OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" | |
12 | |
11 #include <string.h> | 13 #include <string.h> |
14 #include <vector> | |
12 | 15 |
16 #include "webrtc/base/checks.h" | |
13 #include "webrtc/base/logging.h" | 17 #include "webrtc/base/logging.h" |
14 #include "webrtc/modules/include/module_common_types.h" | 18 #include "webrtc/modules/include/module_common_types.h" |
15 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" | 19 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" |
16 #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" | 20 #include "webrtc/modules/rtp_rtcp/source/h264/sps_vui_rewriter.h" |
17 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" | 21 #include "webrtc/modules/rtp_rtcp/source/h264/h264_common.h" |
22 #include "webrtc/modules/rtp_rtcp/source/h264/sps_parser.h" | |
18 | 23 |
19 namespace webrtc { | 24 namespace webrtc { |
20 namespace { | 25 namespace { |
21 | 26 |
22 enum Nalu { | 27 enum Nalu { |
23 kSlice = 1, | 28 kSlice = 1, |
24 kIdr = 5, | 29 kIdr = 5, |
25 kSei = 6, | 30 kSei = 6, |
26 kSps = 7, | 31 kSps = 7, |
27 kPps = 8, | 32 kPps = 8, |
28 kStapA = 24, | 33 kStapA = 24, |
29 kFuA = 28 | 34 kFuA = 28 |
30 }; | 35 }; |
31 | 36 |
32 static const size_t kNalHeaderSize = 1; | 37 static const size_t kNalHeaderSize = 1; |
33 static const size_t kFuAHeaderSize = 2; | 38 static const size_t kFuAHeaderSize = 2; |
34 static const size_t kLengthFieldSize = 2; | 39 static const size_t kLengthFieldSize = 2; |
35 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; | 40 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; |
36 | 41 |
37 // Bit masks for FU (A and B) indicators. | 42 // Bit masks for FU (A and B) indicators. |
38 enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; | 43 enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; |
39 | 44 |
40 // Bit masks for FU (A and B) headers. | 45 // Bit masks for FU (A and B) headers. |
41 enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; | 46 enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; |
42 | 47 |
43 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. | 48 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. |
44 bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) { | 49 bool ParseStapAStartOffsets(const uint8_t* nalu_ptr, |
50 size_t length_remaining, | |
51 std::vector<size_t>* offsets, | |
52 size_t base_offset) { | |
53 size_t offset = 0; | |
45 while (length_remaining > 0) { | 54 while (length_remaining > 0) { |
46 // Buffer doesn't contain room for additional nalu length. | 55 // Buffer doesn't contain room for additional nalu length. |
47 if (length_remaining < sizeof(uint16_t)) | 56 if (length_remaining < sizeof(uint16_t)) |
48 return false; | 57 return false; |
49 uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1]; | 58 uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr); |
50 nalu_ptr += sizeof(uint16_t); | 59 nalu_ptr += sizeof(uint16_t); |
51 length_remaining -= sizeof(uint16_t); | 60 length_remaining -= sizeof(uint16_t); |
52 if (nalu_size > length_remaining) | 61 if (nalu_size > length_remaining) |
53 return false; | 62 return false; |
54 nalu_ptr += nalu_size; | 63 nalu_ptr += nalu_size; |
55 length_remaining -= nalu_size; | 64 length_remaining -= nalu_size; |
65 | |
66 offsets->push_back(offset + kLengthFieldSize + base_offset); | |
stefan-webrtc
2016/05/22 23:11:50
Why do we have to pass in base_offset? It seems to
sprang_webrtc
2016/05/25 09:06:03
I intended to use it in a second place, but ended
| |
67 offset += kLengthFieldSize + nalu_size; | |
56 } | 68 } |
57 return true; | 69 return true; |
58 } | 70 } |
59 | 71 |
60 bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload, | |
61 const uint8_t* payload_data, | |
62 size_t payload_data_length) { | |
63 parsed_payload->type.Video.width = 0; | |
64 parsed_payload->type.Video.height = 0; | |
65 parsed_payload->type.Video.codec = kRtpVideoH264; | |
66 parsed_payload->type.Video.isFirstPacket = true; | |
67 RTPVideoHeaderH264* h264_header = | |
68 &parsed_payload->type.Video.codecHeader.H264; | |
69 | |
70 const uint8_t* nalu_start = payload_data + kNalHeaderSize; | |
71 size_t nalu_length = payload_data_length - kNalHeaderSize; | |
72 uint8_t nal_type = payload_data[0] & kTypeMask; | |
73 if (nal_type == kStapA) { | |
74 // Skip the StapA header (StapA nal type + length). | |
75 if (payload_data_length <= kStapAHeaderSize) { | |
76 LOG(LS_ERROR) << "StapA header truncated."; | |
77 return false; | |
78 } | |
79 if (!VerifyStapANaluLengths(nalu_start, nalu_length)) { | |
80 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; | |
81 return false; | |
82 } | |
83 | |
84 nal_type = payload_data[kStapAHeaderSize] & kTypeMask; | |
85 nalu_start += kStapAHeaderSize; | |
86 nalu_length -= kStapAHeaderSize; | |
87 h264_header->packetization_type = kH264StapA; | |
88 } else { | |
89 h264_header->packetization_type = kH264SingleNalu; | |
90 } | |
91 h264_header->nalu_type = nal_type; | |
92 | |
93 // We can read resolution out of sps packets. | |
94 if (nal_type == kSps) { | |
95 H264SpsParser parser(nalu_start, nalu_length); | |
96 if (parser.Parse()) { | |
97 parsed_payload->type.Video.width = parser.width(); | |
98 parsed_payload->type.Video.height = parser.height(); | |
99 } | |
100 } | |
101 switch (nal_type) { | |
102 case kSps: | |
103 case kPps: | |
104 case kSei: | |
105 case kIdr: | |
106 parsed_payload->frame_type = kVideoFrameKey; | |
107 break; | |
108 default: | |
109 parsed_payload->frame_type = kVideoFrameDelta; | |
110 break; | |
111 } | |
112 return true; | |
113 } | |
114 | |
115 bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload, | |
116 const uint8_t* payload_data, | |
117 size_t payload_data_length, | |
118 size_t* offset) { | |
119 if (payload_data_length < kFuAHeaderSize) { | |
120 LOG(LS_ERROR) << "FU-A NAL units truncated."; | |
121 return false; | |
122 } | |
123 uint8_t fnri = payload_data[0] & (kFBit | kNriMask); | |
124 uint8_t original_nal_type = payload_data[1] & kTypeMask; | |
125 bool first_fragment = (payload_data[1] & kSBit) > 0; | |
126 | |
127 uint8_t original_nal_header = fnri | original_nal_type; | |
128 if (first_fragment) { | |
129 *offset = kNalHeaderSize; | |
130 uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset); | |
131 payload[0] = original_nal_header; | |
132 } else { | |
133 *offset = kFuAHeaderSize; | |
134 } | |
135 | |
136 if (original_nal_type == kIdr) { | |
137 parsed_payload->frame_type = kVideoFrameKey; | |
138 } else { | |
139 parsed_payload->frame_type = kVideoFrameDelta; | |
140 } | |
141 parsed_payload->type.Video.width = 0; | |
142 parsed_payload->type.Video.height = 0; | |
143 parsed_payload->type.Video.codec = kRtpVideoH264; | |
144 parsed_payload->type.Video.isFirstPacket = first_fragment; | |
145 RTPVideoHeaderH264* h264_header = | |
146 &parsed_payload->type.Video.codecHeader.H264; | |
147 h264_header->packetization_type = kH264FuA; | |
148 h264_header->nalu_type = original_nal_type; | |
149 return true; | |
150 } | |
151 } // namespace | 72 } // namespace |
152 | 73 |
153 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, | 74 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, |
154 size_t max_payload_len) | 75 size_t max_payload_len) |
155 : payload_data_(NULL), | 76 : max_payload_len_(max_payload_len) {} |
156 payload_size_(0), | |
157 max_payload_len_(max_payload_len) { | |
158 } | |
159 | 77 |
160 RtpPacketizerH264::~RtpPacketizerH264() { | 78 RtpPacketizerH264::~RtpPacketizerH264() { |
161 } | 79 } |
162 | 80 |
81 RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length) | |
82 : buffer(buffer), length(length) {} | |
83 RtpPacketizerH264::Fragment::Fragment( | |
84 std::unique_ptr<rtc::Buffer> buffer_writer) | |
85 : buffer(buffer_writer->data()), | |
86 length(buffer_writer->size()), | |
87 tmp_buffer(std::move(buffer_writer)) {} | |
88 RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment) | |
89 : buffer(fragment.buffer), length(fragment.length) {} | |
90 | |
163 void RtpPacketizerH264::SetPayloadData( | 91 void RtpPacketizerH264::SetPayloadData( |
164 const uint8_t* payload_data, | 92 const uint8_t* payload_data, |
165 size_t payload_size, | 93 size_t payload_size, |
166 const RTPFragmentationHeader* fragmentation) { | 94 const RTPFragmentationHeader* fragmentation) { |
167 assert(packets_.empty()); | 95 RTC_DCHECK(packets_.empty()); |
168 assert(fragmentation); | 96 RTC_DCHECK(input_fragments_.empty()); |
169 payload_data_ = payload_data; | 97 RTC_DCHECK(fragmentation); |
170 payload_size_ = payload_size; | 98 for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) { |
171 fragmentation_.CopyFrom(*fragmentation); | 99 const uint8_t* buffer = |
100 &payload_data[fragmentation->fragmentationOffset[i]]; | |
101 size_t length = fragmentation->fragmentationLength[i]; | |
102 | |
103 bool updated_sps = false; | |
104 H264Common::NaluType nalu_type = H264Common::ParseNaluType(buffer[0]); | |
105 if (nalu_type == H264Common::NaluType::kSps) { | |
106 // Check if stream uses picture order count type 0, and if so rewrite it | |
107 // to enable faster decoding. Streams in that format incur additional | |
108 // delay because it allows decode order to differ from render order. | |
109 // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain | |
110 // restrictions on the maximum number of reordered pictures. This reduces | |
111 // latency significantly, though it still adds about a frame of latency to | |
112 // decoding. | |
stefan-webrtc
2016/05/22 23:11:50
Please comment on the possible side effects, if an
sprang_webrtc
2016/05/25 09:06:03
Consequences for rewriting the VUI, in general? I'
stefan-webrtc
2016/05/27 20:56:59
Acknowledged.
| |
113 std::unique_ptr<rtc::Buffer> rbsp_buffer = | |
114 H264Common::ParseRbsp(buffer + H264Common::kNaluTypeSize, | |
115 length - H264Common::kNaluTypeSize); | |
116 rtc::Optional<SpsParser::SpsState> sps; | |
117 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); | |
118 output_buffer->AppendData((*rbsp_buffer)[0]); | |
stefan-webrtc
2016/05/26 18:08:13
Was this wrong? Covered by a test?
noahric
2016/05/26 18:56:52
And either way, it definitely needs a comment, sin
sprang_webrtc
2016/05/27 13:12:21
Acknowledged.
sprang_webrtc
2016/05/27 13:12:21
Yes. Uncovered and cover by a test I added.
| |
119 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( | |
120 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); | |
121 if (result == SpsVuiRewriter::ParseResult::kParsedAndModified) { | |
122 input_fragments_.push_back(Fragment(std::move(output_buffer))); | |
123 updated_sps = true; | |
124 } | |
125 } | |
126 | |
127 if (!updated_sps) | |
128 input_fragments_.push_back(Fragment(buffer, length)); | |
129 } | |
172 GeneratePackets(); | 130 GeneratePackets(); |
173 } | 131 } |
174 | 132 |
175 void RtpPacketizerH264::GeneratePackets() { | 133 void RtpPacketizerH264::GeneratePackets() { |
176 for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) { | 134 for (size_t i = 0; i < input_fragments_.size();) { |
177 size_t fragment_offset = fragmentation_.fragmentationOffset[i]; | 135 if (input_fragments_[i].length > max_payload_len_) { |
178 size_t fragment_length = fragmentation_.fragmentationLength[i]; | 136 PacketizeFuA(i); |
179 if (fragment_length > max_payload_len_) { | |
180 PacketizeFuA(fragment_offset, fragment_length); | |
181 ++i; | 137 ++i; |
182 } else { | 138 } else { |
183 i = PacketizeStapA(i, fragment_offset, fragment_length); | 139 i = PacketizeStapA(i); |
184 } | 140 } |
185 } | 141 } |
186 } | 142 } |
187 | 143 |
188 void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset, | 144 void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) { |
189 size_t fragment_length) { | |
190 // Fragment payload into packets (FU-A). | 145 // Fragment payload into packets (FU-A). |
191 // Strip out the original header and leave room for the FU-A header. | 146 // Strip out the original header and leave room for the FU-A header. |
192 fragment_length -= kNalHeaderSize; | 147 const Fragment& fragment = input_fragments_[fragment_index]; |
193 size_t offset = fragment_offset + kNalHeaderSize; | 148 |
149 size_t fragment_length = fragment.length - kNalHeaderSize; | |
150 size_t offset = kNalHeaderSize; | |
194 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; | 151 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; |
195 size_t fragments = | 152 const size_t num_fragments = |
196 (fragment_length + (bytes_available - 1)) / bytes_available; | 153 (fragment_length + (bytes_available - 1)) / bytes_available; |
197 size_t avg_size = (fragment_length + fragments - 1) / fragments; | 154 |
155 const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments; | |
198 while (fragment_length > 0) { | 156 while (fragment_length > 0) { |
199 size_t packet_length = avg_size; | 157 size_t packet_length = avg_size; |
200 if (fragment_length < avg_size) | 158 if (fragment_length < avg_size) |
201 packet_length = fragment_length; | 159 packet_length = fragment_length; |
202 uint8_t header = payload_data_[fragment_offset]; | 160 packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length), |
stefan-webrtc
2016/05/22 23:11:50
What happens here if fragment is a rewritten sps?
sprang_webrtc
2016/05/25 09:06:03
Yes. In the case of FU-A, the input fragment won't
stefan-webrtc
2016/05/26 18:08:13
Acknowledged.
| |
203 packets_.push(Packet(offset, | 161 offset - kNalHeaderSize == 0, |
204 packet_length, | 162 fragment_length == packet_length, false, |
205 offset - kNalHeaderSize == fragment_offset, | 163 fragment.buffer[0])); |
206 fragment_length == packet_length, | |
207 false, | |
208 header)); | |
209 offset += packet_length; | 164 offset += packet_length; |
210 fragment_length -= packet_length; | 165 fragment_length -= packet_length; |
211 } | 166 } |
167 RTC_CHECK_EQ(0u, fragment_length); | |
212 } | 168 } |
213 | 169 |
214 int RtpPacketizerH264::PacketizeStapA(size_t fragment_index, | 170 size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) { |
215 size_t fragment_offset, | |
216 size_t fragment_length) { | |
217 // Aggregate fragments into one packet (STAP-A). | 171 // Aggregate fragments into one packet (STAP-A). |
218 size_t payload_size_left = max_payload_len_; | 172 size_t payload_size_left = max_payload_len_; |
219 int aggregated_fragments = 0; | 173 int aggregated_fragments = 0; |
220 size_t fragment_headers_length = 0; | 174 size_t fragment_headers_length = 0; |
221 assert(payload_size_left >= fragment_length); | 175 const Fragment* fragment = &input_fragments_[fragment_index]; |
222 while (payload_size_left >= fragment_length + fragment_headers_length) { | 176 RTC_CHECK_GE(payload_size_left, fragment->length); |
223 assert(fragment_length > 0); | 177 while (payload_size_left >= fragment->length + fragment_headers_length) { |
224 uint8_t header = payload_data_[fragment_offset]; | 178 RTC_CHECK_GT(fragment->length, 0u); |
225 packets_.push(Packet(fragment_offset, | 179 packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true, |
226 fragment_length, | 180 fragment->buffer[0])); |
227 aggregated_fragments == 0, | 181 payload_size_left -= fragment->length; |
228 false, | |
229 true, | |
230 header)); | |
231 payload_size_left -= fragment_length; | |
232 payload_size_left -= fragment_headers_length; | 182 payload_size_left -= fragment_headers_length; |
233 | 183 |
234 // Next fragment. | 184 // Next fragment. |
235 ++fragment_index; | 185 ++fragment_index; |
236 if (fragment_index == fragmentation_.fragmentationVectorSize) | 186 if (fragment_index == input_fragments_.size()) |
237 break; | 187 break; |
238 fragment_offset = fragmentation_.fragmentationOffset[fragment_index]; | 188 fragment = &input_fragments_[fragment_index]; |
239 fragment_length = fragmentation_.fragmentationLength[fragment_index]; | |
240 | 189 |
241 fragment_headers_length = kLengthFieldSize; | 190 fragment_headers_length = kLengthFieldSize; |
242 // If we are going to try to aggregate more fragments into this packet | 191 // If we are going to try to aggregate more fragments into this packet |
243 // we need to add the STAP-A NALU header and a length field for the first | 192 // we need to add the STAP-A NALU header and a length field for the first |
244 // NALU of this packet. | 193 // NALU of this packet. |
245 if (aggregated_fragments == 0) | 194 if (aggregated_fragments == 0) |
246 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; | 195 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; |
247 ++aggregated_fragments; | 196 ++aggregated_fragments; |
248 } | 197 } |
249 packets_.back().last_fragment = true; | 198 packets_.back().last_fragment = true; |
250 return fragment_index; | 199 return fragment_index; |
251 } | 200 } |
252 | 201 |
253 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, | 202 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, |
254 size_t* bytes_to_send, | 203 size_t* bytes_to_send, |
255 bool* last_packet) { | 204 bool* last_packet) { |
256 *bytes_to_send = 0; | 205 *bytes_to_send = 0; |
257 if (packets_.empty()) { | 206 if (packets_.empty()) { |
258 *bytes_to_send = 0; | 207 *bytes_to_send = 0; |
259 *last_packet = true; | 208 *last_packet = true; |
260 return false; | 209 return false; |
261 } | 210 } |
262 | 211 |
263 Packet packet = packets_.front(); | 212 PacketUnit packet = packets_.front(); |
264 | 213 |
265 if (packet.first_fragment && packet.last_fragment) { | 214 if (packet.first_fragment && packet.last_fragment) { |
266 // Single NAL unit packet. | 215 // Single NAL unit packet. |
267 *bytes_to_send = packet.size; | 216 *bytes_to_send = packet.source_fragment.length; |
268 memcpy(buffer, &payload_data_[packet.offset], packet.size); | 217 memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send); |
269 packets_.pop(); | 218 packets_.pop(); |
270 assert(*bytes_to_send <= max_payload_len_); | 219 input_fragments_.pop_front(); |
220 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); | |
271 } else if (packet.aggregated) { | 221 } else if (packet.aggregated) { |
272 NextAggregatePacket(buffer, bytes_to_send); | 222 NextAggregatePacket(buffer, bytes_to_send); |
273 assert(*bytes_to_send <= max_payload_len_); | 223 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
274 } else { | 224 } else { |
275 NextFragmentPacket(buffer, bytes_to_send); | 225 NextFragmentPacket(buffer, bytes_to_send); |
276 assert(*bytes_to_send <= max_payload_len_); | 226 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
277 } | 227 } |
278 *last_packet = packets_.empty(); | 228 *last_packet = packets_.empty(); |
279 return true; | 229 return true; |
280 } | 230 } |
281 | 231 |
282 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, | 232 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, |
283 size_t* bytes_to_send) { | 233 size_t* bytes_to_send) { |
284 Packet packet = packets_.front(); | 234 PacketUnit* packet = &packets_.front(); |
285 assert(packet.first_fragment); | 235 RTC_CHECK(packet->first_fragment); |
286 // STAP-A NALU header. | 236 // STAP-A NALU header. |
287 buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA; | 237 buffer[0] = (packet->header & (kFBit | kNriMask)) | kStapA; |
288 int index = kNalHeaderSize; | 238 int index = kNalHeaderSize; |
289 *bytes_to_send += kNalHeaderSize; | 239 *bytes_to_send += kNalHeaderSize; |
290 while (packet.aggregated) { | 240 while (packet->aggregated) { |
241 const Fragment& fragment = packet->source_fragment; | |
291 // Add NAL unit length field. | 242 // Add NAL unit length field. |
292 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size); | 243 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length); |
293 index += kLengthFieldSize; | 244 index += kLengthFieldSize; |
294 *bytes_to_send += kLengthFieldSize; | 245 *bytes_to_send += kLengthFieldSize; |
295 // Add NAL unit. | 246 // Add NAL unit. |
296 memcpy(&buffer[index], &payload_data_[packet.offset], packet.size); | 247 memcpy(&buffer[index], fragment.buffer, fragment.length); |
297 index += packet.size; | 248 index += fragment.length; |
298 *bytes_to_send += packet.size; | 249 *bytes_to_send += fragment.length; |
299 packets_.pop(); | 250 packets_.pop(); |
300 if (packet.last_fragment) | 251 input_fragments_.pop_front(); |
252 if (packet->last_fragment) | |
301 break; | 253 break; |
302 packet = packets_.front(); | 254 packet = &packets_.front(); |
303 } | 255 } |
304 assert(packet.last_fragment); | 256 RTC_CHECK(packet->last_fragment); |
305 } | 257 } |
306 | 258 |
307 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, | 259 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, |
308 size_t* bytes_to_send) { | 260 size_t* bytes_to_send) { |
309 Packet packet = packets_.front(); | 261 PacketUnit* packet = &packets_.front(); |
310 // NAL unit fragmented over multiple packets (FU-A). | 262 // NAL unit fragmented over multiple packets (FU-A). |
311 // We do not send original NALU header, so it will be replaced by the | 263 // We do not send original NALU header, so it will be replaced by the |
312 // FU indicator header of the first packet. | 264 // FU indicator header of the first packet. |
313 uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA; | 265 uint8_t fu_indicator = (packet->header & (kFBit | kNriMask)) | kFuA; |
314 uint8_t fu_header = 0; | 266 uint8_t fu_header = 0; |
315 | 267 |
316 // S | E | R | 5 bit type. | 268 // S | E | R | 5 bit type. |
317 fu_header |= (packet.first_fragment ? kSBit : 0); | 269 fu_header |= (packet->first_fragment ? kSBit : 0); |
318 fu_header |= (packet.last_fragment ? kEBit : 0); | 270 fu_header |= (packet->last_fragment ? kEBit : 0); |
319 uint8_t type = packet.header & kTypeMask; | 271 uint8_t type = packet->header & kTypeMask; |
320 fu_header |= type; | 272 fu_header |= type; |
321 buffer[0] = fu_indicator; | 273 buffer[0] = fu_indicator; |
322 buffer[1] = fu_header; | 274 buffer[1] = fu_header; |
323 | 275 |
324 if (packet.last_fragment) { | 276 const Fragment& fragment = packet->source_fragment; |
325 *bytes_to_send = packet.size + kFuAHeaderSize; | 277 *bytes_to_send = fragment.length + kFuAHeaderSize; |
326 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); | 278 memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length); |
327 } else { | 279 if (packet->last_fragment) |
328 *bytes_to_send = packet.size + kFuAHeaderSize; | 280 input_fragments_.pop_front(); |
329 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); | |
330 } | |
331 packets_.pop(); | 281 packets_.pop(); |
332 } | 282 } |
333 | 283 |
334 ProtectionType RtpPacketizerH264::GetProtectionType() { | 284 ProtectionType RtpPacketizerH264::GetProtectionType() { |
335 return kProtectedPacket; | 285 return kProtectedPacket; |
336 } | 286 } |
337 | 287 |
338 StorageType RtpPacketizerH264::GetStorageType( | 288 StorageType RtpPacketizerH264::GetStorageType( |
339 uint32_t retransmission_settings) { | 289 uint32_t retransmission_settings) { |
340 return kAllowRetransmission; | 290 return kAllowRetransmission; |
341 } | 291 } |
342 | 292 |
343 std::string RtpPacketizerH264::ToString() { | 293 std::string RtpPacketizerH264::ToString() { |
344 return "RtpPacketizerH264"; | 294 return "RtpPacketizerH264"; |
345 } | 295 } |
346 | 296 |
297 RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {} | |
298 RtpDepacketizerH264::~RtpDepacketizerH264() {} | |
299 | |
347 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, | 300 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, |
348 const uint8_t* payload_data, | 301 const uint8_t* payload_data, |
349 size_t payload_data_length) { | 302 size_t payload_data_length) { |
350 assert(parsed_payload != NULL); | 303 RTC_CHECK(parsed_payload != nullptr); |
351 if (payload_data_length == 0) { | 304 if (payload_data_length == 0) { |
352 LOG(LS_ERROR) << "Empty payload."; | 305 LOG(LS_ERROR) << "Empty payload."; |
353 return false; | 306 return false; |
354 } | 307 } |
355 | 308 |
309 offset_ = 0; | |
310 length_ = payload_data_length; | |
311 modified_buffer_.reset(); | |
312 | |
356 uint8_t nal_type = payload_data[0] & kTypeMask; | 313 uint8_t nal_type = payload_data[0] & kTypeMask; |
357 size_t offset = 0; | |
358 if (nal_type == kFuA) { | 314 if (nal_type == kFuA) { |
359 // Fragmented NAL units (FU-A). | 315 // Fragmented NAL units (FU-A). |
360 if (!ParseFuaNalu( | 316 if (!ParseFuaNalu(parsed_payload, payload_data)) |
361 parsed_payload, payload_data, payload_data_length, &offset)) { | |
362 return false; | 317 return false; |
363 } | |
364 } else { | 318 } else { |
365 // We handle STAP-A and single NALU's the same way here. The jitter buffer | 319 // We handle STAP-A and single NALU's the same way here. The jitter buffer |
366 // will depacketize the STAP-A into NAL units later. | 320 // will depacketize the STAP-A into NAL units later. |
367 if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length)) | 321 // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec. |
322 if (!ParseSingleNalu(parsed_payload, payload_data)) | |
368 return false; | 323 return false; |
369 } | 324 } |
370 | 325 |
371 parsed_payload->payload = payload_data + offset; | 326 const uint8_t* payload = |
372 parsed_payload->payload_length = payload_data_length - offset; | 327 modified_buffer_ ? modified_buffer_->data() : payload_data; |
328 | |
329 parsed_payload->payload = payload + offset_; | |
330 parsed_payload->payload_length = length_; | |
373 return true; | 331 return true; |
374 } | 332 } |
333 | |
334 bool RtpDepacketizerH264::ParseSingleNalu(ParsedPayload* parsed_payload, | |
stefan-webrtc
2016/05/22 23:11:50
Could you point out which parts of these functions
sprang_webrtc
2016/05/25 09:06:03
391-417 and 442-444, essentially. Otherwise maybe
| |
335 const uint8_t* payload_data) { | |
336 parsed_payload->type.Video.width = 0; | |
337 parsed_payload->type.Video.height = 0; | |
338 parsed_payload->type.Video.codec = kRtpVideoH264; | |
339 parsed_payload->type.Video.isFirstPacket = true; | |
340 RTPVideoHeaderH264* h264_header = | |
341 &parsed_payload->type.Video.codecHeader.H264; | |
342 | |
343 const uint8_t* nalu_start = payload_data + kNalHeaderSize; | |
344 size_t nalu_length = length_ - kNalHeaderSize; | |
345 uint8_t nal_type = payload_data[0] & kTypeMask; | |
346 std::vector<size_t> nalu_start_offsets; | |
347 if (nal_type == kStapA) { | |
348 // Skip the StapA header (StapA NAL type + length). | |
349 if (length_ <= kStapAHeaderSize) { | |
350 LOG(LS_ERROR) << "StapA header truncated."; | |
351 return false; | |
352 } | |
353 | |
354 if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets, | |
355 kNalHeaderSize)) { | |
356 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; | |
357 return false; | |
358 } | |
359 | |
360 h264_header->packetization_type = kH264StapA; | |
361 nal_type = payload_data[kStapAHeaderSize] & kTypeMask; | |
362 } else { | |
363 h264_header->packetization_type = kH264SingleNalu; | |
364 nalu_start_offsets.push_back(0); | |
365 } | |
366 h264_header->nalu_type = nal_type; | |
367 parsed_payload->frame_type = kVideoFrameDelta; | |
368 | |
369 nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset. | |
370 for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) { | |
371 size_t start_offset = nalu_start_offsets[i]; | |
372 // End offset is actually start offset for next unit, excluding length field | |
373 // so remove that from this units length. | |
374 size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize; | |
375 nal_type = payload_data[start_offset] & kTypeMask; | |
376 start_offset += H264Common::kNaluTypeSize; | |
377 | |
378 if (nal_type == kSps) { | |
379 // Check if VUI is present in SPS and if it needs to be modified to avoid | |
380 // excessive decoder latency. | |
381 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264Common::ParseRbsp( | |
382 &payload_data[start_offset], end_offset - start_offset); | |
383 rtc::Optional<SpsParser::SpsState> sps; | |
384 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); | |
385 // If StapA, copy any previous data first. | |
386 size_t prefix_size = | |
387 h264_header->packetization_type == kH264StapA ? start_offset : 0; | |
388 if (prefix_size) | |
389 output_buffer->AppendData(payload_data, prefix_size); | |
390 | |
391 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( | |
392 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); | |
393 if (result == SpsVuiRewriter::ParseResult::kParsedAndModified) { | |
394 // No support for TWO modified SPS in one RTP packet. Who DOES that?! | |
395 RTC_CHECK(!modified_buffer_); | |
396 size_t rewritten_size = output_buffer->size() - prefix_size; | |
397 | |
398 // Rewrite length field to new SPS size. | |
399 if (h264_header->packetization_type == kH264StapA) { | |
400 size_t length_field_offset = | |
401 start_offset - (H264Common::kNaluTypeSize + kLengthFieldSize); | |
402 ByteWriter<uint16_t>::WriteBigEndian( | |
403 &(*output_buffer)[length_field_offset], rewritten_size); | |
404 } | |
405 | |
406 // Append rest of packet. | |
407 output_buffer->AppendData(&payload_data[end_offset], | |
408 length_ - end_offset); | |
409 | |
410 modified_buffer_ = std::move(output_buffer); | |
411 length_ = modified_buffer_->size(); | |
412 } | |
413 | |
414 if (sps) { | |
415 parsed_payload->type.Video.width = sps->width; | |
416 parsed_payload->type.Video.height = sps->height; | |
417 } | |
418 parsed_payload->frame_type = kVideoFrameKey; | |
419 } else if (nal_type == kPps || nal_type == kSei || nal_type == kIdr) { | |
420 parsed_payload->frame_type = kVideoFrameKey; | |
421 } | |
422 } | |
423 | |
424 return true; | |
425 } | |
426 | |
427 bool RtpDepacketizerH264::ParseFuaNalu( | |
428 RtpDepacketizer::ParsedPayload* parsed_payload, | |
429 const uint8_t* payload_data) { | |
430 if (length_ < kFuAHeaderSize) { | |
431 LOG(LS_ERROR) << "FU-A NAL units truncated."; | |
432 return false; | |
433 } | |
434 uint8_t fnri = payload_data[0] & (kFBit | kNriMask); | |
435 uint8_t original_nal_type = payload_data[1] & kTypeMask; | |
436 bool first_fragment = (payload_data[1] & kSBit) > 0; | |
437 | |
438 if (first_fragment) { | |
439 offset_ = 0; | |
440 length_ -= kNalHeaderSize; | |
441 uint8_t original_nal_header = fnri | original_nal_type; | |
442 modified_buffer_.reset(new rtc::Buffer()); | |
443 modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_); | |
444 (*modified_buffer_)[0] = original_nal_header; | |
445 } else { | |
446 offset_ = kFuAHeaderSize; | |
447 length_ -= kFuAHeaderSize; | |
448 } | |
449 | |
450 if (original_nal_type == kIdr) { | |
451 parsed_payload->frame_type = kVideoFrameKey; | |
452 } else { | |
453 parsed_payload->frame_type = kVideoFrameDelta; | |
454 } | |
455 parsed_payload->type.Video.width = 0; | |
456 parsed_payload->type.Video.height = 0; | |
457 parsed_payload->type.Video.codec = kRtpVideoH264; | |
458 parsed_payload->type.Video.isFirstPacket = first_fragment; | |
459 RTPVideoHeaderH264* h264_header = | |
460 &parsed_payload->type.Video.codecHeader.H264; | |
461 h264_header->packetization_type = kH264FuA; | |
462 h264_header->nalu_type = original_nal_type; | |
463 return true; | |
464 } | |
465 | |
375 } // namespace webrtc | 466 } // namespace webrtc |
OLD | NEW |