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments; | |
198 while (fragment_length > 0) { | 169 while (fragment_length > 0) { |
199 size_t packet_length = avg_size; | 170 size_t packet_length = avg_size; |
200 if (fragment_length < avg_size) | 171 if (fragment_length < avg_size) |
201 packet_length = fragment_length; | 172 packet_length = fragment_length; |
202 uint8_t header = payload_data_[fragment_offset]; | 173 packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length), |
203 packets_.push(Packet(offset, | 174 offset - kNalHeaderSize == 0, |
204 packet_length, | 175 fragment_length == packet_length, false, |
205 offset - kNalHeaderSize == fragment_offset, | 176 fragment.buffer[0])); |
206 fragment_length == packet_length, | |
207 false, | |
208 header)); | |
209 offset += packet_length; | 177 offset += packet_length; |
210 fragment_length -= packet_length; | 178 fragment_length -= packet_length; |
211 } | 179 } |
180 RTC_CHECK_EQ(0u, fragment_length); | |
212 } | 181 } |
213 | 182 |
214 int RtpPacketizerH264::PacketizeStapA(size_t fragment_index, | 183 size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) { |
215 size_t fragment_offset, | |
216 size_t fragment_length) { | |
217 // Aggregate fragments into one packet (STAP-A). | 184 // Aggregate fragments into one packet (STAP-A). |
218 size_t payload_size_left = max_payload_len_; | 185 size_t payload_size_left = max_payload_len_; |
219 int aggregated_fragments = 0; | 186 int aggregated_fragments = 0; |
220 size_t fragment_headers_length = 0; | 187 size_t fragment_headers_length = 0; |
221 assert(payload_size_left >= fragment_length); | 188 const Fragment* fragment = &input_fragments_[fragment_index]; |
222 while (payload_size_left >= fragment_length + fragment_headers_length) { | 189 RTC_CHECK_GE(payload_size_left, fragment->length); |
223 assert(fragment_length > 0); | 190 while (payload_size_left >= fragment->length + fragment_headers_length) { |
224 uint8_t header = payload_data_[fragment_offset]; | 191 RTC_CHECK_GT(fragment->length, 0u); |
225 packets_.push(Packet(fragment_offset, | 192 packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true, |
226 fragment_length, | 193 fragment->buffer[0])); |
227 aggregated_fragments == 0, | 194 payload_size_left -= fragment->length; |
228 false, | |
229 true, | |
230 header)); | |
231 payload_size_left -= fragment_length; | |
232 payload_size_left -= fragment_headers_length; | 195 payload_size_left -= fragment_headers_length; |
233 | 196 |
234 // Next fragment. | 197 // Next fragment. |
235 ++fragment_index; | 198 ++fragment_index; |
236 if (fragment_index == fragmentation_.fragmentationVectorSize) | 199 if (fragment_index == input_fragments_.size()) |
237 break; | 200 break; |
238 fragment_offset = fragmentation_.fragmentationOffset[fragment_index]; | 201 fragment = &input_fragments_[fragment_index]; |
239 fragment_length = fragmentation_.fragmentationLength[fragment_index]; | |
240 | 202 |
241 fragment_headers_length = kLengthFieldSize; | 203 fragment_headers_length = kLengthFieldSize; |
242 // If we are going to try to aggregate more fragments into this packet | 204 // If we are going to try to aggregate more fragments into this packet |
243 // we need to add the STAP-A NALU header and a length field for the first | 205 // we need to add the STAP-A NALU header and a length field for the first |
244 // NALU of this packet. | 206 // NALU of this packet. |
245 if (aggregated_fragments == 0) | 207 if (aggregated_fragments == 0) |
246 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; | 208 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; |
247 ++aggregated_fragments; | 209 ++aggregated_fragments; |
248 } | 210 } |
249 packets_.back().last_fragment = true; | 211 packets_.back().last_fragment = true; |
250 return fragment_index; | 212 return fragment_index; |
251 } | 213 } |
252 | 214 |
253 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, | 215 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, |
254 size_t* bytes_to_send, | 216 size_t* bytes_to_send, |
255 bool* last_packet) { | 217 bool* last_packet) { |
256 *bytes_to_send = 0; | 218 *bytes_to_send = 0; |
257 if (packets_.empty()) { | 219 if (packets_.empty()) { |
258 *bytes_to_send = 0; | 220 *bytes_to_send = 0; |
259 *last_packet = true; | 221 *last_packet = true; |
260 return false; | 222 return false; |
261 } | 223 } |
262 | 224 |
263 Packet packet = packets_.front(); | 225 PacketUnit packet = packets_.front(); |
264 | 226 |
265 if (packet.first_fragment && packet.last_fragment) { | 227 if (packet.first_fragment && packet.last_fragment) { |
266 // Single NAL unit packet. | 228 // Single NAL unit packet. |
267 *bytes_to_send = packet.size; | 229 *bytes_to_send = packet.source_fragment.length; |
268 memcpy(buffer, &payload_data_[packet.offset], packet.size); | 230 memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send); |
269 packets_.pop(); | 231 packets_.pop(); |
270 assert(*bytes_to_send <= max_payload_len_); | 232 input_fragments_.pop_front(); |
233 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); | |
271 } else if (packet.aggregated) { | 234 } else if (packet.aggregated) { |
272 NextAggregatePacket(buffer, bytes_to_send); | 235 NextAggregatePacket(buffer, bytes_to_send); |
273 assert(*bytes_to_send <= max_payload_len_); | 236 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
274 } else { | 237 } else { |
275 NextFragmentPacket(buffer, bytes_to_send); | 238 NextFragmentPacket(buffer, bytes_to_send); |
276 assert(*bytes_to_send <= max_payload_len_); | 239 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
277 } | 240 } |
278 *last_packet = packets_.empty(); | 241 *last_packet = packets_.empty(); |
279 return true; | 242 return true; |
280 } | 243 } |
281 | 244 |
282 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, | 245 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, |
283 size_t* bytes_to_send) { | 246 size_t* bytes_to_send) { |
284 Packet packet = packets_.front(); | 247 PacketUnit* packet = &packets_.front(); |
285 assert(packet.first_fragment); | 248 RTC_CHECK(packet->first_fragment); |
286 // STAP-A NALU header. | 249 // STAP-A NALU header. |
287 buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA; | 250 buffer[0] = (packet->header & (kFBit | kNriMask)) | H264::NaluType::kStapA; |
288 int index = kNalHeaderSize; | 251 int index = kNalHeaderSize; |
289 *bytes_to_send += kNalHeaderSize; | 252 *bytes_to_send += kNalHeaderSize; |
290 while (packet.aggregated) { | 253 while (packet->aggregated) { |
254 const Fragment& fragment = packet->source_fragment; | |
291 // Add NAL unit length field. | 255 // Add NAL unit length field. |
292 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size); | 256 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length); |
293 index += kLengthFieldSize; | 257 index += kLengthFieldSize; |
294 *bytes_to_send += kLengthFieldSize; | 258 *bytes_to_send += kLengthFieldSize; |
295 // Add NAL unit. | 259 // Add NAL unit. |
296 memcpy(&buffer[index], &payload_data_[packet.offset], packet.size); | 260 memcpy(&buffer[index], fragment.buffer, fragment.length); |
297 index += packet.size; | 261 index += fragment.length; |
298 *bytes_to_send += packet.size; | 262 *bytes_to_send += fragment.length; |
299 packets_.pop(); | 263 packets_.pop(); |
300 if (packet.last_fragment) | 264 input_fragments_.pop_front(); |
265 if (packet->last_fragment) | |
301 break; | 266 break; |
302 packet = packets_.front(); | 267 packet = &packets_.front(); |
303 } | 268 } |
304 assert(packet.last_fragment); | 269 RTC_CHECK(packet->last_fragment); |
305 } | 270 } |
306 | 271 |
307 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, | 272 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, |
308 size_t* bytes_to_send) { | 273 size_t* bytes_to_send) { |
309 Packet packet = packets_.front(); | 274 PacketUnit* packet = &packets_.front(); |
310 // NAL unit fragmented over multiple packets (FU-A). | 275 // NAL unit fragmented over multiple packets (FU-A). |
311 // We do not send original NALU header, so it will be replaced by the | 276 // We do not send original NALU header, so it will be replaced by the |
312 // FU indicator header of the first packet. | 277 // FU indicator header of the first packet. |
313 uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA; | 278 uint8_t fu_indicator = |
279 (packet->header & (kFBit | kNriMask)) | H264::NaluType::kFuA; | |
314 uint8_t fu_header = 0; | 280 uint8_t fu_header = 0; |
315 | 281 |
316 // S | E | R | 5 bit type. | 282 // S | E | R | 5 bit type. |
317 fu_header |= (packet.first_fragment ? kSBit : 0); | 283 fu_header |= (packet->first_fragment ? kSBit : 0); |
318 fu_header |= (packet.last_fragment ? kEBit : 0); | 284 fu_header |= (packet->last_fragment ? kEBit : 0); |
319 uint8_t type = packet.header & kTypeMask; | 285 uint8_t type = packet->header & kTypeMask; |
320 fu_header |= type; | 286 fu_header |= type; |
321 buffer[0] = fu_indicator; | 287 buffer[0] = fu_indicator; |
322 buffer[1] = fu_header; | 288 buffer[1] = fu_header; |
323 | 289 |
324 if (packet.last_fragment) { | 290 const Fragment& fragment = packet->source_fragment; |
325 *bytes_to_send = packet.size + kFuAHeaderSize; | 291 *bytes_to_send = fragment.length + kFuAHeaderSize; |
326 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); | 292 memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length); |
327 } else { | 293 if (packet->last_fragment) |
328 *bytes_to_send = packet.size + kFuAHeaderSize; | 294 input_fragments_.pop_front(); |
329 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); | |
330 } | |
331 packets_.pop(); | 295 packets_.pop(); |
332 } | 296 } |
333 | 297 |
334 ProtectionType RtpPacketizerH264::GetProtectionType() { | 298 ProtectionType RtpPacketizerH264::GetProtectionType() { |
335 return kProtectedPacket; | 299 return kProtectedPacket; |
336 } | 300 } |
337 | 301 |
338 StorageType RtpPacketizerH264::GetStorageType( | 302 StorageType RtpPacketizerH264::GetStorageType( |
339 uint32_t retransmission_settings) { | 303 uint32_t retransmission_settings) { |
340 return kAllowRetransmission; | 304 return kAllowRetransmission; |
341 } | 305 } |
342 | 306 |
343 std::string RtpPacketizerH264::ToString() { | 307 std::string RtpPacketizerH264::ToString() { |
344 return "RtpPacketizerH264"; | 308 return "RtpPacketizerH264"; |
345 } | 309 } |
346 | 310 |
311 RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {} | |
312 RtpDepacketizerH264::~RtpDepacketizerH264() {} | |
313 | |
347 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, | 314 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, |
348 const uint8_t* payload_data, | 315 const uint8_t* payload_data, |
349 size_t payload_data_length) { | 316 size_t payload_data_length) { |
350 assert(parsed_payload != NULL); | 317 RTC_CHECK(parsed_payload != nullptr); |
351 if (payload_data_length == 0) { | 318 if (payload_data_length == 0) { |
352 LOG(LS_ERROR) << "Empty payload."; | 319 LOG(LS_ERROR) << "Empty payload."; |
353 return false; | 320 return false; |
354 } | 321 } |
355 | 322 |
323 offset_ = 0; | |
324 length_ = payload_data_length; | |
325 modified_buffer_.reset(); | |
326 | |
356 uint8_t nal_type = payload_data[0] & kTypeMask; | 327 uint8_t nal_type = payload_data[0] & kTypeMask; |
357 size_t offset = 0; | 328 if (nal_type == H264::NaluType::kFuA) { |
358 if (nal_type == kFuA) { | |
359 // Fragmented NAL units (FU-A). | 329 // Fragmented NAL units (FU-A). |
360 if (!ParseFuaNalu( | 330 if (!ParseFuaNalu(parsed_payload, payload_data)) |
361 parsed_payload, payload_data, payload_data_length, &offset)) { | |
362 return false; | 331 return false; |
363 } | |
364 } else { | 332 } else { |
365 // We handle STAP-A and single NALU's the same way here. The jitter buffer | 333 // We handle STAP-A and single NALU's the same way here. The jitter buffer |
366 // will depacketize the STAP-A into NAL units later. | 334 // will depacketize the STAP-A into NAL units later. |
367 if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length)) | 335 // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec. |
336 if (!ProcessStapAOrSingleNalu(parsed_payload, payload_data)) | |
368 return false; | 337 return false; |
369 } | 338 } |
370 | 339 |
371 parsed_payload->payload = payload_data + offset; | 340 const uint8_t* payload = |
372 parsed_payload->payload_length = payload_data_length - offset; | 341 modified_buffer_ ? modified_buffer_->data() : payload_data; |
342 | |
343 parsed_payload->payload = payload + offset_; | |
344 parsed_payload->payload_length = length_; | |
373 return true; | 345 return true; |
374 } | 346 } |
347 | |
348 bool RtpDepacketizerH264::ProcessStapAOrSingleNalu( | |
349 ParsedPayload* parsed_payload, | |
350 const uint8_t* payload_data) { | |
351 parsed_payload->type.Video.width = 0; | |
352 parsed_payload->type.Video.height = 0; | |
353 parsed_payload->type.Video.codec = kRtpVideoH264; | |
354 parsed_payload->type.Video.isFirstPacket = true; | |
355 RTPVideoHeaderH264* h264_header = | |
356 &parsed_payload->type.Video.codecHeader.H264; | |
357 | |
358 const uint8_t* nalu_start = payload_data + kNalHeaderSize; | |
359 const size_t nalu_length = length_ - kNalHeaderSize; | |
360 uint8_t nal_type = payload_data[0] & kTypeMask; | |
361 std::vector<size_t> nalu_start_offsets; | |
362 if (nal_type == H264::NaluType::kStapA) { | |
363 // Skip the StapA header (StapA NAL type + length). | |
364 if (length_ <= kStapAHeaderSize) { | |
365 LOG(LS_ERROR) << "StapA header truncated."; | |
366 return false; | |
367 } | |
368 | |
369 if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets)) { | |
370 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; | |
371 return false; | |
372 } | |
373 | |
374 h264_header->packetization_type = kH264StapA; | |
375 nal_type = payload_data[kStapAHeaderSize] & kTypeMask; | |
376 } else { | |
377 h264_header->packetization_type = kH264SingleNalu; | |
378 nalu_start_offsets.push_back(0); | |
379 } | |
380 h264_header->nalu_type = nal_type; | |
381 parsed_payload->frame_type = kVideoFrameDelta; | |
382 | |
383 nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset. | |
384 for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) { | |
385 size_t start_offset = nalu_start_offsets[i]; | |
386 // End offset is actually start offset for next unit, excluding length field | |
387 // so remove that from this units length. | |
388 size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize; | |
389 nal_type = payload_data[start_offset] & kTypeMask; | |
390 start_offset += H264::kNaluTypeSize; | |
391 | |
392 if (nal_type == H264::NaluType::kSps) { | |
393 // Check if VUI is present in SPS and if it needs to be modified to avoid | |
394 // excessive decoder latency. | |
395 | |
396 // Copy any previous data first (likely just the first header). | |
397 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); | |
398 if (start_offset) | |
399 output_buffer->AppendData(payload_data, start_offset); | |
400 | |
401 // RBSP decode of payload data. | |
402 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp( | |
403 &payload_data[start_offset], end_offset - start_offset); | |
404 rtc::Optional<SpsParser::SpsState> sps; | |
405 | |
406 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( | |
407 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); | |
408 if (result == SpsVuiRewriter::ParseResult::kParsedAndModified) { | |
409 if (modified_buffer_) { | |
410 LOG(LS_WARNING) << "More than one H264 SPS NAL units needing " | |
411 "rewriting found within a single STAP-A packet. " | |
412 "Keeping the first and rewriting the last."; | |
413 } | |
414 | |
415 // Rewrite length field to new SPS size. | |
416 if (h264_header->packetization_type == kH264StapA) { | |
417 size_t length_field_offset = | |
418 start_offset - (H264::kNaluTypeSize + kLengthFieldSize); | |
419 // Stap-A Length includes payload data and type header. | |
420 size_t rewritten_size = | |
421 output_buffer->size() - start_offset + H264::kNaluTypeSize; | |
422 ByteWriter<uint16_t>::WriteBigEndian( | |
423 &(*output_buffer)[length_field_offset], rewritten_size); | |
424 } | |
425 | |
426 // Append rest of packet. | |
427 output_buffer->AppendData(&payload_data[end_offset], | |
428 nalu_length + kNalHeaderSize - end_offset); | |
429 | |
430 modified_buffer_ = std::move(output_buffer); | |
431 length_ = modified_buffer_->size(); | |
432 | |
433 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | |
434 SpsValidEvent::kReceiveSpsRewritten, | |
435 SpsValidEvent::kSpsRewrittenMax); | |
436 } else if (result == SpsVuiRewriter::ParseResult::kParsedOk) { | |
437 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | |
438 SpsValidEvent::kReceiveSpsOk, | |
439 SpsValidEvent::kSpsRewrittenMax); | |
440 } | |
noahric
2016/06/01 17:56:43
consider else histogram for failed parsing
sprang_webrtc
2016/06/02 08:53:14
Done.
| |
441 | |
442 if (sps) { | |
443 parsed_payload->type.Video.width = sps->width; | |
444 parsed_payload->type.Video.height = sps->height; | |
445 } | |
446 parsed_payload->frame_type = kVideoFrameKey; | |
447 } else if (nal_type == H264::NaluType::kPps || | |
448 nal_type == H264::NaluType::kSei || | |
449 nal_type == H264::NaluType::kIdr) { | |
450 parsed_payload->frame_type = kVideoFrameKey; | |
451 } | |
452 } | |
453 | |
454 return true; | |
455 } | |
456 | |
457 bool RtpDepacketizerH264::ParseFuaNalu( | |
458 RtpDepacketizer::ParsedPayload* parsed_payload, | |
459 const uint8_t* payload_data) { | |
460 if (length_ < kFuAHeaderSize) { | |
461 LOG(LS_ERROR) << "FU-A NAL units truncated."; | |
462 return false; | |
463 } | |
464 uint8_t fnri = payload_data[0] & (kFBit | kNriMask); | |
465 uint8_t original_nal_type = payload_data[1] & kTypeMask; | |
466 bool first_fragment = (payload_data[1] & kSBit) > 0; | |
467 | |
468 if (first_fragment) { | |
469 offset_ = 0; | |
470 length_ -= kNalHeaderSize; | |
471 uint8_t original_nal_header = fnri | original_nal_type; | |
472 modified_buffer_.reset(new rtc::Buffer()); | |
473 modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_); | |
474 (*modified_buffer_)[0] = original_nal_header; | |
475 } else { | |
476 offset_ = kFuAHeaderSize; | |
477 length_ -= kFuAHeaderSize; | |
478 } | |
479 | |
480 if (original_nal_type == H264::NaluType::kIdr) { | |
481 parsed_payload->frame_type = kVideoFrameKey; | |
482 } else { | |
483 parsed_payload->frame_type = kVideoFrameDelta; | |
484 } | |
485 parsed_payload->type.Video.width = 0; | |
486 parsed_payload->type.Video.height = 0; | |
487 parsed_payload->type.Video.codec = kRtpVideoH264; | |
488 parsed_payload->type.Video.isFirstPacket = first_fragment; | |
489 RTPVideoHeaderH264* h264_header = | |
490 &parsed_payload->type.Video.codecHeader.H264; | |
491 h264_header->packetization_type = kH264FuA; | |
492 h264_header->nalu_type = original_nal_type; | |
493 return true; | |
494 } | |
495 | |
375 } // namespace webrtc | 496 } // namespace webrtc |
OLD | NEW |