Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(424)

Side by Side Diff: webrtc/modules/audio_processing/aec/aec_core.cc

Issue 1958933002: Refactored the comfort noise generation code in the AEC. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Rebase Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « no previous file | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
(...skipping 500 matching lines...) Expand 10 before | Expand all | Expand 10 after
511 static void GetHighbandGain(const float* lambda, float* nlpGainHband) { 511 static void GetHighbandGain(const float* lambda, float* nlpGainHband) {
512 int i; 512 int i;
513 513
514 *nlpGainHband = 0.0f; 514 *nlpGainHband = 0.0f;
515 for (i = freqAvgIc; i < PART_LEN1 - 1; i++) { 515 for (i = freqAvgIc; i < PART_LEN1 - 1; i++) {
516 *nlpGainHband += lambda[i]; 516 *nlpGainHband += lambda[i];
517 } 517 }
518 *nlpGainHband /= static_cast<float>(PART_LEN1 - 1 - freqAvgIc); 518 *nlpGainHband /= static_cast<float>(PART_LEN1 - 1 - freqAvgIc);
519 } 519 }
520 520
521 static void ComfortNoise(AecCore* aec, 521 static void GenerateComplexNoise(uint32_t* seed, float noise[2][PART_LEN1]) {
522 float efw[2][PART_LEN1], 522 const float kPi2 = 6.28318530717959f;
523 float comfortNoiseHband[2][PART_LEN1],
524 const float* noisePow,
525 const float* lambda) {
526 int i, num;
527 float rand[PART_LEN];
528 float noise, noiseAvg, tmp, tmpAvg;
529 int16_t randW16[PART_LEN]; 523 int16_t randW16[PART_LEN];
530 float u[2][PART_LEN1]; 524 WebRtcSpl_RandUArray(randW16, PART_LEN, seed);
531 525
532 const float pi2 = 6.28318530717959f; 526 noise[0][0] = 0;
527 noise[1][0] = 0;
528 for (size_t i = 1; i < PART_LEN1; i++) {
529 float tmp = kPi2 * randW16[i - 1] / 32768.f;
530 noise[0][i] = cosf(tmp);
531 noise[1][i] = -sinf(tmp);
532 }
533 noise[1][PART_LEN] = 0;
534 }
533 535
534 // Generate a uniform random array on [0 1] 536 static void ComfortNoise(bool generate_high_frequency_noise,
535 WebRtcSpl_RandUArray(randW16, PART_LEN, &aec->seed); 537 uint32_t* seed,
536 for (i = 0; i < PART_LEN; i++) { 538 float e_fft[2][PART_LEN1],
537 rand[i] = static_cast<float>(randW16[i]) / 32768; 539 float high_frequency_comfort_noise[2][PART_LEN1],
540 const float* noise_spectrum,
541 const float* suppressor_gain) {
542 float complex_noise[2][PART_LEN1];
543
544 GenerateComplexNoise(seed, complex_noise);
545
546 // Shape, scale and add comfort noise.
547 for (int i = 1; i < PART_LEN1; ++i) {
548 float noise_scaling =
549 sqrtf(WEBRTC_SPL_MAX(1 - suppressor_gain[i] * suppressor_gain[i], 0)) *
550 sqrtf(noise_spectrum[i]);
551 e_fft[0][i] += noise_scaling * complex_noise[0][i];
552 e_fft[1][i] += noise_scaling * complex_noise[1][i];
538 } 553 }
539 554
540 // Reject LF noise 555 // Form comfort noise for higher frequencies.
541 u[0][0] = 0; 556 if (generate_high_frequency_noise) {
542 u[1][0] = 0; 557 // Compute average noise power and nlp gain over the second half of freq
543 for (i = 1; i < PART_LEN1; i++) { 558 // spectrum (i.e., 4->8khz).
544 tmp = pi2 * rand[i - 1]; 559 int start_avg_band = PART_LEN1 / 2;
560 float upper_bands_noise_power = 0.f;
561 float upper_bands_suppressor_gain = 0.f;
562 for (int i = start_avg_band; i < PART_LEN1; ++i) {
563 upper_bands_noise_power += sqrtf(noise_spectrum[i]);
564 upper_bands_suppressor_gain +=
565 sqrtf(WEBRTC_SPL_MAX(1 - suppressor_gain[i] * suppressor_gain[i], 0));
566 }
567 upper_bands_noise_power /= (PART_LEN1 - start_avg_band);
568 upper_bands_suppressor_gain /= (PART_LEN1 - start_avg_band);
545 569
546 noise = sqrtf(noisePow[i]); 570 // Shape, scale and add comfort noise.
547 u[0][i] = noise * cosf(tmp); 571 float noise_scaling = upper_bands_suppressor_gain * upper_bands_noise_power;
548 u[1][i] = -noise * sinf(tmp); 572 high_frequency_comfort_noise[0][0] = 0;
549 } 573 high_frequency_comfort_noise[1][0] = 0;
550 u[1][PART_LEN] = 0; 574 for (int i = 1; i < PART_LEN1; ++i) {
551 575 high_frequency_comfort_noise[0][i] = noise_scaling * complex_noise[0][i];
552 for (i = 0; i < PART_LEN1; i++) { 576 high_frequency_comfort_noise[1][i] = noise_scaling * complex_noise[1][i];
553 // This is the proper weighting to match the background noise power
554 tmp = sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0));
555 // tmp = 1 - lambda[i];
556 efw[0][i] += tmp * u[0][i];
557 efw[1][i] += tmp * u[1][i];
558 }
559
560 // For H band comfort noise
561 // TODO(peah): don't compute noise and "tmp" twice. Use the previous results.
562 noiseAvg = 0.0;
563 tmpAvg = 0.0;
564 num = 0;
565 if (aec->num_bands > 1) {
566 // average noise scale
567 // average over second half of freq spectrum (i.e., 4->8khz)
568 // TODO(peah): we shouldn't need num. We know how many elements we're
569 // summing.
570 for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) {
571 num++;
572 noiseAvg += sqrtf(noisePow[i]);
573 } 577 }
574 noiseAvg /= static_cast<float>(num); 578 high_frequency_comfort_noise[1][PART_LEN] = 0;
575
576 // average nlp scale
577 // average over second half of freq spectrum (i.e., 4->8khz)
578 // TODO(peah): we shouldn't need num. We know how many elements
579 // we're summing.
580 num = 0;
581 for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) {
582 num++;
583 tmpAvg += sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0));
584 }
585 tmpAvg /= static_cast<float>(num);
586
587 // Use average noise for H band
588 // TODO(peah): we should probably have a new random vector here.
589 // Reject LF noise
590 u[0][0] = 0;
591 u[1][0] = 0;
592 for (i = 1; i < PART_LEN1; i++) {
593 tmp = pi2 * rand[i - 1];
594
595 // Use average noise for H band
596 u[0][i] = noiseAvg * static_cast<float>(cos(tmp));
597 u[1][i] = -noiseAvg * static_cast<float>(sin(tmp));
598 }
599 u[1][PART_LEN] = 0;
600
601 for (i = 0; i < PART_LEN1; i++) {
602 // Use average NLP weight for H band
603 comfortNoiseHband[0][i] = tmpAvg * u[0][i];
604 comfortNoiseHband[1][i] = tmpAvg * u[1][i];
605 }
606 } else { 579 } else {
607 memset(comfortNoiseHband, 0, 580 memset(high_frequency_comfort_noise, 0,
608 2 * PART_LEN1 * sizeof(comfortNoiseHband[0][0])); 581 2 * PART_LEN1 * sizeof(high_frequency_comfort_noise[0][0]));
609 } 582 }
610 } 583 }
611 584
612 static void InitLevel(PowerLevel* level) { 585 static void InitLevel(PowerLevel* level) {
613 const float kBigFloat = 1E17f; 586 const float kBigFloat = 1E17f;
614 level->averagelevel.Reset(); 587 level->averagelevel.Reset();
615 level->framelevel.Reset(); 588 level->framelevel.Reset();
616 level->minlevel = kBigFloat; 589 level->minlevel = kBigFloat;
617 } 590 }
618 591
(...skipping 549 matching lines...) Expand 10 before | Expand all | Expand 10 after
1168 // diverged. 1141 // diverged.
1169 if (aec->divergeState) { 1142 if (aec->divergeState) {
1170 memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1); 1143 memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1);
1171 } 1144 }
1172 1145
1173 FormSuppressionGain(aec, cohde, cohxd, hNl); 1146 FormSuppressionGain(aec, cohde, cohxd, hNl);
1174 1147
1175 WebRtcAec_Suppress(hNl, efw); 1148 WebRtcAec_Suppress(hNl, efw);
1176 1149
1177 // Add comfort noise. 1150 // Add comfort noise.
1178 ComfortNoise(aec, efw, comfortNoiseHband, aec->noisePow, hNl); 1151 ComfortNoise(aec->num_bands > 1, &aec->seed, efw, comfortNoiseHband,
1152 aec->noisePow, hNl);
1179 1153
1180 // Inverse error fft. 1154 // Inverse error fft.
1181 ScaledInverseFft(efw, fft, 2.0f, 1); 1155 ScaledInverseFft(efw, fft, 2.0f, 1);
1182 1156
1183 // Overlap and add to obtain output. 1157 // Overlap and add to obtain output.
1184 for (i = 0; i < PART_LEN; i++) { 1158 for (i = 0; i < PART_LEN; i++) {
1185 output[i] = (fft[i] * WebRtcAec_sqrtHanning[i] + 1159 output[i] = (fft[i] * WebRtcAec_sqrtHanning[i] +
1186 aec->outBuf[i] * WebRtcAec_sqrtHanning[PART_LEN - i]); 1160 aec->outBuf[i] * WebRtcAec_sqrtHanning[PART_LEN - i]);
1187 1161
1188 // Saturate output to keep it in the allowed range. 1162 // Saturate output to keep it in the allowed range.
(...skipping 778 matching lines...) Expand 10 before | Expand all | Expand 10 after
1967 1941
1968 int WebRtcAec_system_delay(AecCore* self) { 1942 int WebRtcAec_system_delay(AecCore* self) {
1969 return self->system_delay; 1943 return self->system_delay;
1970 } 1944 }
1971 1945
1972 void WebRtcAec_SetSystemDelay(AecCore* self, int delay) { 1946 void WebRtcAec_SetSystemDelay(AecCore* self, int delay) {
1973 assert(delay >= 0); 1947 assert(delay >= 0);
1974 self->system_delay = delay; 1948 self->system_delay = delay;
1975 } 1949 }
1976 } // namespace webrtc 1950 } // namespace webrtc
OLDNEW
« no previous file with comments | « no previous file | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698