| Index: webrtc/modules/pacing/paced_sender_unittest.cc
|
| diff --git a/webrtc/modules/pacing/paced_sender_unittest.cc b/webrtc/modules/pacing/paced_sender_unittest.cc
|
| index 15bb462949b4394e160db3703aad94b246d44816..941c81335b6cf073c7a5bac225c84fecbeb5784d 100644
|
| --- a/webrtc/modules/pacing/paced_sender_unittest.cc
|
| +++ b/webrtc/modules/pacing/paced_sender_unittest.cc
|
| @@ -22,9 +22,10 @@ using testing::Return;
|
| namespace webrtc {
|
| namespace test {
|
|
|
| -static const int kTargetBitrateBps = 800000;
|
| +static const int kTargetBitrate = 800;
|
| +static const float kPaceMultiplier = 1.5f;
|
|
|
| -class MockPacedSenderCallback : public PacedSender::PacketSender {
|
| +class MockPacedSenderCallback : public PacedSender::Callback {
|
| public:
|
| MOCK_METHOD4(TimeToSendPacket,
|
| bool(uint32_t ssrc,
|
| @@ -35,7 +36,7 @@ class MockPacedSenderCallback : public PacedSender::PacketSender {
|
| size_t(size_t bytes));
|
| };
|
|
|
| -class PacedSenderPadding : public PacedSender::PacketSender {
|
| +class PacedSenderPadding : public PacedSender::Callback {
|
| public:
|
| PacedSenderPadding() : padding_sent_(0) {}
|
|
|
| @@ -59,7 +60,7 @@ class PacedSenderPadding : public PacedSender::PacketSender {
|
| size_t padding_sent_;
|
| };
|
|
|
| -class PacedSenderProbing : public PacedSender::PacketSender {
|
| +class PacedSenderProbing : public PacedSender::Callback {
|
| public:
|
| PacedSenderProbing(const std::list<int>& expected_deltas, Clock* clock)
|
| : prev_packet_time_ms_(-1),
|
| @@ -107,7 +108,11 @@ class PacedSenderTest : public ::testing::Test {
|
| PacedSenderTest() : clock_(123456) {
|
| srand(0);
|
| // Need to initialize PacedSender after we initialize clock.
|
| - send_bucket_.reset(new PacedSender(&clock_, &callback_, kTargetBitrateBps));
|
| + send_bucket_.reset(new PacedSender(&clock_,
|
| + &callback_,
|
| + kTargetBitrate,
|
| + kPaceMultiplier * kTargetBitrate,
|
| + 0));
|
| // Default to bitrate probing disabled for testing purposes. Probing tests
|
| // have to enable probing, either by creating a new PacedSender instance or
|
| // by calling SetProbingEnabled(true).
|
| @@ -136,21 +141,29 @@ class PacedSenderTest : public ::testing::Test {
|
| TEST_F(PacedSenderTest, QueuePacket) {
|
| uint32_t ssrc = 12345;
|
| uint16_t sequence_number = 1234;
|
| - // Due to the multiplicative factor we can send 5 packets during a send
|
| - // interval. (network capacity * multiplier / (8 bits per byte *
|
| - // (packet size * #send intervals per second)
|
| - const size_t packets_to_send =
|
| - kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| - for (size_t i = 0; i < packets_to_send; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| - }
|
| -
|
| + // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number, queued_packet_timestamp, 250,
|
| false);
|
| - EXPECT_EQ(packets_to_send + 1, send_bucket_->QueueSizePackets());
|
| send_bucket_->Process();
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| @@ -158,79 +171,86 @@ TEST_F(PacedSenderTest, QueuePacket) {
|
| EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(1);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| - EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| - EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
|
| - queued_packet_timestamp, false))
|
| + EXPECT_CALL(
|
| + callback_,
|
| + TimeToSendPacket(ssrc, sequence_number++, queued_packet_timestamp, false))
|
| .Times(1)
|
| .WillRepeatedly(Return(true));
|
| send_bucket_->Process();
|
| sequence_number++;
|
| - EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| -
|
| - // We can send packets_to_send -1 packets of size 250 during the current
|
| - // interval since one packet has already been sent.
|
| - for (size_t i = 0; i < packets_to_send - 1; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| - }
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number++, clock_.TimeInMilliseconds(),
|
| 250, false);
|
| - EXPECT_EQ(packets_to_send, send_bucket_->QueueSizePackets());
|
| send_bucket_->Process();
|
| - EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| }
|
|
|
| TEST_F(PacedSenderTest, PaceQueuedPackets) {
|
| uint32_t ssrc = 12345;
|
| uint16_t sequence_number = 1234;
|
|
|
| - // Due to the multiplicative factor we can send 5 packets during a send
|
| - // interval. (network capacity * multiplier / (8 bits per byte *
|
| - // (packet size * #send intervals per second)
|
| - const size_t packets_to_send_per_interval =
|
| - kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| + // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| + for (int i = 0; i < 3; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| }
|
| -
|
| - for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
|
| + for (int j = 0; j < 30; ++j) {
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number++, clock_.TimeInMilliseconds(),
|
| 250, false);
|
| }
|
| - EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
|
| - send_bucket_->QueueSizePackets());
|
| send_bucket_->Process();
|
| - EXPECT_EQ(packets_to_send_per_interval * 10,
|
| - send_bucket_->QueueSizePackets());
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| for (int k = 0; k < 10; ++k) {
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false))
|
| - .Times(packets_to_send_per_interval)
|
| + .Times(3)
|
| .WillRepeatedly(Return(true));
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| send_bucket_->Process();
|
| }
|
| - EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| - EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| send_bucket_->Process();
|
| -
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| - }
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number, clock_.TimeInMilliseconds(), 250,
|
| false);
|
| send_bucket_->Process();
|
| - EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| }
|
|
|
| TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
| @@ -238,18 +258,18 @@ TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
| uint16_t sequence_number = 1234;
|
| uint16_t queued_sequence_number;
|
|
|
| - // Due to the multiplicative factor we can send 5 packets during a send
|
| - // interval. (network capacity * multiplier / (8 bits per byte *
|
| - // (packet size * #send intervals per second)
|
| - const size_t packets_to_send_per_interval =
|
| - kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| + // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| + for (int i = 0; i < 3; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| }
|
| queued_sequence_number = sequence_number;
|
|
|
| - for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
|
| + for (int j = 0; j < 30; ++j) {
|
| // Send in duplicate packets.
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number, clock_.TimeInMilliseconds(),
|
| @@ -264,7 +284,7 @@ TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
|
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + for (int i = 0; i < 3; ++i) {
|
| EXPECT_CALL(callback_,
|
| TimeToSendPacket(ssrc, queued_sequence_number++, _, false))
|
| .Times(1)
|
| @@ -277,16 +297,28 @@ TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| send_bucket_->Process();
|
| -
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| - }
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number++, clock_.TimeInMilliseconds(),
|
| 250, false);
|
| send_bucket_->Process();
|
| - EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| }
|
|
|
| TEST_F(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
|
| @@ -316,33 +348,33 @@ TEST_F(PacedSenderTest, Padding) {
|
| uint32_t ssrc = 12345;
|
| uint16_t sequence_number = 1234;
|
|
|
| - send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
|
| - send_bucket_->SetAllocatedSendBitrate(kTargetBitrateBps, kTargetBitrateBps);
|
| -
|
| - // Due to the multiplicative factor we can send 5 packets during a send
|
| - // interval. (network capacity * multiplier / (8 bits per byte *
|
| - // (packet size * #send intervals per second)
|
| - const size_t packets_to_send_per_interval =
|
| - kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| - }
|
| + send_bucket_->UpdateBitrate(
|
| + kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
| + // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + clock_.TimeInMilliseconds(),
|
| + 250,
|
| + false);
|
| // No padding is expected since we have sent too much already.
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| send_bucket_->Process();
|
| - EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| -
|
| - // 5 milliseconds later should not send padding since we filled the buffers
|
| - // initially.
|
| - EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(0);
|
| - EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| - clock_.AdvanceTimeMilliseconds(5);
|
| - EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| - send_bucket_->Process();
|
|
|
| // 5 milliseconds later we have enough budget to send some padding.
|
| EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1).
|
| @@ -359,9 +391,8 @@ TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) {
|
| int64_t capture_time_ms = 56789;
|
| const int kTimeStep = 5;
|
| const int64_t kBitrateWindow = 100;
|
| - send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
|
| - send_bucket_->SetAllocatedSendBitrate(kTargetBitrateBps, kTargetBitrateBps);
|
| -
|
| + send_bucket_->UpdateBitrate(
|
| + kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
| int64_t start_time = clock_.TimeInMilliseconds();
|
| while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
| SendAndExpectPacket(PacedSender::kNormalPriority,
|
| @@ -384,11 +415,11 @@ TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
|
| const int kTimeStep = 5;
|
| const int64_t kBitrateWindow = 10000;
|
| PacedSenderPadding callback;
|
| - send_bucket_.reset(new PacedSender(&clock_, &callback, kTargetBitrateBps));
|
| + send_bucket_.reset(new PacedSender(
|
| + &clock_, &callback, kTargetBitrate, kPaceMultiplier * kTargetBitrate, 0));
|
| send_bucket_->SetProbingEnabled(false);
|
| - send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
|
| - send_bucket_->SetAllocatedSendBitrate(kTargetBitrateBps, kTargetBitrateBps);
|
| -
|
| + send_bucket_->UpdateBitrate(
|
| + kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
| int64_t start_time = clock_.TimeInMilliseconds();
|
| size_t media_bytes = 0;
|
| while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
| @@ -401,10 +432,9 @@ TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
|
| clock_.AdvanceTimeMilliseconds(kTimeStep);
|
| send_bucket_->Process();
|
| }
|
| - EXPECT_NEAR(kTargetBitrateBps / 1000,
|
| + EXPECT_NEAR(kTargetBitrate,
|
| static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
|
| - kBitrateWindow),
|
| - 1);
|
| + kBitrateWindow), 1);
|
| }
|
|
|
| TEST_F(PacedSenderTest, Priority) {
|
| @@ -414,41 +444,50 @@ TEST_F(PacedSenderTest, Priority) {
|
| int64_t capture_time_ms = 56789;
|
| int64_t capture_time_ms_low_priority = 1234567;
|
|
|
| - // Due to the multiplicative factor we can send 5 packets during a send
|
| - // interval. (network capacity * multiplier / (8 bits per byte *
|
| - // (packet size * #send intervals per second)
|
| - const size_t packets_to_send_per_interval =
|
| - kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| - }
|
| + // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| + SendAndExpectPacket(PacedSender::kLowPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + capture_time_ms,
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + capture_time_ms,
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + capture_time_ms,
|
| + 250,
|
| + false);
|
| send_bucket_->Process();
|
| - EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
|
| // Expect normal and low priority to be queued and high to pass through.
|
| send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
|
| sequence_number++, capture_time_ms_low_priority,
|
| 250, false);
|
| -
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| - send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| - sequence_number++, capture_time_ms, 250, false);
|
| - }
|
| + send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| + sequence_number++, capture_time_ms, 250, false);
|
| + send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| + sequence_number++, capture_time_ms, 250, false);
|
| + send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| + sequence_number++, capture_time_ms, 250, false);
|
| send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc,
|
| sequence_number++, capture_time_ms, 250, false);
|
|
|
| // Expect all high and normal priority to be sent out first.
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false))
|
| - .Times(packets_to_send_per_interval + 1)
|
| + .Times(4)
|
| .WillRepeatedly(Return(true));
|
|
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| send_bucket_->Process();
|
| - EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
|
|
| EXPECT_CALL(callback_,
|
| TimeToSendPacket(
|
| @@ -474,30 +513,23 @@ TEST_F(PacedSenderTest, HighPrioDoesntAffectBudget) {
|
| capture_time_ms, 250, false);
|
| }
|
| send_bucket_->Process();
|
| - // Low prio packets does affect the budget.
|
| - // Due to the multiplicative factor we can send 5 packets during a send
|
| - // interval. (network capacity * multiplier / (8 bits per byte *
|
| - // (packet size * #send intervals per second)
|
| - const size_t packets_to_send_per_interval =
|
| - kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + // Low prio packets does affect the budget, so we should only be able to send
|
| + // 3 at once, the 4th should be queued.
|
| + for (int i = 0; i < 3; ++i) {
|
| SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| + capture_time_ms, 250, false);
|
| }
|
| send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc, sequence_number,
|
| capture_time_ms, 250, false);
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| send_bucket_->Process();
|
| - EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| EXPECT_CALL(callback_,
|
| TimeToSendPacket(ssrc, sequence_number++, capture_time_ms, false))
|
| - .Times(1)
|
| - .WillRepeatedly(Return(true));
|
| + .Times(1);
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| send_bucket_->Process();
|
| - EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| }
|
|
|
| TEST_F(PacedSenderTest, Pause) {
|
| @@ -508,16 +540,25 @@ TEST_F(PacedSenderTest, Pause) {
|
|
|
| EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
| - // Due to the multiplicative factor we can send 5 packets during a send
|
| - // interval. (network capacity * multiplier / (8 bits per byte *
|
| - // (packet size * #send intervals per second)
|
| - const size_t packets_to_send_per_interval =
|
| - kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| - for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), 250, false);
|
| - }
|
| -
|
| + // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| + SendAndExpectPacket(PacedSender::kLowPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + capture_time_ms,
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + capture_time_ms,
|
| + 250,
|
| + false);
|
| + SendAndExpectPacket(PacedSender::kNormalPriority,
|
| + ssrc,
|
| + sequence_number++,
|
| + capture_time_ms,
|
| + 250,
|
| + false);
|
| send_bucket_->Process();
|
|
|
| send_bucket_->Pause();
|
| @@ -627,18 +668,18 @@ TEST_F(PacedSenderTest, ExpectedQueueTimeMs) {
|
| uint16_t sequence_number = 1234;
|
| const size_t kNumPackets = 60;
|
| const size_t kPacketSize = 1200;
|
| - const int32_t kMaxBitrate = PacedSender::kDefaultPaceMultiplier * 30000;
|
| + const int32_t kMaxBitrate = kPaceMultiplier * 30;
|
| EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
|
|
|
| - send_bucket_->SetEstimatedBitrate(30000);
|
| + send_bucket_->UpdateBitrate(30, kMaxBitrate, 0);
|
| for (size_t i = 0; i < kNumPackets; ++i) {
|
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| clock_.TimeInMilliseconds(), kPacketSize, false);
|
| }
|
|
|
| - // Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
|
| + // Queue in ms = 1000 * (bytes in queue) / (kbit per second * 1000 / 8)
|
| int64_t queue_in_ms =
|
| - static_cast<int64_t>(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
|
| + static_cast<int64_t>(kNumPackets * kPacketSize * 8 / kMaxBitrate);
|
| EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs());
|
|
|
| int64_t time_start = clock_.TimeInMilliseconds();
|
| @@ -656,7 +697,7 @@ TEST_F(PacedSenderTest, ExpectedQueueTimeMs) {
|
|
|
| // Allow for aliasing, duration should be within one pack of max time limit.
|
| EXPECT_NEAR(duration, PacedSender::kMaxQueueLengthMs,
|
| - static_cast<int64_t>(1000 * kPacketSize * 8 / kMaxBitrate));
|
| + static_cast<int64_t>(kPacketSize * 8 / kMaxBitrate));
|
| }
|
|
|
| TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) {
|
| @@ -664,7 +705,7 @@ TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) {
|
| uint16_t sequence_number = 1234;
|
| EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
| - send_bucket_->SetEstimatedBitrate(30000);
|
| + send_bucket_->UpdateBitrate(30, kPaceMultiplier * 30, 0);
|
| SendAndExpectPacket(PacedSender::kNormalPriority,
|
| ssrc,
|
| sequence_number,
|
| @@ -682,22 +723,25 @@ TEST_F(PacedSenderTest, ProbingWithInitialFrame) {
|
| const int kNumPackets = 11;
|
| const int kNumDeltas = kNumPackets - 1;
|
| const size_t kPacketSize = 1200;
|
| - const int kInitialBitrateBps = 300000;
|
| + const int kInitialBitrateKbps = 300;
|
| uint32_t ssrc = 12346;
|
| uint16_t sequence_number = 1234;
|
| -
|
| const int expected_deltas[kNumDeltas] = {10, 10, 10, 10, 10, 5, 5, 5, 5, 5};
|
| std::list<int> expected_deltas_list(expected_deltas,
|
| expected_deltas + kNumDeltas);
|
| PacedSenderProbing callback(expected_deltas_list, &clock_);
|
| - send_bucket_.reset(new PacedSender(&clock_, &callback, kInitialBitrateBps));
|
| + send_bucket_.reset(
|
| + new PacedSender(&clock_,
|
| + &callback,
|
| + kInitialBitrateKbps,
|
| + kPaceMultiplier * kInitialBitrateKbps,
|
| + 0));
|
|
|
| for (int i = 0; i < kNumPackets; ++i) {
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number++, clock_.TimeInMilliseconds(),
|
| kPacketSize, false);
|
| }
|
| -
|
| while (callback.packets_sent() < kNumPackets) {
|
| int time_until_process = send_bucket_->TimeUntilNextProcess();
|
| if (time_until_process <= 0) {
|
| @@ -712,14 +756,15 @@ TEST_F(PacedSenderTest, ProbingWithTooSmallInitialFrame) {
|
| const int kNumPackets = 11;
|
| const int kNumDeltas = kNumPackets - 1;
|
| const size_t kPacketSize = 1200;
|
| - const int kInitialBitrateBps = 300000;
|
| + const int kInitialBitrateKbps = 300;
|
| uint32_t ssrc = 12346;
|
| uint16_t sequence_number = 1234;
|
| const int expected_deltas[kNumDeltas] = {10, 10, 10, 10, 10, 5, 5, 5, 5, 5};
|
| std::list<int> expected_deltas_list(expected_deltas,
|
| expected_deltas + kNumDeltas);
|
| PacedSenderProbing callback(expected_deltas_list, &clock_);
|
| - send_bucket_.reset(new PacedSender(&clock_, &callback, kInitialBitrateBps));
|
| + send_bucket_.reset(new PacedSender(&clock_, &callback, kInitialBitrateKbps,
|
| + kPaceMultiplier * kInitialBitrateKbps, 0));
|
|
|
| for (int i = 0; i < kNumPackets - 5; ++i) {
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| @@ -794,21 +839,21 @@ TEST_F(PacedSenderTest, PaddingOveruse) {
|
| uint16_t sequence_number = 1234;
|
| const size_t kPacketSize = 1200;
|
|
|
| - send_bucket_->SetEstimatedBitrate(60000);
|
| - send_bucket_->SetAllocatedSendBitrate(60000, 0);
|
| -
|
| + // Min bitrate 0 => no padding, padding budget will stay at 0.
|
| + send_bucket_->UpdateBitrate(60, 90, 0);
|
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| clock_.TimeInMilliseconds(), kPacketSize, false);
|
| send_bucket_->Process();
|
|
|
| // Add 30kbit padding. When increasing budget, media budget will increase from
|
| - // negative (overuse) while padding budget will increase from 0.
|
| + // negative (overuse) while padding budget will increase form 0.
|
| clock_.AdvanceTimeMilliseconds(5);
|
| - send_bucket_->SetAllocatedSendBitrate(60000, 30000);
|
| + send_bucket_->UpdateBitrate(60, 90, 30);
|
| +
|
| + send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc,
|
| + sequence_number++, clock_.TimeInMilliseconds(),
|
| + kPacketSize, false);
|
|
|
| - SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| - clock_.TimeInMilliseconds(), kPacketSize, false);
|
| - EXPECT_LT(5u, send_bucket_->ExpectedQueueTimeMs());
|
| // Don't send padding if queue is non-empty, even if padding budget > 0.
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| send_bucket_->Process();
|
| @@ -819,8 +864,9 @@ TEST_F(PacedSenderTest, AverageQueueTime) {
|
| uint16_t sequence_number = 1234;
|
| const size_t kPacketSize = 1200;
|
| const int kBitrateBps = 10 * kPacketSize * 8; // 10 packets per second.
|
| + const int kBitrateKbps = (kBitrateBps + 500) / 1000;
|
|
|
| - send_bucket_->SetEstimatedBitrate(kBitrateBps);
|
| + send_bucket_->UpdateBitrate(kBitrateKbps, kBitrateKbps, kBitrateKbps);
|
|
|
| EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());
|
|
|
|
|