OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" | |
12 | |
13 #include "testing/gtest/include/gtest/gtest.h" | |
14 | |
15 #include "webrtc/base/arraysize.h" | |
16 #include "webrtc/base/bitbuffer.h" | |
17 | |
18 namespace webrtc { | |
19 | |
20 // Example SPS can be generated with ffmpeg. Here's an example set of commands, | |
21 // runnable on OS X: | |
22 // 1) Generate a video, from the camera: | |
23 // ffmpeg -f avfoundation -i "0" -video_size 640x360 camera.mov | |
24 // | |
25 // 2) Scale the video to the desired size: | |
26 // ffmpeg -i camera.mov -vf scale=640x360 scaled.mov | |
27 // | |
28 // 3) Get just the H.264 bitstream in AnnexB: | |
29 // ffmpeg -i scaled.mov -vcodec copy -vbsf h264_mp4toannexb -an out.h264 | |
30 // | |
31 // 4) Open out.h264 and find the SPS, generally everything between the first | |
32 // two start codes (0 0 0 1 or 0 0 1). The first byte should be 0x67, | |
33 // which should be stripped out before being passed to the parser. | |
34 | |
35 static const size_t kSpsBufferMaxSize = 256; | |
36 | |
37 // Generates a fake SPS with basically everything empty but the width/height. | |
38 // Pass in a buffer of at least kSpsBufferMaxSize. | |
39 // The fake SPS that this generates also always has at least one emulation byte | |
40 // at offset 2, since the first two bytes are always 0, and has a 0x3 as the | |
41 // level_idc, to make sure the parser doesn't eat all 0x3 bytes. | |
42 void GenerateFakeSps(uint16_t width, uint16_t height, uint8_t buffer[]) { | |
43 uint8_t rbsp[kSpsBufferMaxSize] = {0}; | |
44 rtc::BitBufferWriter writer(rbsp, kSpsBufferMaxSize); | |
45 // Profile byte. | |
46 writer.WriteUInt8(0); | |
47 // Constraint sets and reserved zero bits. | |
48 writer.WriteUInt8(0); | |
49 // level_idc. | |
50 writer.WriteUInt8(0x3u); | |
51 // seq_paramter_set_id. | |
52 writer.WriteExponentialGolomb(0); | |
53 // Profile is not special, so we skip all the chroma format settings. | |
54 | |
55 // Now some bit magic. | |
56 // log2_max_frame_num_minus4: ue(v). 0 is fine. | |
57 writer.WriteExponentialGolomb(0); | |
58 // pic_order_cnt_type: ue(v). 0 is the type we want. | |
59 writer.WriteExponentialGolomb(0); | |
60 // log2_max_pic_order_cnt_lsb_minus4: ue(v). 0 is fine. | |
61 writer.WriteExponentialGolomb(0); | |
62 // max_num_ref_frames: ue(v). 0 is fine. | |
63 writer.WriteExponentialGolomb(0); | |
64 // gaps_in_frame_num_value_allowed_flag: u(1). | |
65 writer.WriteBits(0, 1); | |
66 // Next are width/height. First, calculate the mbs/map_units versions. | |
67 uint16_t width_in_mbs_minus1 = (width + 15) / 16 - 1; | |
68 | |
69 // For the height, we're going to define frame_mbs_only_flag, so we need to | |
70 // divide by 2. See the parser for the full calculation. | |
71 uint16_t height_in_map_units_minus1 = ((height + 15) / 16 - 1) / 2; | |
72 // Write each as ue(v). | |
73 writer.WriteExponentialGolomb(width_in_mbs_minus1); | |
74 writer.WriteExponentialGolomb(height_in_map_units_minus1); | |
75 // frame_mbs_only_flag: u(1). Needs to be false. | |
76 writer.WriteBits(0, 1); | |
77 // mb_adaptive_frame_field_flag: u(1). | |
78 writer.WriteBits(0, 1); | |
79 // direct_8x8_inferene_flag: u(1). | |
80 writer.WriteBits(0, 1); | |
81 // frame_cropping_flag: u(1). 1, so we can supply crop. | |
82 writer.WriteBits(1, 1); | |
83 // Now we write the left/right/top/bottom crop. For simplicity, we'll put all | |
84 // the crop at the left/top. | |
85 // We picked a 4:2:0 format, so the crops are 1/2 the pixel crop values. | |
86 // Left/right. | |
87 writer.WriteExponentialGolomb(((16 - (width % 16)) % 16) / 2); | |
88 writer.WriteExponentialGolomb(0); | |
89 // Top/bottom. | |
90 writer.WriteExponentialGolomb(((16 - (height % 16)) % 16) / 2); | |
91 writer.WriteExponentialGolomb(0); | |
92 | |
93 // Get the number of bytes written (including the last partial byte). | |
94 size_t byte_count, bit_offset; | |
95 writer.GetCurrentOffset(&byte_count, &bit_offset); | |
96 if (bit_offset > 0) { | |
97 byte_count++; | |
98 } | |
99 | |
100 // Now, we need to write the rbsp into bytes. To do that, we'll need to add | |
101 // emulation 0x03 bytes if there's ever a sequence of 00 00 01 or 00 00 00 01. | |
102 // To be simple, just add a 0x03 after every 0x00. Extra emulation doesn't | |
103 // hurt. | |
104 for (size_t i = 0; i < byte_count;) { | |
105 // The -3 is intentional; we never need to write an emulation byte if the 00 | |
106 // is at the end. | |
107 if (i < byte_count - 3 && rbsp[i] == 0 && rbsp[i + 1] == 0) { | |
108 *buffer++ = rbsp[i]; | |
109 *buffer++ = rbsp[i + 1]; | |
110 *buffer++ = 0x3u; | |
111 i += 2; | |
112 } else { | |
113 *buffer++ = rbsp[i]; | |
114 ++i; | |
115 } | |
116 } | |
117 } | |
118 | |
119 TEST(H264SpsParserTest, TestSampleSPSHdLandscape) { | |
120 // SPS for a 1280x720 camera capture from ffmpeg on osx. Contains | |
121 // emulation bytes but no cropping. | |
122 const uint8_t buffer[] = {0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05, | |
123 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00, | |
124 0x00, 0x2A, 0xE0, 0xF1, 0x83, 0x19, 0x60}; | |
125 H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | |
126 EXPECT_TRUE(parser.Parse()); | |
127 EXPECT_EQ(1280u, parser.width()); | |
128 EXPECT_EQ(720u, parser.height()); | |
129 } | |
130 | |
131 TEST(H264SpsParserTest, TestSampleSPSVgaLandscape) { | |
132 // SPS for a 640x360 camera capture from ffmpeg on osx. Contains emulation | |
133 // bytes and cropping (360 isn't divisible by 16). | |
134 const uint8_t buffer[] = {0x7A, 0x00, 0x1E, 0xBC, 0xD9, 0x40, 0xA0, 0x2F, | |
135 0xF8, 0x98, 0x40, 0x00, 0x00, 0x03, 0x01, 0x80, | |
136 0x00, 0x00, 0x56, 0x83, 0xC5, 0x8B, 0x65, 0x80}; | |
137 H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | |
138 EXPECT_TRUE(parser.Parse()); | |
139 EXPECT_EQ(640u, parser.width()); | |
140 EXPECT_EQ(360u, parser.height()); | |
141 } | |
142 | |
143 TEST(H264SpsParserTest, TestSampleSPSWeirdResolution) { | |
144 // SPS for a 200x400 camera capture from ffmpeg on osx. Horizontal and | |
145 // veritcal crop (neither dimension is divisible by 16). | |
146 const uint8_t buffer[] = {0x7A, 0x00, 0x0D, 0xBC, 0xD9, 0x43, 0x43, 0x3E, | |
147 0x5E, 0x10, 0x00, 0x00, 0x03, 0x00, 0x60, 0x00, | |
148 0x00, 0x15, 0xA0, 0xF1, 0x42, 0x99, 0x60}; | |
149 H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | |
150 EXPECT_TRUE(parser.Parse()); | |
151 EXPECT_EQ(200u, parser.width()); | |
152 EXPECT_EQ(400u, parser.height()); | |
153 } | |
154 | |
155 TEST(H264SpsParserTest, TestSyntheticSPSQvgaLandscape) { | |
156 uint8_t buffer[kSpsBufferMaxSize] = {0}; | |
157 GenerateFakeSps(320u, 180u, buffer); | |
158 H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | |
159 EXPECT_TRUE(parser.Parse()); | |
160 EXPECT_EQ(320u, parser.width()); | |
161 EXPECT_EQ(180u, parser.height()); | |
162 } | |
163 | |
164 TEST(H264SpsParserTest, TestSyntheticSPSWeirdResolution) { | |
165 uint8_t buffer[kSpsBufferMaxSize] = {0}; | |
166 GenerateFakeSps(156u, 122u, buffer); | |
167 H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | |
168 EXPECT_TRUE(parser.Parse()); | |
169 EXPECT_EQ(156u, parser.width()); | |
170 EXPECT_EQ(122u, parser.height()); | |
171 } | |
172 | |
173 } // namespace webrtc | |
OLD | NEW |