| Index: webrtc/modules/pacing/paced_sender_unittest.cc
|
| diff --git a/webrtc/modules/pacing/paced_sender_unittest.cc b/webrtc/modules/pacing/paced_sender_unittest.cc
|
| index 941c81335b6cf073c7a5bac225c84fecbeb5784d..15bb462949b4394e160db3703aad94b246d44816 100644
|
| --- a/webrtc/modules/pacing/paced_sender_unittest.cc
|
| +++ b/webrtc/modules/pacing/paced_sender_unittest.cc
|
| @@ -22,10 +22,9 @@ using testing::Return;
|
| namespace webrtc {
|
| namespace test {
|
|
|
| -static const int kTargetBitrate = 800;
|
| -static const float kPaceMultiplier = 1.5f;
|
| +static const int kTargetBitrateBps = 800000;
|
|
|
| -class MockPacedSenderCallback : public PacedSender::Callback {
|
| +class MockPacedSenderCallback : public PacedSender::PacketSender {
|
| public:
|
| MOCK_METHOD4(TimeToSendPacket,
|
| bool(uint32_t ssrc,
|
| @@ -36,7 +35,7 @@ class MockPacedSenderCallback : public PacedSender::Callback {
|
| size_t(size_t bytes));
|
| };
|
|
|
| -class PacedSenderPadding : public PacedSender::Callback {
|
| +class PacedSenderPadding : public PacedSender::PacketSender {
|
| public:
|
| PacedSenderPadding() : padding_sent_(0) {}
|
|
|
| @@ -60,7 +59,7 @@ class PacedSenderPadding : public PacedSender::Callback {
|
| size_t padding_sent_;
|
| };
|
|
|
| -class PacedSenderProbing : public PacedSender::Callback {
|
| +class PacedSenderProbing : public PacedSender::PacketSender {
|
| public:
|
| PacedSenderProbing(const std::list<int>& expected_deltas, Clock* clock)
|
| : prev_packet_time_ms_(-1),
|
| @@ -108,11 +107,7 @@ class PacedSenderTest : public ::testing::Test {
|
| PacedSenderTest() : clock_(123456) {
|
| srand(0);
|
| // Need to initialize PacedSender after we initialize clock.
|
| - send_bucket_.reset(new PacedSender(&clock_,
|
| - &callback_,
|
| - kTargetBitrate,
|
| - kPaceMultiplier * kTargetBitrate,
|
| - 0));
|
| + send_bucket_.reset(new PacedSender(&clock_, &callback_, kTargetBitrateBps));
|
| // Default to bitrate probing disabled for testing purposes. Probing tests
|
| // have to enable probing, either by creating a new PacedSender instance or
|
| // by calling SetProbingEnabled(true).
|
| @@ -141,29 +136,21 @@ class PacedSenderTest : public ::testing::Test {
|
| TEST_F(PacedSenderTest, QueuePacket) {
|
| uint32_t ssrc = 12345;
|
| uint16_t sequence_number = 1234;
|
| - // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| + // Due to the multiplicative factor we can send 5 packets during a send
|
| + // interval. (network capacity * multiplier / (8 bits per byte *
|
| + // (packet size * #send intervals per second)
|
| + const size_t packets_to_send =
|
| + kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| + for (size_t i = 0; i < packets_to_send; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| + }
|
| +
|
| int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number, queued_packet_timestamp, 250,
|
| false);
|
| + EXPECT_EQ(packets_to_send + 1, send_bucket_->QueueSizePackets());
|
| send_bucket_->Process();
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| @@ -171,86 +158,79 @@ TEST_F(PacedSenderTest, QueuePacket) {
|
| EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(1);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| - EXPECT_CALL(
|
| - callback_,
|
| - TimeToSendPacket(ssrc, sequence_number++, queued_packet_timestamp, false))
|
| + EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| + EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
|
| + queued_packet_timestamp, false))
|
| .Times(1)
|
| .WillRepeatedly(Return(true));
|
| send_bucket_->Process();
|
| sequence_number++;
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| + EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| +
|
| + // We can send packets_to_send -1 packets of size 250 during the current
|
| + // interval since one packet has already been sent.
|
| + for (size_t i = 0; i < packets_to_send - 1; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| + }
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number++, clock_.TimeInMilliseconds(),
|
| 250, false);
|
| + EXPECT_EQ(packets_to_send, send_bucket_->QueueSizePackets());
|
| send_bucket_->Process();
|
| + EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| }
|
|
|
| TEST_F(PacedSenderTest, PaceQueuedPackets) {
|
| uint32_t ssrc = 12345;
|
| uint16_t sequence_number = 1234;
|
|
|
| - // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| - for (int i = 0; i < 3; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| + // Due to the multiplicative factor we can send 5 packets during a send
|
| + // interval. (network capacity * multiplier / (8 bits per byte *
|
| + // (packet size * #send intervals per second)
|
| + const size_t packets_to_send_per_interval =
|
| + kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| }
|
| - for (int j = 0; j < 30; ++j) {
|
| +
|
| + for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number++, clock_.TimeInMilliseconds(),
|
| 250, false);
|
| }
|
| + EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
|
| + send_bucket_->QueueSizePackets());
|
| send_bucket_->Process();
|
| + EXPECT_EQ(packets_to_send_per_interval * 10,
|
| + send_bucket_->QueueSizePackets());
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| for (int k = 0; k < 10; ++k) {
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false))
|
| - .Times(3)
|
| + .Times(packets_to_send_per_interval)
|
| .WillRepeatedly(Return(true));
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| send_bucket_->Process();
|
| }
|
| + EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| + EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| send_bucket_->Process();
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| +
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| + }
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number, clock_.TimeInMilliseconds(), 250,
|
| false);
|
| send_bucket_->Process();
|
| + EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| }
|
|
|
| TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
| @@ -258,18 +238,18 @@ TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
| uint16_t sequence_number = 1234;
|
| uint16_t queued_sequence_number;
|
|
|
| - // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| - for (int i = 0; i < 3; ++i) {
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| + // Due to the multiplicative factor we can send 5 packets during a send
|
| + // interval. (network capacity * multiplier / (8 bits per byte *
|
| + // (packet size * #send intervals per second)
|
| + const size_t packets_to_send_per_interval =
|
| + kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| }
|
| queued_sequence_number = sequence_number;
|
|
|
| - for (int j = 0; j < 30; ++j) {
|
| + for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
|
| // Send in duplicate packets.
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number, clock_.TimeInMilliseconds(),
|
| @@ -284,7 +264,7 @@ TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
|
|
| - for (int i = 0; i < 3; ++i) {
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| EXPECT_CALL(callback_,
|
| TimeToSendPacket(ssrc, queued_sequence_number++, _, false))
|
| .Times(1)
|
| @@ -297,28 +277,16 @@ TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| send_bucket_->Process();
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| +
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| + }
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number++, clock_.TimeInMilliseconds(),
|
| 250, false);
|
| send_bucket_->Process();
|
| + EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| }
|
|
|
| TEST_F(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
|
| @@ -348,33 +316,33 @@ TEST_F(PacedSenderTest, Padding) {
|
| uint32_t ssrc = 12345;
|
| uint16_t sequence_number = 1234;
|
|
|
| - send_bucket_->UpdateBitrate(
|
| - kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
| - // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - clock_.TimeInMilliseconds(),
|
| - 250,
|
| - false);
|
| + send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
|
| + send_bucket_->SetAllocatedSendBitrate(kTargetBitrateBps, kTargetBitrateBps);
|
| +
|
| + // Due to the multiplicative factor we can send 5 packets during a send
|
| + // interval. (network capacity * multiplier / (8 bits per byte *
|
| + // (packet size * #send intervals per second)
|
| + const size_t packets_to_send_per_interval =
|
| + kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| + }
|
| // No padding is expected since we have sent too much already.
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| send_bucket_->Process();
|
| + EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| +
|
| + // 5 milliseconds later should not send padding since we filled the buffers
|
| + // initially.
|
| + EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(0);
|
| + EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| + clock_.AdvanceTimeMilliseconds(5);
|
| + EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| + send_bucket_->Process();
|
|
|
| // 5 milliseconds later we have enough budget to send some padding.
|
| EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1).
|
| @@ -391,8 +359,9 @@ TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) {
|
| int64_t capture_time_ms = 56789;
|
| const int kTimeStep = 5;
|
| const int64_t kBitrateWindow = 100;
|
| - send_bucket_->UpdateBitrate(
|
| - kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
| + send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
|
| + send_bucket_->SetAllocatedSendBitrate(kTargetBitrateBps, kTargetBitrateBps);
|
| +
|
| int64_t start_time = clock_.TimeInMilliseconds();
|
| while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
| SendAndExpectPacket(PacedSender::kNormalPriority,
|
| @@ -415,11 +384,11 @@ TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
|
| const int kTimeStep = 5;
|
| const int64_t kBitrateWindow = 10000;
|
| PacedSenderPadding callback;
|
| - send_bucket_.reset(new PacedSender(
|
| - &clock_, &callback, kTargetBitrate, kPaceMultiplier * kTargetBitrate, 0));
|
| + send_bucket_.reset(new PacedSender(&clock_, &callback, kTargetBitrateBps));
|
| send_bucket_->SetProbingEnabled(false);
|
| - send_bucket_->UpdateBitrate(
|
| - kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
| + send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
|
| + send_bucket_->SetAllocatedSendBitrate(kTargetBitrateBps, kTargetBitrateBps);
|
| +
|
| int64_t start_time = clock_.TimeInMilliseconds();
|
| size_t media_bytes = 0;
|
| while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
| @@ -432,9 +401,10 @@ TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
|
| clock_.AdvanceTimeMilliseconds(kTimeStep);
|
| send_bucket_->Process();
|
| }
|
| - EXPECT_NEAR(kTargetBitrate,
|
| + EXPECT_NEAR(kTargetBitrateBps / 1000,
|
| static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
|
| - kBitrateWindow), 1);
|
| + kBitrateWindow),
|
| + 1);
|
| }
|
|
|
| TEST_F(PacedSenderTest, Priority) {
|
| @@ -444,50 +414,41 @@ TEST_F(PacedSenderTest, Priority) {
|
| int64_t capture_time_ms = 56789;
|
| int64_t capture_time_ms_low_priority = 1234567;
|
|
|
| - // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| - SendAndExpectPacket(PacedSender::kLowPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - capture_time_ms,
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - capture_time_ms,
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - capture_time_ms,
|
| - 250,
|
| - false);
|
| + // Due to the multiplicative factor we can send 5 packets during a send
|
| + // interval. (network capacity * multiplier / (8 bits per byte *
|
| + // (packet size * #send intervals per second)
|
| + const size_t packets_to_send_per_interval =
|
| + kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| + }
|
| send_bucket_->Process();
|
| + EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
|
| // Expect normal and low priority to be queued and high to pass through.
|
| send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
|
| sequence_number++, capture_time_ms_low_priority,
|
| 250, false);
|
| - send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| - sequence_number++, capture_time_ms, 250, false);
|
| - send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| - sequence_number++, capture_time_ms, 250, false);
|
| - send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| - sequence_number++, capture_time_ms, 250, false);
|
| +
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| + sequence_number++, capture_time_ms, 250, false);
|
| + }
|
| send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc,
|
| sequence_number++, capture_time_ms, 250, false);
|
|
|
| // Expect all high and normal priority to be sent out first.
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false))
|
| - .Times(4)
|
| + .Times(packets_to_send_per_interval + 1)
|
| .WillRepeatedly(Return(true));
|
|
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
| send_bucket_->Process();
|
| + EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
|
|
| EXPECT_CALL(callback_,
|
| TimeToSendPacket(
|
| @@ -513,23 +474,30 @@ TEST_F(PacedSenderTest, HighPrioDoesntAffectBudget) {
|
| capture_time_ms, 250, false);
|
| }
|
| send_bucket_->Process();
|
| - // Low prio packets does affect the budget, so we should only be able to send
|
| - // 3 at once, the 4th should be queued.
|
| - for (int i = 0; i < 3; ++i) {
|
| + // Low prio packets does affect the budget.
|
| + // Due to the multiplicative factor we can send 5 packets during a send
|
| + // interval. (network capacity * multiplier / (8 bits per byte *
|
| + // (packet size * #send intervals per second)
|
| + const size_t packets_to_send_per_interval =
|
| + kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++,
|
| - capture_time_ms, 250, false);
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| }
|
| send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc, sequence_number,
|
| capture_time_ms, 250, false);
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| send_bucket_->Process();
|
| + EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
| EXPECT_CALL(callback_,
|
| TimeToSendPacket(ssrc, sequence_number++, capture_time_ms, false))
|
| - .Times(1);
|
| + .Times(1)
|
| + .WillRepeatedly(Return(true));
|
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
| clock_.AdvanceTimeMilliseconds(5);
|
| send_bucket_->Process();
|
| + EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
| }
|
|
|
| TEST_F(PacedSenderTest, Pause) {
|
| @@ -540,25 +508,16 @@ TEST_F(PacedSenderTest, Pause) {
|
|
|
| EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
| - // Due to the multiplicative factor we can send 3 packets not 2 packets.
|
| - SendAndExpectPacket(PacedSender::kLowPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - capture_time_ms,
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - capture_time_ms,
|
| - 250,
|
| - false);
|
| - SendAndExpectPacket(PacedSender::kNormalPriority,
|
| - ssrc,
|
| - sequence_number++,
|
| - capture_time_ms,
|
| - 250,
|
| - false);
|
| + // Due to the multiplicative factor we can send 5 packets during a send
|
| + // interval. (network capacity * multiplier / (8 bits per byte *
|
| + // (packet size * #send intervals per second)
|
| + const size_t packets_to_send_per_interval =
|
| + kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
|
| + for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), 250, false);
|
| + }
|
| +
|
| send_bucket_->Process();
|
|
|
| send_bucket_->Pause();
|
| @@ -668,18 +627,18 @@ TEST_F(PacedSenderTest, ExpectedQueueTimeMs) {
|
| uint16_t sequence_number = 1234;
|
| const size_t kNumPackets = 60;
|
| const size_t kPacketSize = 1200;
|
| - const int32_t kMaxBitrate = kPaceMultiplier * 30;
|
| + const int32_t kMaxBitrate = PacedSender::kDefaultPaceMultiplier * 30000;
|
| EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
|
|
|
| - send_bucket_->UpdateBitrate(30, kMaxBitrate, 0);
|
| + send_bucket_->SetEstimatedBitrate(30000);
|
| for (size_t i = 0; i < kNumPackets; ++i) {
|
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| clock_.TimeInMilliseconds(), kPacketSize, false);
|
| }
|
|
|
| - // Queue in ms = 1000 * (bytes in queue) / (kbit per second * 1000 / 8)
|
| + // Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
|
| int64_t queue_in_ms =
|
| - static_cast<int64_t>(kNumPackets * kPacketSize * 8 / kMaxBitrate);
|
| + static_cast<int64_t>(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
|
| EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs());
|
|
|
| int64_t time_start = clock_.TimeInMilliseconds();
|
| @@ -697,7 +656,7 @@ TEST_F(PacedSenderTest, ExpectedQueueTimeMs) {
|
|
|
| // Allow for aliasing, duration should be within one pack of max time limit.
|
| EXPECT_NEAR(duration, PacedSender::kMaxQueueLengthMs,
|
| - static_cast<int64_t>(kPacketSize * 8 / kMaxBitrate));
|
| + static_cast<int64_t>(1000 * kPacketSize * 8 / kMaxBitrate));
|
| }
|
|
|
| TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) {
|
| @@ -705,7 +664,7 @@ TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) {
|
| uint16_t sequence_number = 1234;
|
| EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
| - send_bucket_->UpdateBitrate(30, kPaceMultiplier * 30, 0);
|
| + send_bucket_->SetEstimatedBitrate(30000);
|
| SendAndExpectPacket(PacedSender::kNormalPriority,
|
| ssrc,
|
| sequence_number,
|
| @@ -723,25 +682,22 @@ TEST_F(PacedSenderTest, ProbingWithInitialFrame) {
|
| const int kNumPackets = 11;
|
| const int kNumDeltas = kNumPackets - 1;
|
| const size_t kPacketSize = 1200;
|
| - const int kInitialBitrateKbps = 300;
|
| + const int kInitialBitrateBps = 300000;
|
| uint32_t ssrc = 12346;
|
| uint16_t sequence_number = 1234;
|
| +
|
| const int expected_deltas[kNumDeltas] = {10, 10, 10, 10, 10, 5, 5, 5, 5, 5};
|
| std::list<int> expected_deltas_list(expected_deltas,
|
| expected_deltas + kNumDeltas);
|
| PacedSenderProbing callback(expected_deltas_list, &clock_);
|
| - send_bucket_.reset(
|
| - new PacedSender(&clock_,
|
| - &callback,
|
| - kInitialBitrateKbps,
|
| - kPaceMultiplier * kInitialBitrateKbps,
|
| - 0));
|
| + send_bucket_.reset(new PacedSender(&clock_, &callback, kInitialBitrateBps));
|
|
|
| for (int i = 0; i < kNumPackets; ++i) {
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| sequence_number++, clock_.TimeInMilliseconds(),
|
| kPacketSize, false);
|
| }
|
| +
|
| while (callback.packets_sent() < kNumPackets) {
|
| int time_until_process = send_bucket_->TimeUntilNextProcess();
|
| if (time_until_process <= 0) {
|
| @@ -756,15 +712,14 @@ TEST_F(PacedSenderTest, ProbingWithTooSmallInitialFrame) {
|
| const int kNumPackets = 11;
|
| const int kNumDeltas = kNumPackets - 1;
|
| const size_t kPacketSize = 1200;
|
| - const int kInitialBitrateKbps = 300;
|
| + const int kInitialBitrateBps = 300000;
|
| uint32_t ssrc = 12346;
|
| uint16_t sequence_number = 1234;
|
| const int expected_deltas[kNumDeltas] = {10, 10, 10, 10, 10, 5, 5, 5, 5, 5};
|
| std::list<int> expected_deltas_list(expected_deltas,
|
| expected_deltas + kNumDeltas);
|
| PacedSenderProbing callback(expected_deltas_list, &clock_);
|
| - send_bucket_.reset(new PacedSender(&clock_, &callback, kInitialBitrateKbps,
|
| - kPaceMultiplier * kInitialBitrateKbps, 0));
|
| + send_bucket_.reset(new PacedSender(&clock_, &callback, kInitialBitrateBps));
|
|
|
| for (int i = 0; i < kNumPackets - 5; ++i) {
|
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
| @@ -839,21 +794,21 @@ TEST_F(PacedSenderTest, PaddingOveruse) {
|
| uint16_t sequence_number = 1234;
|
| const size_t kPacketSize = 1200;
|
|
|
| - // Min bitrate 0 => no padding, padding budget will stay at 0.
|
| - send_bucket_->UpdateBitrate(60, 90, 0);
|
| + send_bucket_->SetEstimatedBitrate(60000);
|
| + send_bucket_->SetAllocatedSendBitrate(60000, 0);
|
| +
|
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| clock_.TimeInMilliseconds(), kPacketSize, false);
|
| send_bucket_->Process();
|
|
|
| // Add 30kbit padding. When increasing budget, media budget will increase from
|
| - // negative (overuse) while padding budget will increase form 0.
|
| + // negative (overuse) while padding budget will increase from 0.
|
| clock_.AdvanceTimeMilliseconds(5);
|
| - send_bucket_->UpdateBitrate(60, 90, 30);
|
| -
|
| - send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc,
|
| - sequence_number++, clock_.TimeInMilliseconds(),
|
| - kPacketSize, false);
|
| + send_bucket_->SetAllocatedSendBitrate(60000, 30000);
|
|
|
| + SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
| + clock_.TimeInMilliseconds(), kPacketSize, false);
|
| + EXPECT_LT(5u, send_bucket_->ExpectedQueueTimeMs());
|
| // Don't send padding if queue is non-empty, even if padding budget > 0.
|
| EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
| send_bucket_->Process();
|
| @@ -864,9 +819,8 @@ TEST_F(PacedSenderTest, AverageQueueTime) {
|
| uint16_t sequence_number = 1234;
|
| const size_t kPacketSize = 1200;
|
| const int kBitrateBps = 10 * kPacketSize * 8; // 10 packets per second.
|
| - const int kBitrateKbps = (kBitrateBps + 500) / 1000;
|
|
|
| - send_bucket_->UpdateBitrate(kBitrateKbps, kBitrateKbps, kBitrateKbps);
|
| + send_bucket_->SetEstimatedBitrate(kBitrateBps);
|
|
|
| EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());
|
|
|
|
|