| Index: webrtc/modules/video_processing/deflickering.cc
|
| diff --git a/webrtc/modules/video_processing/deflickering.cc b/webrtc/modules/video_processing/deflickering.cc
|
| deleted file mode 100644
|
| index 0e936ce9b77a5a203a1a5ae47e4c4362d1e31019..0000000000000000000000000000000000000000
|
| --- a/webrtc/modules/video_processing/deflickering.cc
|
| +++ /dev/null
|
| @@ -1,402 +0,0 @@
|
| -/*
|
| - * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -#include "webrtc/modules/video_processing/deflickering.h"
|
| -
|
| -#include <math.h>
|
| -#include <stdlib.h>
|
| -
|
| -#include "webrtc/base/logging.h"
|
| -#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
| -#include "webrtc/system_wrappers/include/sort.h"
|
| -
|
| -namespace webrtc {
|
| -
|
| -// Detection constants
|
| -// (Q4) Maximum allowed deviation for detection.
|
| -enum { kFrequencyDeviation = 39 };
|
| -// (Q4) Minimum frequency that can be detected.
|
| -enum { kMinFrequencyToDetect = 32 };
|
| -// Number of flickers before we accept detection
|
| -enum { kNumFlickerBeforeDetect = 2 };
|
| -enum { kmean_valueScaling = 4 }; // (Q4) In power of 2
|
| -// Dead-zone region in terms of pixel values
|
| -enum { kZeroCrossingDeadzone = 10 };
|
| -// Deflickering constants.
|
| -// Compute the quantiles over 1 / DownsamplingFactor of the image.
|
| -enum { kDownsamplingFactor = 8 };
|
| -enum { kLog2OfDownsamplingFactor = 3 };
|
| -
|
| -// To generate in Matlab:
|
| -// >> probUW16 = round(2^11 *
|
| -// [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.97]);
|
| -// >> fprintf('%d, ', probUW16)
|
| -// Resolution reduced to avoid overflow when multiplying with the
|
| -// (potentially) large number of pixels.
|
| -const uint16_t VPMDeflickering::prob_uw16_[kNumProbs] = {
|
| - 102, 205, 410, 614, 819, 1024,
|
| - 1229, 1434, 1638, 1843, 1946, 1987}; // <Q11>
|
| -
|
| -// To generate in Matlab:
|
| -// >> numQuants = 14; maxOnlyLength = 5;
|
| -// >> weightUW16 = round(2^15 *
|
| -// [linspace(0.5, 1.0, numQuants - maxOnlyLength)]);
|
| -// >> fprintf('%d, %d,\n ', weightUW16);
|
| -const uint16_t VPMDeflickering::weight_uw16_[kNumQuants - kMaxOnlyLength] = {
|
| - 16384, 18432, 20480, 22528, 24576, 26624, 28672, 30720, 32768}; // <Q15>
|
| -
|
| -VPMDeflickering::VPMDeflickering() {
|
| - Reset();
|
| -}
|
| -
|
| -VPMDeflickering::~VPMDeflickering() {}
|
| -
|
| -void VPMDeflickering::Reset() {
|
| - mean_buffer_length_ = 0;
|
| - detection_state_ = 0;
|
| - frame_rate_ = 0;
|
| -
|
| - memset(mean_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
|
| - memset(timestamp_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
|
| -
|
| - // Initialize the history with a uniformly distributed histogram.
|
| - quant_hist_uw8_[0][0] = 0;
|
| - quant_hist_uw8_[0][kNumQuants - 1] = 255;
|
| - for (int32_t i = 0; i < kNumProbs; i++) {
|
| - // Unsigned round. <Q0>
|
| - quant_hist_uw8_[0][i + 1] =
|
| - static_cast<uint8_t>((prob_uw16_[i] * 255 + (1 << 10)) >> 11);
|
| - }
|
| -
|
| - for (int32_t i = 1; i < kFrameHistory_size; i++) {
|
| - memcpy(quant_hist_uw8_[i], quant_hist_uw8_[0],
|
| - sizeof(uint8_t) * kNumQuants);
|
| - }
|
| -}
|
| -
|
| -int32_t VPMDeflickering::ProcessFrame(VideoFrame* frame,
|
| - VideoProcessing::FrameStats* stats) {
|
| - assert(frame);
|
| - uint32_t frame_memory;
|
| - uint8_t quant_uw8[kNumQuants];
|
| - uint8_t maxquant_uw8[kNumQuants];
|
| - uint8_t minquant_uw8[kNumQuants];
|
| - uint16_t target_quant_uw16[kNumQuants];
|
| - uint16_t increment_uw16;
|
| - uint8_t map_uw8[256];
|
| -
|
| - uint16_t tmp_uw16;
|
| - uint32_t tmp_uw32;
|
| - int width = frame->width();
|
| - int height = frame->height();
|
| -
|
| - if (frame->IsZeroSize()) {
|
| - return VPM_GENERAL_ERROR;
|
| - }
|
| -
|
| - // Stricter height check due to subsampling size calculation below.
|
| - if (height < 2) {
|
| - LOG(LS_ERROR) << "Invalid frame size.";
|
| - return VPM_GENERAL_ERROR;
|
| - }
|
| -
|
| - if (!VideoProcessing::ValidFrameStats(*stats)) {
|
| - return VPM_GENERAL_ERROR;
|
| - }
|
| -
|
| - if (PreDetection(frame->timestamp(), *stats) == -1)
|
| - return VPM_GENERAL_ERROR;
|
| -
|
| - // Flicker detection
|
| - int32_t det_flicker = DetectFlicker();
|
| - if (det_flicker < 0) {
|
| - return VPM_GENERAL_ERROR;
|
| - } else if (det_flicker != 1) {
|
| - return 0;
|
| - }
|
| -
|
| - // Size of luminance component.
|
| - const uint32_t y_size = height * width;
|
| -
|
| - const uint32_t y_sub_size =
|
| - width * (((height - 1) >> kLog2OfDownsamplingFactor) + 1);
|
| - uint8_t* y_sorted = new uint8_t[y_sub_size];
|
| - uint32_t sort_row_idx = 0;
|
| - for (int i = 0; i < height; i += kDownsamplingFactor) {
|
| - memcpy(y_sorted + sort_row_idx * width, frame->buffer(kYPlane) + i * width,
|
| - width);
|
| - sort_row_idx++;
|
| - }
|
| -
|
| - webrtc::Sort(y_sorted, y_sub_size, webrtc::TYPE_UWord8);
|
| -
|
| - uint32_t prob_idx_uw32 = 0;
|
| - quant_uw8[0] = 0;
|
| - quant_uw8[kNumQuants - 1] = 255;
|
| -
|
| - // Ensure we won't get an overflow below.
|
| - // In practice, the number of subsampled pixels will not become this large.
|
| - if (y_sub_size > (1 << 21) - 1) {
|
| - LOG(LS_ERROR) << "Subsampled number of pixels too large.";
|
| - return -1;
|
| - }
|
| -
|
| - for (int32_t i = 0; i < kNumProbs; i++) {
|
| - // <Q0>.
|
| - prob_idx_uw32 = WEBRTC_SPL_UMUL_32_16(y_sub_size, prob_uw16_[i]) >> 11;
|
| - quant_uw8[i + 1] = y_sorted[prob_idx_uw32];
|
| - }
|
| -
|
| - delete[] y_sorted;
|
| - y_sorted = NULL;
|
| -
|
| - // Shift history for new frame.
|
| - memmove(quant_hist_uw8_[1], quant_hist_uw8_[0],
|
| - (kFrameHistory_size - 1) * kNumQuants * sizeof(uint8_t));
|
| - // Store current frame in history.
|
| - memcpy(quant_hist_uw8_[0], quant_uw8, kNumQuants * sizeof(uint8_t));
|
| -
|
| - // We use a frame memory equal to the ceiling of half the frame rate to
|
| - // ensure we capture an entire period of flicker.
|
| - frame_memory = (frame_rate_ + (1 << 5)) >> 5; // Unsigned ceiling. <Q0>
|
| - // frame_rate_ in Q4.
|
| - if (frame_memory > kFrameHistory_size) {
|
| - frame_memory = kFrameHistory_size;
|
| - }
|
| -
|
| - // Get maximum and minimum.
|
| - for (int32_t i = 0; i < kNumQuants; i++) {
|
| - maxquant_uw8[i] = 0;
|
| - minquant_uw8[i] = 255;
|
| - for (uint32_t j = 0; j < frame_memory; j++) {
|
| - if (quant_hist_uw8_[j][i] > maxquant_uw8[i]) {
|
| - maxquant_uw8[i] = quant_hist_uw8_[j][i];
|
| - }
|
| -
|
| - if (quant_hist_uw8_[j][i] < minquant_uw8[i]) {
|
| - minquant_uw8[i] = quant_hist_uw8_[j][i];
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Get target quantiles.
|
| - for (int32_t i = 0; i < kNumQuants - kMaxOnlyLength; i++) {
|
| - // target = w * maxquant_uw8 + (1 - w) * minquant_uw8
|
| - // Weights w = |weight_uw16_| are in Q15, hence the final output has to be
|
| - // right shifted by 8 to end up in Q7.
|
| - target_quant_uw16[i] = static_cast<uint16_t>(
|
| - (weight_uw16_[i] * maxquant_uw8[i] +
|
| - ((1 << 15) - weight_uw16_[i]) * minquant_uw8[i]) >>
|
| - 8); // <Q7>
|
| - }
|
| -
|
| - for (int32_t i = kNumQuants - kMaxOnlyLength; i < kNumQuants; i++) {
|
| - target_quant_uw16[i] = ((uint16_t)maxquant_uw8[i]) << 7;
|
| - }
|
| -
|
| - // Compute the map from input to output pixels.
|
| - uint16_t mapUW16; // <Q7>
|
| - for (int32_t i = 1; i < kNumQuants; i++) {
|
| - // As quant and targetQuant are limited to UWord8, it's safe to use Q7 here.
|
| - tmp_uw32 =
|
| - static_cast<uint32_t>(target_quant_uw16[i] - target_quant_uw16[i - 1]);
|
| - tmp_uw16 = static_cast<uint16_t>(quant_uw8[i] - quant_uw8[i - 1]); // <Q0>
|
| -
|
| - if (tmp_uw16 > 0) {
|
| - increment_uw16 =
|
| - static_cast<uint16_t>(WebRtcSpl_DivU32U16(tmp_uw32,
|
| - tmp_uw16)); // <Q7>
|
| - } else {
|
| - // The value is irrelevant; the loop below will only iterate once.
|
| - increment_uw16 = 0;
|
| - }
|
| -
|
| - mapUW16 = target_quant_uw16[i - 1];
|
| - for (uint32_t j = quant_uw8[i - 1]; j < (uint32_t)(quant_uw8[i] + 1); j++) {
|
| - // Unsigned round. <Q0>
|
| - map_uw8[j] = (uint8_t)((mapUW16 + (1 << 6)) >> 7);
|
| - mapUW16 += increment_uw16;
|
| - }
|
| - }
|
| -
|
| - // Map to the output frame.
|
| - uint8_t* buffer = frame->buffer(kYPlane);
|
| - for (uint32_t i = 0; i < y_size; i++) {
|
| - buffer[i] = map_uw8[buffer[i]];
|
| - }
|
| -
|
| - // Frame was altered, so reset stats.
|
| - VideoProcessing::ClearFrameStats(stats);
|
| -
|
| - return VPM_OK;
|
| -}
|
| -
|
| -/**
|
| - Performs some pre-detection operations. Must be called before
|
| - DetectFlicker().
|
| -
|
| - \param[in] timestamp Timestamp of the current frame.
|
| - \param[in] stats Statistics of the current frame.
|
| -
|
| - \return 0: Success\n
|
| - 2: Detection not possible due to flickering frequency too close to
|
| - zero.\n
|
| - -1: Error
|
| -*/
|
| -int32_t VPMDeflickering::PreDetection(
|
| - const uint32_t timestamp,
|
| - const VideoProcessing::FrameStats& stats) {
|
| - int32_t mean_val; // Mean value of frame (Q4)
|
| - uint32_t frame_rate = 0;
|
| - int32_t meanBufferLength; // Temp variable.
|
| -
|
| - mean_val = ((stats.sum << kmean_valueScaling) / stats.num_pixels);
|
| - // Update mean value buffer.
|
| - // This should be done even though we might end up in an unreliable detection.
|
| - memmove(mean_buffer_ + 1, mean_buffer_,
|
| - (kMeanBufferLength - 1) * sizeof(int32_t));
|
| - mean_buffer_[0] = mean_val;
|
| -
|
| - // Update timestamp buffer.
|
| - // This should be done even though we might end up in an unreliable detection.
|
| - memmove(timestamp_buffer_ + 1, timestamp_buffer_,
|
| - (kMeanBufferLength - 1) * sizeof(uint32_t));
|
| - timestamp_buffer_[0] = timestamp;
|
| -
|
| - /* Compute current frame rate (Q4) */
|
| - if (timestamp_buffer_[kMeanBufferLength - 1] != 0) {
|
| - frame_rate = ((90000 << 4) * (kMeanBufferLength - 1));
|
| - frame_rate /=
|
| - (timestamp_buffer_[0] - timestamp_buffer_[kMeanBufferLength - 1]);
|
| - } else if (timestamp_buffer_[1] != 0) {
|
| - frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
|
| - }
|
| -
|
| - /* Determine required size of mean value buffer (mean_buffer_length_) */
|
| - if (frame_rate == 0) {
|
| - meanBufferLength = 1;
|
| - } else {
|
| - meanBufferLength =
|
| - (kNumFlickerBeforeDetect * frame_rate) / kMinFrequencyToDetect;
|
| - }
|
| - /* Sanity check of buffer length */
|
| - if (meanBufferLength >= kMeanBufferLength) {
|
| - /* Too long buffer. The flickering frequency is too close to zero, which
|
| - * makes the estimation unreliable.
|
| - */
|
| - mean_buffer_length_ = 0;
|
| - return 2;
|
| - }
|
| - mean_buffer_length_ = meanBufferLength;
|
| -
|
| - if ((timestamp_buffer_[mean_buffer_length_ - 1] != 0) &&
|
| - (mean_buffer_length_ != 1)) {
|
| - frame_rate = ((90000 << 4) * (mean_buffer_length_ - 1));
|
| - frame_rate /=
|
| - (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
|
| - } else if (timestamp_buffer_[1] != 0) {
|
| - frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
|
| - }
|
| - frame_rate_ = frame_rate;
|
| -
|
| - return VPM_OK;
|
| -}
|
| -
|
| -/**
|
| - This function detects flicker in the video stream. As a side effect the
|
| - mean value buffer is updated with the new mean value.
|
| -
|
| - \return 0: No flickering detected\n
|
| - 1: Flickering detected\n
|
| - 2: Detection not possible due to unreliable frequency interval
|
| - -1: Error
|
| -*/
|
| -int32_t VPMDeflickering::DetectFlicker() {
|
| - uint32_t i;
|
| - int32_t freqEst; // (Q4) Frequency estimate to base detection upon
|
| - int32_t ret_val = -1;
|
| -
|
| - /* Sanity check for mean_buffer_length_ */
|
| - if (mean_buffer_length_ < 2) {
|
| - /* Not possible to estimate frequency */
|
| - return 2;
|
| - }
|
| - // Count zero crossings with a dead zone to be robust against noise. If the
|
| - // noise std is 2 pixel this corresponds to about 95% confidence interval.
|
| - int32_t deadzone = (kZeroCrossingDeadzone << kmean_valueScaling); // Q4
|
| - int32_t meanOfBuffer = 0; // Mean value of mean value buffer.
|
| - int32_t numZeros = 0; // Number of zeros that cross the dead-zone.
|
| - int32_t cntState = 0; // State variable for zero crossing regions.
|
| - int32_t cntStateOld = 0; // Previous state for zero crossing regions.
|
| -
|
| - for (i = 0; i < mean_buffer_length_; i++) {
|
| - meanOfBuffer += mean_buffer_[i];
|
| - }
|
| - meanOfBuffer += (mean_buffer_length_ >> 1); // Rounding, not truncation.
|
| - meanOfBuffer /= mean_buffer_length_;
|
| -
|
| - // Count zero crossings.
|
| - cntStateOld = (mean_buffer_[0] >= (meanOfBuffer + deadzone));
|
| - cntStateOld -= (mean_buffer_[0] <= (meanOfBuffer - deadzone));
|
| - for (i = 1; i < mean_buffer_length_; i++) {
|
| - cntState = (mean_buffer_[i] >= (meanOfBuffer + deadzone));
|
| - cntState -= (mean_buffer_[i] <= (meanOfBuffer - deadzone));
|
| - if (cntStateOld == 0) {
|
| - cntStateOld = -cntState;
|
| - }
|
| - if (((cntState + cntStateOld) == 0) && (cntState != 0)) {
|
| - numZeros++;
|
| - cntStateOld = cntState;
|
| - }
|
| - }
|
| - // END count zero crossings.
|
| -
|
| - /* Frequency estimation according to:
|
| - * freqEst = numZeros * frame_rate / 2 / mean_buffer_length_;
|
| - *
|
| - * Resolution is set to Q4
|
| - */
|
| - freqEst = ((numZeros * 90000) << 3);
|
| - freqEst /=
|
| - (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
|
| -
|
| - /* Translate frequency estimate to regions close to 100 and 120 Hz */
|
| - uint8_t freqState = 0; // Current translation state;
|
| - // (0) Not in interval,
|
| - // (1) Within valid interval,
|
| - // (2) Out of range
|
| - int32_t freqAlias = freqEst;
|
| - if (freqEst > kMinFrequencyToDetect) {
|
| - uint8_t aliasState = 1;
|
| - while (freqState == 0) {
|
| - /* Increase frequency */
|
| - freqAlias += (aliasState * frame_rate_);
|
| - freqAlias += ((freqEst << 1) * (1 - (aliasState << 1)));
|
| - /* Compute state */
|
| - freqState = (abs(freqAlias - (100 << 4)) <= kFrequencyDeviation);
|
| - freqState += (abs(freqAlias - (120 << 4)) <= kFrequencyDeviation);
|
| - freqState += 2 * (freqAlias > ((120 << 4) + kFrequencyDeviation));
|
| - /* Switch alias state */
|
| - aliasState++;
|
| - aliasState &= 0x01;
|
| - }
|
| - }
|
| - /* Is frequency estimate within detection region? */
|
| - if (freqState == 1) {
|
| - ret_val = 1;
|
| - } else if (freqState == 0) {
|
| - ret_val = 2;
|
| - } else {
|
| - ret_val = 0;
|
| - }
|
| - return ret_val;
|
| -}
|
| -
|
| -} // namespace webrtc
|
|
|