Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(426)

Side by Side Diff: webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc

Issue 1979443004: Add H264 bitstream rewriting to limit frame reordering marker in header (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Added tests, fixed memory ownership issue Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h"
12
11 #include <string.h> 13 #include <string.h>
14 #include <vector>
12 15
16 #include "webrtc/base/checks.h"
13 #include "webrtc/base/logging.h" 17 #include "webrtc/base/logging.h"
14 #include "webrtc/modules/include/module_common_types.h" 18 #include "webrtc/modules/include/module_common_types.h"
15 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" 19 #include "webrtc/modules/rtp_rtcp/source/byte_io.h"
16 #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" 20 #include "webrtc/modules/rtp_rtcp/source/h264/sps_vui_rewriter.h"
17 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" 21 #include "webrtc/modules/rtp_rtcp/source/h264/h264_common.h"
22 #include "webrtc/modules/rtp_rtcp/source/h264/sps_parser.h"
23 #include "webrtc/system_wrappers/include/metrics.h"
18 24
19 namespace webrtc { 25 namespace webrtc {
20 namespace { 26 namespace {
21 27
22 enum Nalu {
23 kSlice = 1,
24 kIdr = 5,
25 kSei = 6,
26 kSps = 7,
27 kPps = 8,
28 kStapA = 24,
29 kFuA = 28
30 };
31
32 static const size_t kNalHeaderSize = 1; 28 static const size_t kNalHeaderSize = 1;
33 static const size_t kFuAHeaderSize = 2; 29 static const size_t kFuAHeaderSize = 2;
34 static const size_t kLengthFieldSize = 2; 30 static const size_t kLengthFieldSize = 2;
35 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; 31 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize;
36 32
33 static const char* kSpsValidHistogramName = "WebRTC.Video.H264.SpsValid";
34 enum SpsValidEvent {
35 kReceiveSpsOk = 0,
36 kReceiveSpsRewritten = 1,
37 kSentSpsOk = 2,
38 kSentSpsRewritten = 3,
39 kSpsRewrittenMax = 4
40 };
41
37 // Bit masks for FU (A and B) indicators. 42 // Bit masks for FU (A and B) indicators.
38 enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; 43 enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
39 44
40 // Bit masks for FU (A and B) headers. 45 // Bit masks for FU (A and B) headers.
41 enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; 46 enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
42 47
43 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. 48 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer.
44 bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) { 49 bool ParseStapAStartOffsets(const uint8_t* nalu_ptr,
50 size_t length_remaining,
51 std::vector<size_t>* offsets) {
52 size_t offset = 0;
45 while (length_remaining > 0) { 53 while (length_remaining > 0) {
46 // Buffer doesn't contain room for additional nalu length. 54 // Buffer doesn't contain room for additional nalu length.
47 if (length_remaining < sizeof(uint16_t)) 55 if (length_remaining < sizeof(uint16_t))
48 return false; 56 return false;
49 uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1]; 57 uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr);
50 nalu_ptr += sizeof(uint16_t); 58 nalu_ptr += sizeof(uint16_t);
51 length_remaining -= sizeof(uint16_t); 59 length_remaining -= sizeof(uint16_t);
52 if (nalu_size > length_remaining) 60 if (nalu_size > length_remaining)
53 return false; 61 return false;
54 nalu_ptr += nalu_size; 62 nalu_ptr += nalu_size;
55 length_remaining -= nalu_size; 63 length_remaining -= nalu_size;
64
65 offsets->push_back(offset + kStapAHeaderSize);
66 offset += kLengthFieldSize + nalu_size;
56 } 67 }
57 return true; 68 return true;
58 } 69 }
59 70
60 bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
61 const uint8_t* payload_data,
62 size_t payload_data_length) {
63 parsed_payload->type.Video.width = 0;
64 parsed_payload->type.Video.height = 0;
65 parsed_payload->type.Video.codec = kRtpVideoH264;
66 parsed_payload->type.Video.isFirstPacket = true;
67 RTPVideoHeaderH264* h264_header =
68 &parsed_payload->type.Video.codecHeader.H264;
69
70 const uint8_t* nalu_start = payload_data + kNalHeaderSize;
71 size_t nalu_length = payload_data_length - kNalHeaderSize;
72 uint8_t nal_type = payload_data[0] & kTypeMask;
73 if (nal_type == kStapA) {
74 // Skip the StapA header (StapA nal type + length).
75 if (payload_data_length <= kStapAHeaderSize) {
76 LOG(LS_ERROR) << "StapA header truncated.";
77 return false;
78 }
79 if (!VerifyStapANaluLengths(nalu_start, nalu_length)) {
80 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
81 return false;
82 }
83
84 nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
85 nalu_start += kStapAHeaderSize;
86 nalu_length -= kStapAHeaderSize;
87 h264_header->packetization_type = kH264StapA;
88 } else {
89 h264_header->packetization_type = kH264SingleNalu;
90 }
91 h264_header->nalu_type = nal_type;
92
93 // We can read resolution out of sps packets.
94 if (nal_type == kSps) {
95 H264SpsParser parser(nalu_start, nalu_length);
96 if (parser.Parse()) {
97 parsed_payload->type.Video.width = parser.width();
98 parsed_payload->type.Video.height = parser.height();
99 }
100 }
101 switch (nal_type) {
102 case kSps:
103 case kPps:
104 case kSei:
105 case kIdr:
106 parsed_payload->frame_type = kVideoFrameKey;
107 break;
108 default:
109 parsed_payload->frame_type = kVideoFrameDelta;
110 break;
111 }
112 return true;
113 }
114
115 bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
116 const uint8_t* payload_data,
117 size_t payload_data_length,
118 size_t* offset) {
119 if (payload_data_length < kFuAHeaderSize) {
120 LOG(LS_ERROR) << "FU-A NAL units truncated.";
121 return false;
122 }
123 uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
124 uint8_t original_nal_type = payload_data[1] & kTypeMask;
125 bool first_fragment = (payload_data[1] & kSBit) > 0;
126
127 uint8_t original_nal_header = fnri | original_nal_type;
128 if (first_fragment) {
129 *offset = kNalHeaderSize;
130 uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset);
131 payload[0] = original_nal_header;
132 } else {
133 *offset = kFuAHeaderSize;
134 }
135
136 if (original_nal_type == kIdr) {
137 parsed_payload->frame_type = kVideoFrameKey;
138 } else {
139 parsed_payload->frame_type = kVideoFrameDelta;
140 }
141 parsed_payload->type.Video.width = 0;
142 parsed_payload->type.Video.height = 0;
143 parsed_payload->type.Video.codec = kRtpVideoH264;
144 parsed_payload->type.Video.isFirstPacket = first_fragment;
145 RTPVideoHeaderH264* h264_header =
146 &parsed_payload->type.Video.codecHeader.H264;
147 h264_header->packetization_type = kH264FuA;
148 h264_header->nalu_type = original_nal_type;
149 return true;
150 }
151 } // namespace 71 } // namespace
152 72
153 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, 73 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type,
154 size_t max_payload_len) 74 size_t max_payload_len)
155 : payload_data_(NULL), 75 : max_payload_len_(max_payload_len) {}
156 payload_size_(0),
157 max_payload_len_(max_payload_len) {
158 }
159 76
160 RtpPacketizerH264::~RtpPacketizerH264() { 77 RtpPacketizerH264::~RtpPacketizerH264() {
161 } 78 }
162 79
80 RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length)
81 : buffer(buffer), length(length) {}
82 RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment)
83 : buffer(fragment.buffer), length(fragment.length) {}
84
163 void RtpPacketizerH264::SetPayloadData( 85 void RtpPacketizerH264::SetPayloadData(
164 const uint8_t* payload_data, 86 const uint8_t* payload_data,
165 size_t payload_size, 87 size_t payload_size,
166 const RTPFragmentationHeader* fragmentation) { 88 const RTPFragmentationHeader* fragmentation) {
167 assert(packets_.empty()); 89 RTC_DCHECK(packets_.empty());
168 assert(fragmentation); 90 RTC_DCHECK(input_fragments_.empty());
169 payload_data_ = payload_data; 91 RTC_DCHECK(fragmentation);
170 payload_size_ = payload_size; 92 for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) {
171 fragmentation_.CopyFrom(*fragmentation); 93 const uint8_t* buffer =
94 &payload_data[fragmentation->fragmentationOffset[i]];
95 size_t length = fragmentation->fragmentationLength[i];
96
97 bool updated_sps = false;
98 H264::NaluType nalu_type = H264::ParseNaluType(buffer[0]);
99 if (nalu_type == H264::NaluType::kSps) {
stefan-webrtc 2016/05/26 18:08:13 This code feels misplaced to me. Shouldn't it be h
sprang_webrtc 2016/05/27 13:12:22 This is in the packetizer (on the send side), befo
stefan-webrtc 2016/05/27 20:57:00 Ah, my mistake. :)
100 // Check if stream uses picture order count type 0, and if so rewrite it
101 // to enable faster decoding. Streams in that format incur additional
102 // delay because it allows decode order to differ from render order.
103 // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain
104 // restrictions on the maximum number of reordered pictures. This reduces
105 // latency significantly, though it still adds about a frame of latency to
106 // decoding.
107 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp(
108 buffer + H264::kNaluTypeSize, length - H264::kNaluTypeSize);
109 rtc::Optional<SpsParser::SpsState> sps;
110 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer());
111 output_buffer->AppendData(buffer[0]);
112 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps(
113 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get());
114 if (result == SpsVuiRewriter::ParseResult::kParsedAndModified) {
115 input_fragments_.push_back(
116 Fragment(output_buffer->data(), output_buffer->size()));
117 input_fragments_.rbegin()->tmp_buffer = std::move(output_buffer);
118 updated_sps = true;
119 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
120 SpsValidEvent::kSentSpsRewritten,
121 SpsValidEvent::kSpsRewrittenMax);
122 } else {
123 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
124 SpsValidEvent::kSentSpsOk,
125 SpsValidEvent::kSpsRewrittenMax);
126 }
127 }
128
129 if (!updated_sps)
130 input_fragments_.push_back(Fragment(buffer, length));
131 }
172 GeneratePackets(); 132 GeneratePackets();
173 } 133 }
174 134
175 void RtpPacketizerH264::GeneratePackets() { 135 void RtpPacketizerH264::GeneratePackets() {
176 for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) { 136 for (size_t i = 0; i < input_fragments_.size();) {
177 size_t fragment_offset = fragmentation_.fragmentationOffset[i]; 137 if (input_fragments_[i].length > max_payload_len_) {
178 size_t fragment_length = fragmentation_.fragmentationLength[i]; 138 PacketizeFuA(i);
179 if (fragment_length > max_payload_len_) {
180 PacketizeFuA(fragment_offset, fragment_length);
181 ++i; 139 ++i;
182 } else { 140 } else {
183 i = PacketizeStapA(i, fragment_offset, fragment_length); 141 i = PacketizeStapA(i);
184 } 142 }
185 } 143 }
186 } 144 }
187 145
188 void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset, 146 void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) {
189 size_t fragment_length) {
190 // Fragment payload into packets (FU-A). 147 // Fragment payload into packets (FU-A).
191 // Strip out the original header and leave room for the FU-A header. 148 // Strip out the original header and leave room for the FU-A header.
192 fragment_length -= kNalHeaderSize; 149 const Fragment& fragment = input_fragments_[fragment_index];
193 size_t offset = fragment_offset + kNalHeaderSize; 150
151 size_t fragment_length = fragment.length - kNalHeaderSize;
152 size_t offset = kNalHeaderSize;
194 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; 153 size_t bytes_available = max_payload_len_ - kFuAHeaderSize;
195 size_t fragments = 154 const size_t num_fragments =
196 (fragment_length + (bytes_available - 1)) / bytes_available; 155 (fragment_length + (bytes_available - 1)) / bytes_available;
197 size_t avg_size = (fragment_length + fragments - 1) / fragments; 156
157 const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments;
198 while (fragment_length > 0) { 158 while (fragment_length > 0) {
199 size_t packet_length = avg_size; 159 size_t packet_length = avg_size;
200 if (fragment_length < avg_size) 160 if (fragment_length < avg_size)
201 packet_length = fragment_length; 161 packet_length = fragment_length;
202 uint8_t header = payload_data_[fragment_offset]; 162 packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length),
203 packets_.push(Packet(offset, 163 offset - kNalHeaderSize == 0,
204 packet_length, 164 fragment_length == packet_length, false,
205 offset - kNalHeaderSize == fragment_offset, 165 fragment.buffer[0]));
206 fragment_length == packet_length,
207 false,
208 header));
209 offset += packet_length; 166 offset += packet_length;
210 fragment_length -= packet_length; 167 fragment_length -= packet_length;
211 } 168 }
169 RTC_CHECK_EQ(0u, fragment_length);
212 } 170 }
213 171
214 int RtpPacketizerH264::PacketizeStapA(size_t fragment_index, 172 size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) {
215 size_t fragment_offset,
216 size_t fragment_length) {
217 // Aggregate fragments into one packet (STAP-A). 173 // Aggregate fragments into one packet (STAP-A).
218 size_t payload_size_left = max_payload_len_; 174 size_t payload_size_left = max_payload_len_;
219 int aggregated_fragments = 0; 175 int aggregated_fragments = 0;
220 size_t fragment_headers_length = 0; 176 size_t fragment_headers_length = 0;
221 assert(payload_size_left >= fragment_length); 177 const Fragment* fragment = &input_fragments_[fragment_index];
222 while (payload_size_left >= fragment_length + fragment_headers_length) { 178 RTC_CHECK_GE(payload_size_left, fragment->length);
223 assert(fragment_length > 0); 179 while (payload_size_left >= fragment->length + fragment_headers_length) {
224 uint8_t header = payload_data_[fragment_offset]; 180 RTC_CHECK_GT(fragment->length, 0u);
225 packets_.push(Packet(fragment_offset, 181 packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true,
226 fragment_length, 182 fragment->buffer[0]));
227 aggregated_fragments == 0, 183 payload_size_left -= fragment->length;
228 false,
229 true,
230 header));
231 payload_size_left -= fragment_length;
232 payload_size_left -= fragment_headers_length; 184 payload_size_left -= fragment_headers_length;
233 185
234 // Next fragment. 186 // Next fragment.
235 ++fragment_index; 187 ++fragment_index;
236 if (fragment_index == fragmentation_.fragmentationVectorSize) 188 if (fragment_index == input_fragments_.size())
237 break; 189 break;
238 fragment_offset = fragmentation_.fragmentationOffset[fragment_index]; 190 fragment = &input_fragments_[fragment_index];
239 fragment_length = fragmentation_.fragmentationLength[fragment_index];
240 191
241 fragment_headers_length = kLengthFieldSize; 192 fragment_headers_length = kLengthFieldSize;
242 // If we are going to try to aggregate more fragments into this packet 193 // If we are going to try to aggregate more fragments into this packet
243 // we need to add the STAP-A NALU header and a length field for the first 194 // we need to add the STAP-A NALU header and a length field for the first
244 // NALU of this packet. 195 // NALU of this packet.
245 if (aggregated_fragments == 0) 196 if (aggregated_fragments == 0)
246 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; 197 fragment_headers_length += kNalHeaderSize + kLengthFieldSize;
247 ++aggregated_fragments; 198 ++aggregated_fragments;
248 } 199 }
249 packets_.back().last_fragment = true; 200 packets_.back().last_fragment = true;
250 return fragment_index; 201 return fragment_index;
251 } 202 }
252 203
253 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, 204 bool RtpPacketizerH264::NextPacket(uint8_t* buffer,
254 size_t* bytes_to_send, 205 size_t* bytes_to_send,
255 bool* last_packet) { 206 bool* last_packet) {
256 *bytes_to_send = 0; 207 *bytes_to_send = 0;
257 if (packets_.empty()) { 208 if (packets_.empty()) {
258 *bytes_to_send = 0; 209 *bytes_to_send = 0;
259 *last_packet = true; 210 *last_packet = true;
260 return false; 211 return false;
261 } 212 }
262 213
263 Packet packet = packets_.front(); 214 PacketUnit packet = packets_.front();
264 215
265 if (packet.first_fragment && packet.last_fragment) { 216 if (packet.first_fragment && packet.last_fragment) {
266 // Single NAL unit packet. 217 // Single NAL unit packet.
267 *bytes_to_send = packet.size; 218 *bytes_to_send = packet.source_fragment.length;
268 memcpy(buffer, &payload_data_[packet.offset], packet.size); 219 memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send);
269 packets_.pop(); 220 packets_.pop();
270 assert(*bytes_to_send <= max_payload_len_); 221 input_fragments_.pop_front();
222 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
271 } else if (packet.aggregated) { 223 } else if (packet.aggregated) {
272 NextAggregatePacket(buffer, bytes_to_send); 224 NextAggregatePacket(buffer, bytes_to_send);
273 assert(*bytes_to_send <= max_payload_len_); 225 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
274 } else { 226 } else {
275 NextFragmentPacket(buffer, bytes_to_send); 227 NextFragmentPacket(buffer, bytes_to_send);
276 assert(*bytes_to_send <= max_payload_len_); 228 RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
277 } 229 }
278 *last_packet = packets_.empty(); 230 *last_packet = packets_.empty();
279 return true; 231 return true;
280 } 232 }
281 233
282 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, 234 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer,
283 size_t* bytes_to_send) { 235 size_t* bytes_to_send) {
284 Packet packet = packets_.front(); 236 PacketUnit* packet = &packets_.front();
285 assert(packet.first_fragment); 237 RTC_CHECK(packet->first_fragment);
286 // STAP-A NALU header. 238 // STAP-A NALU header.
287 buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA; 239 buffer[0] = (packet->header & (kFBit | kNriMask)) | H264::NaluType::kStapA;
288 int index = kNalHeaderSize; 240 int index = kNalHeaderSize;
289 *bytes_to_send += kNalHeaderSize; 241 *bytes_to_send += kNalHeaderSize;
290 while (packet.aggregated) { 242 while (packet->aggregated) {
243 const Fragment& fragment = packet->source_fragment;
291 // Add NAL unit length field. 244 // Add NAL unit length field.
292 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size); 245 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length);
293 index += kLengthFieldSize; 246 index += kLengthFieldSize;
294 *bytes_to_send += kLengthFieldSize; 247 *bytes_to_send += kLengthFieldSize;
295 // Add NAL unit. 248 // Add NAL unit.
296 memcpy(&buffer[index], &payload_data_[packet.offset], packet.size); 249 memcpy(&buffer[index], fragment.buffer, fragment.length);
297 index += packet.size; 250 index += fragment.length;
298 *bytes_to_send += packet.size; 251 *bytes_to_send += fragment.length;
299 packets_.pop(); 252 packets_.pop();
300 if (packet.last_fragment) 253 input_fragments_.pop_front();
254 if (packet->last_fragment)
301 break; 255 break;
302 packet = packets_.front(); 256 packet = &packets_.front();
303 } 257 }
304 assert(packet.last_fragment); 258 RTC_CHECK(packet->last_fragment);
305 } 259 }
306 260
307 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, 261 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer,
308 size_t* bytes_to_send) { 262 size_t* bytes_to_send) {
309 Packet packet = packets_.front(); 263 PacketUnit* packet = &packets_.front();
310 // NAL unit fragmented over multiple packets (FU-A). 264 // NAL unit fragmented over multiple packets (FU-A).
311 // We do not send original NALU header, so it will be replaced by the 265 // We do not send original NALU header, so it will be replaced by the
312 // FU indicator header of the first packet. 266 // FU indicator header of the first packet.
313 uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA; 267 uint8_t fu_indicator =
268 (packet->header & (kFBit | kNriMask)) | H264::NaluType::kFuA;
314 uint8_t fu_header = 0; 269 uint8_t fu_header = 0;
315 270
316 // S | E | R | 5 bit type. 271 // S | E | R | 5 bit type.
317 fu_header |= (packet.first_fragment ? kSBit : 0); 272 fu_header |= (packet->first_fragment ? kSBit : 0);
318 fu_header |= (packet.last_fragment ? kEBit : 0); 273 fu_header |= (packet->last_fragment ? kEBit : 0);
319 uint8_t type = packet.header & kTypeMask; 274 uint8_t type = packet->header & kTypeMask;
320 fu_header |= type; 275 fu_header |= type;
321 buffer[0] = fu_indicator; 276 buffer[0] = fu_indicator;
322 buffer[1] = fu_header; 277 buffer[1] = fu_header;
323 278
324 if (packet.last_fragment) { 279 const Fragment& fragment = packet->source_fragment;
325 *bytes_to_send = packet.size + kFuAHeaderSize; 280 *bytes_to_send = fragment.length + kFuAHeaderSize;
326 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); 281 memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length);
327 } else { 282 if (packet->last_fragment)
328 *bytes_to_send = packet.size + kFuAHeaderSize; 283 input_fragments_.pop_front();
329 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
330 }
331 packets_.pop(); 284 packets_.pop();
332 } 285 }
333 286
334 ProtectionType RtpPacketizerH264::GetProtectionType() { 287 ProtectionType RtpPacketizerH264::GetProtectionType() {
335 return kProtectedPacket; 288 return kProtectedPacket;
336 } 289 }
337 290
338 StorageType RtpPacketizerH264::GetStorageType( 291 StorageType RtpPacketizerH264::GetStorageType(
339 uint32_t retransmission_settings) { 292 uint32_t retransmission_settings) {
340 return kAllowRetransmission; 293 return kAllowRetransmission;
341 } 294 }
342 295
343 std::string RtpPacketizerH264::ToString() { 296 std::string RtpPacketizerH264::ToString() {
344 return "RtpPacketizerH264"; 297 return "RtpPacketizerH264";
345 } 298 }
346 299
300 RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {}
301 RtpDepacketizerH264::~RtpDepacketizerH264() {}
302
347 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, 303 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload,
348 const uint8_t* payload_data, 304 const uint8_t* payload_data,
349 size_t payload_data_length) { 305 size_t payload_data_length) {
350 assert(parsed_payload != NULL); 306 RTC_CHECK(parsed_payload != nullptr);
351 if (payload_data_length == 0) { 307 if (payload_data_length == 0) {
352 LOG(LS_ERROR) << "Empty payload."; 308 LOG(LS_ERROR) << "Empty payload.";
353 return false; 309 return false;
354 } 310 }
355 311
312 offset_ = 0;
313 length_ = payload_data_length;
314 modified_buffer_.reset();
315
356 uint8_t nal_type = payload_data[0] & kTypeMask; 316 uint8_t nal_type = payload_data[0] & kTypeMask;
357 size_t offset = 0; 317 if (nal_type == H264::NaluType::kFuA) {
358 if (nal_type == kFuA) {
359 // Fragmented NAL units (FU-A). 318 // Fragmented NAL units (FU-A).
360 if (!ParseFuaNalu( 319 if (!ParseFuaNalu(parsed_payload, payload_data))
361 parsed_payload, payload_data, payload_data_length, &offset)) {
362 return false; 320 return false;
363 }
364 } else { 321 } else {
365 // We handle STAP-A and single NALU's the same way here. The jitter buffer 322 // We handle STAP-A and single NALU's the same way here. The jitter buffer
366 // will depacketize the STAP-A into NAL units later. 323 // will depacketize the STAP-A into NAL units later.
367 if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length)) 324 // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec.
325 if (!ParseSingleNalu(parsed_payload, payload_data))
368 return false; 326 return false;
369 } 327 }
370 328
371 parsed_payload->payload = payload_data + offset; 329 const uint8_t* payload =
372 parsed_payload->payload_length = payload_data_length - offset; 330 modified_buffer_ ? modified_buffer_->data() : payload_data;
331
332 parsed_payload->payload = payload + offset_;
333 parsed_payload->payload_length = length_;
373 return true; 334 return true;
374 } 335 }
336
337 bool RtpDepacketizerH264::ParseSingleNalu(ParsedPayload* parsed_payload,
stefan-webrtc 2016/05/26 18:08:13 Should we rename this method maybe? It does quite
338 const uint8_t* payload_data) {
339 parsed_payload->type.Video.width = 0;
340 parsed_payload->type.Video.height = 0;
341 parsed_payload->type.Video.codec = kRtpVideoH264;
342 parsed_payload->type.Video.isFirstPacket = true;
343 RTPVideoHeaderH264* h264_header =
344 &parsed_payload->type.Video.codecHeader.H264;
345
346 const uint8_t* nalu_start = payload_data + kNalHeaderSize;
347 size_t nalu_length = length_ - kNalHeaderSize;
348 uint8_t nal_type = payload_data[0] & kTypeMask;
349 std::vector<size_t> nalu_start_offsets;
350 if (nal_type == H264::NaluType::kStapA) {
351 // Skip the StapA header (StapA NAL type + length).
352 if (length_ <= kStapAHeaderSize) {
353 LOG(LS_ERROR) << "StapA header truncated.";
354 return false;
355 }
356
357 if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets)) {
358 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
359 return false;
360 }
361
362 h264_header->packetization_type = kH264StapA;
363 nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
364 } else {
365 h264_header->packetization_type = kH264SingleNalu;
366 nalu_start_offsets.push_back(0);
367 }
368 h264_header->nalu_type = nal_type;
369 parsed_payload->frame_type = kVideoFrameDelta;
370
371 nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset.
372 for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) {
373 size_t start_offset = nalu_start_offsets[i];
374 // End offset is actually start offset for next unit, excluding length field
375 // so remove that from this units length.
376 size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize;
377 nal_type = payload_data[start_offset] & kTypeMask;
378 start_offset += H264::kNaluTypeSize;
379
380 if (nal_type == H264::NaluType::kSps) {
381 // Check if VUI is present in SPS and if it needs to be modified to avoid
382 // excessive decoder latency.
383 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp(
384 &payload_data[start_offset], end_offset - start_offset);
385 rtc::Optional<SpsParser::SpsState> sps;
386 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer());
387 // If StapA, copy any previous data first.
388 size_t prefix_size =
389 h264_header->packetization_type == kH264StapA ? start_offset : 0;
390 if (prefix_size)
391 output_buffer->AppendData(payload_data, prefix_size);
392
393 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps(
394 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get());
395 if (result == SpsVuiRewriter::ParseResult::kParsedAndModified) {
396 // No support for TWO modified SPS in one RTP packet. Who DOES that?!
397 RTC_CHECK(!modified_buffer_);
stefan-webrtc 2016/05/26 18:08:13 Not sure the right thing is to crash though. I'd p
noahric 2016/05/26 18:56:52 In that case, you'd want to rewrite the last one,
sprang_webrtc 2016/05/27 13:12:22 Done.
398 size_t rewritten_size =
399 output_buffer->size() - prefix_size + H264::kNaluTypeSize;
400
401 // Rewrite length field to new SPS size.
402 if (h264_header->packetization_type == kH264StapA) {
403 size_t length_field_offset =
404 start_offset - (H264::kNaluTypeSize + kLengthFieldSize);
405 ByteWriter<uint16_t>::WriteBigEndian(
406 &(*output_buffer)[length_field_offset], rewritten_size);
407 }
408
409 // Append rest of packet.
410 output_buffer->AppendData(&payload_data[end_offset],
411 length_ - end_offset);
412
413 modified_buffer_ = std::move(output_buffer);
414 length_ = modified_buffer_->size();
415
416 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
417 SpsValidEvent::kReceiveSpsRewritten,
418 SpsValidEvent::kSpsRewrittenMax);
419 } else if (result == SpsVuiRewriter::ParseResult::kParsedOk) {
420 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
421 SpsValidEvent::kReceiveSpsOk,
422 SpsValidEvent::kSpsRewrittenMax);
423 }
424
425 if (sps) {
426 parsed_payload->type.Video.width = sps->width;
427 parsed_payload->type.Video.height = sps->height;
428 }
429 parsed_payload->frame_type = kVideoFrameKey;
430 } else if (nal_type == H264::NaluType::kPps ||
431 nal_type == H264::NaluType::kSei ||
432 nal_type == H264::NaluType::kIdr) {
433 parsed_payload->frame_type = kVideoFrameKey;
434 }
435 }
436
437 return true;
438 }
439
440 bool RtpDepacketizerH264::ParseFuaNalu(
441 RtpDepacketizer::ParsedPayload* parsed_payload,
442 const uint8_t* payload_data) {
443 if (length_ < kFuAHeaderSize) {
444 LOG(LS_ERROR) << "FU-A NAL units truncated.";
445 return false;
446 }
447 uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
448 uint8_t original_nal_type = payload_data[1] & kTypeMask;
449 bool first_fragment = (payload_data[1] & kSBit) > 0;
450
451 if (first_fragment) {
452 offset_ = 0;
453 length_ -= kNalHeaderSize;
454 uint8_t original_nal_header = fnri | original_nal_type;
455 modified_buffer_.reset(new rtc::Buffer());
456 modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_);
457 (*modified_buffer_)[0] = original_nal_header;
458 } else {
459 offset_ = kFuAHeaderSize;
460 length_ -= kFuAHeaderSize;
461 }
462
463 if (original_nal_type == H264::NaluType::kIdr) {
464 parsed_payload->frame_type = kVideoFrameKey;
465 } else {
466 parsed_payload->frame_type = kVideoFrameDelta;
467 }
468 parsed_payload->type.Video.width = 0;
469 parsed_payload->type.Video.height = 0;
470 parsed_payload->type.Video.codec = kRtpVideoH264;
471 parsed_payload->type.Video.isFirstPacket = first_fragment;
472 RTPVideoHeaderH264* h264_header =
473 &parsed_payload->type.Video.codecHeader.H264;
474 h264_header->packetization_type = kH264FuA;
475 h264_header->nalu_type = original_nal_type;
476 return true;
477 }
478
375 } // namespace webrtc 479 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698