Index: webrtc/modules/audio_processing/aec/aec_core_neon.cc |
diff --git a/webrtc/modules/audio_processing/aec/aec_core_neon.cc b/webrtc/modules/audio_processing/aec/aec_core_neon.cc |
index 80c52012b2df490ebd78867a22fb5cdc33d671f6..01e6ce71b7c67c86392d459521c574cbc70cc89d 100644 |
--- a/webrtc/modules/audio_processing/aec/aec_core_neon.cc |
+++ b/webrtc/modules/audio_processing/aec/aec_core_neon.cc |
@@ -502,16 +502,19 @@ static int PartitionDelayNEON(const AecCore* aec) { |
// |
// In addition to updating the PSDs, also the filter diverge state is determined |
// upon actions are taken. |
-static void SmoothedPSD(AecCore* aec, |
+static void SmoothedPSD(int mult, |
+ bool extended_filter_enabled, |
float efw[2][PART_LEN1], |
float dfw[2][PART_LEN1], |
float xfw[2][PART_LEN1], |
+ CoherenceState* coherence_state, |
+ short* filter_divergence_state, |
int* extreme_filter_divergence) { |
// Power estimate smoothing coefficients. |
const float* ptrGCoh = |
- aec->extended_filter_enabled |
- ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1] |
- : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1]; |
+ extended_filter_enabled |
+ ? WebRtcAec_kExtendedSmoothingCoefficients[mult - 1] |
+ : WebRtcAec_kNormalSmoothingCoefficients[mult - 1]; |
int i; |
float sdSum = 0, seSum = 0; |
const float32x4_t vec_15 = vdupq_n_f32(WebRtcAec_kMinFarendPSD); |
@@ -525,9 +528,12 @@ static void SmoothedPSD(AecCore* aec, |
const float32x4_t vec_efw1 = vld1q_f32(&efw[1][i]); |
const float32x4_t vec_xfw0 = vld1q_f32(&xfw[0][i]); |
const float32x4_t vec_xfw1 = vld1q_f32(&xfw[1][i]); |
- float32x4_t vec_sd = vmulq_n_f32(vld1q_f32(&aec->sd[i]), ptrGCoh[0]); |
- float32x4_t vec_se = vmulq_n_f32(vld1q_f32(&aec->se[i]), ptrGCoh[0]); |
- float32x4_t vec_sx = vmulq_n_f32(vld1q_f32(&aec->sx[i]), ptrGCoh[0]); |
+ float32x4_t vec_sd = |
+ vmulq_n_f32(vld1q_f32(&coherence_state->sd[i]), ptrGCoh[0]); |
+ float32x4_t vec_se = |
+ vmulq_n_f32(vld1q_f32(&coherence_state->se[i]), ptrGCoh[0]); |
+ float32x4_t vec_sx = |
+ vmulq_n_f32(vld1q_f32(&coherence_state->sx[i]), ptrGCoh[0]); |
float32x4_t vec_dfw_sumsq = vmulq_f32(vec_dfw0, vec_dfw0); |
float32x4_t vec_efw_sumsq = vmulq_f32(vec_efw0, vec_efw0); |
float32x4_t vec_xfw_sumsq = vmulq_f32(vec_xfw0, vec_xfw0); |
@@ -540,12 +546,12 @@ static void SmoothedPSD(AecCore* aec, |
vec_se = vmlaq_n_f32(vec_se, vec_efw_sumsq, ptrGCoh[1]); |
vec_sx = vmlaq_n_f32(vec_sx, vec_xfw_sumsq, ptrGCoh[1]); |
- vst1q_f32(&aec->sd[i], vec_sd); |
- vst1q_f32(&aec->se[i], vec_se); |
- vst1q_f32(&aec->sx[i], vec_sx); |
+ vst1q_f32(&coherence_state->sd[i], vec_sd); |
+ vst1q_f32(&coherence_state->se[i], vec_se); |
+ vst1q_f32(&coherence_state->sx[i], vec_sx); |
{ |
- float32x4x2_t vec_sde = vld2q_f32(&aec->sde[i][0]); |
+ float32x4x2_t vec_sde = vld2q_f32(&coherence_state->sde[i][0]); |
float32x4_t vec_dfwefw0011 = vmulq_f32(vec_dfw0, vec_efw0); |
float32x4_t vec_dfwefw0110 = vmulq_f32(vec_dfw0, vec_efw1); |
vec_sde.val[0] = vmulq_n_f32(vec_sde.val[0], ptrGCoh[0]); |
@@ -554,11 +560,11 @@ static void SmoothedPSD(AecCore* aec, |
vec_dfwefw0110 = vmlsq_f32(vec_dfwefw0110, vec_dfw1, vec_efw0); |
vec_sde.val[0] = vmlaq_n_f32(vec_sde.val[0], vec_dfwefw0011, ptrGCoh[1]); |
vec_sde.val[1] = vmlaq_n_f32(vec_sde.val[1], vec_dfwefw0110, ptrGCoh[1]); |
- vst2q_f32(&aec->sde[i][0], vec_sde); |
+ vst2q_f32(&coherence_state->sde[i][0], vec_sde); |
} |
{ |
- float32x4x2_t vec_sxd = vld2q_f32(&aec->sxd[i][0]); |
+ float32x4x2_t vec_sxd = vld2q_f32(&coherence_state->sxd[i][0]); |
float32x4_t vec_dfwxfw0011 = vmulq_f32(vec_dfw0, vec_xfw0); |
float32x4_t vec_dfwxfw0110 = vmulq_f32(vec_dfw0, vec_xfw1); |
vec_sxd.val[0] = vmulq_n_f32(vec_sxd.val[0], ptrGCoh[0]); |
@@ -567,7 +573,7 @@ static void SmoothedPSD(AecCore* aec, |
vec_dfwxfw0110 = vmlsq_f32(vec_dfwxfw0110, vec_dfw1, vec_xfw0); |
vec_sxd.val[0] = vmlaq_n_f32(vec_sxd.val[0], vec_dfwxfw0011, ptrGCoh[1]); |
vec_sxd.val[1] = vmlaq_n_f32(vec_sxd.val[1], vec_dfwxfw0110, ptrGCoh[1]); |
- vst2q_f32(&aec->sxd[i][0], vec_sxd); |
+ vst2q_f32(&coherence_state->sxd[i][0], vec_sxd); |
} |
vec_sdSum = vaddq_f32(vec_sdSum, vec_sd); |
@@ -591,39 +597,43 @@ static void SmoothedPSD(AecCore* aec, |
// scalar code for the remaining items. |
for (; i < PART_LEN1; i++) { |
- aec->sd[i] = ptrGCoh[0] * aec->sd[i] + |
- ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]); |
- aec->se[i] = ptrGCoh[0] * aec->se[i] + |
- ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]); |
+ coherence_state->sd[i] = |
+ ptrGCoh[0] * coherence_state->sd[i] + |
+ ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]); |
+ coherence_state->se[i] = |
+ ptrGCoh[0] * coherence_state->se[i] + |
+ ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]); |
// We threshold here to protect against the ill-effects of a zero farend. |
// The threshold is not arbitrarily chosen, but balances protection and |
// adverse interaction with the algorithm's tuning. |
// TODO(bjornv): investigate further why this is so sensitive. |
- aec->sx[i] = ptrGCoh[0] * aec->sx[i] + |
- ptrGCoh[1] * WEBRTC_SPL_MAX( |
- xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], |
- WebRtcAec_kMinFarendPSD); |
- |
- aec->sde[i][0] = |
- ptrGCoh[0] * aec->sde[i][0] + |
+ coherence_state->sx[i] = |
+ ptrGCoh[0] * coherence_state->sx[i] + |
+ ptrGCoh[1] * |
+ WEBRTC_SPL_MAX(xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], |
+ WebRtcAec_kMinFarendPSD); |
+ |
+ coherence_state->sde[i][0] = |
+ ptrGCoh[0] * coherence_state->sde[i][0] + |
ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]); |
- aec->sde[i][1] = |
- ptrGCoh[0] * aec->sde[i][1] + |
+ coherence_state->sde[i][1] = |
+ ptrGCoh[0] * coherence_state->sde[i][1] + |
ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]); |
- aec->sxd[i][0] = |
- ptrGCoh[0] * aec->sxd[i][0] + |
+ coherence_state->sxd[i][0] = |
+ ptrGCoh[0] * coherence_state->sxd[i][0] + |
ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]); |
- aec->sxd[i][1] = |
- ptrGCoh[0] * aec->sxd[i][1] + |
+ coherence_state->sxd[i][1] = |
+ ptrGCoh[0] * coherence_state->sxd[i][1] + |
ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]); |
- sdSum += aec->sd[i]; |
- seSum += aec->se[i]; |
+ sdSum += coherence_state->sd[i]; |
+ seSum += coherence_state->se[i]; |
} |
// Divergent filter safeguard update. |
- aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum; |
+ *filter_divergence_state = |
+ (*filter_divergence_state ? 1.05f : 1.0f) * seSum > sdSum; |
// Signal extreme filter divergence if the error is significantly larger |
// than the nearend (13 dB). |
@@ -667,30 +677,34 @@ static void StoreAsComplexNEON(const float* data, |
data_complex[0][PART_LEN] = data[1]; |
} |
-static void SubbandCoherenceNEON(AecCore* aec, |
+static void SubbandCoherenceNEON(int mult, |
+ bool extended_filter_enabled, |
float efw[2][PART_LEN1], |
float dfw[2][PART_LEN1], |
float xfw[2][PART_LEN1], |
float* fft, |
float* cohde, |
float* cohxd, |
+ CoherenceState* coherence_state, |
+ short* filter_divergence_state, |
int* extreme_filter_divergence) { |
int i; |
- SmoothedPSD(aec, efw, dfw, xfw, extreme_filter_divergence); |
+ SmoothedPSD(mult, extended_filter_enabled, efw, dfw, xfw, coherence_state, |
+ filter_divergence_state, extreme_filter_divergence); |
{ |
const float32x4_t vec_1eminus10 = vdupq_n_f32(1e-10f); |
// Subband coherence |
for (i = 0; i + 3 < PART_LEN1; i += 4) { |
- const float32x4_t vec_sd = vld1q_f32(&aec->sd[i]); |
- const float32x4_t vec_se = vld1q_f32(&aec->se[i]); |
- const float32x4_t vec_sx = vld1q_f32(&aec->sx[i]); |
+ const float32x4_t vec_sd = vld1q_f32(&coherence_state->sd[i]); |
+ const float32x4_t vec_se = vld1q_f32(&coherence_state->se[i]); |
+ const float32x4_t vec_sx = vld1q_f32(&coherence_state->sx[i]); |
const float32x4_t vec_sdse = vmlaq_f32(vec_1eminus10, vec_sd, vec_se); |
const float32x4_t vec_sdsx = vmlaq_f32(vec_1eminus10, vec_sd, vec_sx); |
- float32x4x2_t vec_sde = vld2q_f32(&aec->sde[i][0]); |
- float32x4x2_t vec_sxd = vld2q_f32(&aec->sxd[i][0]); |
+ float32x4x2_t vec_sde = vld2q_f32(&coherence_state->sde[i][0]); |
+ float32x4x2_t vec_sxd = vld2q_f32(&coherence_state->sxd[i][0]); |
float32x4_t vec_cohde = vmulq_f32(vec_sde.val[0], vec_sde.val[0]); |
float32x4_t vec_cohxd = vmulq_f32(vec_sxd.val[0], vec_sxd.val[0]); |
vec_cohde = vmlaq_f32(vec_cohde, vec_sde.val[1], vec_sde.val[1]); |
@@ -704,12 +718,12 @@ static void SubbandCoherenceNEON(AecCore* aec, |
} |
// scalar code for the remaining items. |
for (; i < PART_LEN1; i++) { |
- cohde[i] = |
- (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) / |
- (aec->sd[i] * aec->se[i] + 1e-10f); |
- cohxd[i] = |
- (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) / |
- (aec->sx[i] * aec->sd[i] + 1e-10f); |
+ cohde[i] = (coherence_state->sde[i][0] * coherence_state->sde[i][0] + |
+ coherence_state->sde[i][1] * coherence_state->sde[i][1]) / |
+ (coherence_state->sd[i] * coherence_state->se[i] + 1e-10f); |
+ cohxd[i] = (coherence_state->sxd[i][0] * coherence_state->sxd[i][0] + |
+ coherence_state->sxd[i][1] * coherence_state->sxd[i][1]) / |
+ (coherence_state->sx[i] * coherence_state->sd[i] + 1e-10f); |
} |
} |