OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 #include "webrtc/modules/audio_processing/utility/delay_estimator.h" | |
12 | |
13 #include <assert.h> | |
14 #include <stdlib.h> | |
15 #include <string.h> | |
16 | |
17 // Number of right shifts for scaling is linearly depending on number of bits in | |
18 // the far-end binary spectrum. | |
19 static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum. | |
20 static const int kShiftsLinearSlope = 3; | |
21 | |
22 static const int32_t kProbabilityOffset = 1024; // 2 in Q9. | |
23 static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9. | |
24 static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9. | |
25 | |
26 // Robust validation settings | |
27 static const float kHistogramMax = 3000.f; | |
28 static const float kLastHistogramMax = 250.f; | |
29 static const float kMinHistogramThreshold = 1.5f; | |
30 static const int kMinRequiredHits = 10; | |
31 static const int kMaxHitsWhenPossiblyNonCausal = 10; | |
32 static const int kMaxHitsWhenPossiblyCausal = 1000; | |
33 static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0. | |
34 static const float kFractionSlope = 0.05f; | |
35 static const float kMinFractionWhenPossiblyCausal = 0.5f; | |
36 static const float kMinFractionWhenPossiblyNonCausal = 0.25f; | |
37 | |
38 // Counts and returns number of bits of a 32-bit word. | |
39 static int BitCount(uint32_t u32) { | |
40 uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) - | |
41 ((u32 >> 2) & 011111111111); | |
42 tmp = ((tmp + (tmp >> 3)) & 030707070707); | |
43 tmp = (tmp + (tmp >> 6)); | |
44 tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077; | |
45 | |
46 return ((int) tmp); | |
47 } | |
48 | |
49 // Compares the |binary_vector| with all rows of the |binary_matrix| and counts | |
50 // per row the number of times they have the same value. | |
51 // | |
52 // Inputs: | |
53 // - binary_vector : binary "vector" stored in a long | |
54 // - binary_matrix : binary "matrix" stored as a vector of long | |
55 // - matrix_size : size of binary "matrix" | |
56 // | |
57 // Output: | |
58 // - bit_counts : "Vector" stored as a long, containing for each | |
59 // row the number of times the matrix row and the | |
60 // input vector have the same value | |
61 // | |
62 static void BitCountComparison(uint32_t binary_vector, | |
63 const uint32_t* binary_matrix, | |
64 int matrix_size, | |
65 int32_t* bit_counts) { | |
66 int n = 0; | |
67 | |
68 // Compare |binary_vector| with all rows of the |binary_matrix| | |
69 for (; n < matrix_size; n++) { | |
70 bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]); | |
71 } | |
72 } | |
73 | |
74 // Collects necessary statistics for the HistogramBasedValidation(). This | |
75 // function has to be called prior to calling HistogramBasedValidation(). The | |
76 // statistics updated and used by the HistogramBasedValidation() are: | |
77 // 1. the number of |candidate_hits|, which states for how long we have had the | |
78 // same |candidate_delay| | |
79 // 2. the |histogram| of candidate delays over time. This histogram is | |
80 // weighted with respect to a reliability measure and time-varying to cope | |
81 // with possible delay shifts. | |
82 // For further description see commented code. | |
83 // | |
84 // Inputs: | |
85 // - candidate_delay : The delay to validate. | |
86 // - valley_depth_q14 : The cost function has a valley/minimum at the | |
87 // |candidate_delay| location. |valley_depth_q14| is the | |
88 // cost function difference between the minimum and | |
89 // maximum locations. The value is in the Q14 domain. | |
90 // - valley_level_q14 : Is the cost function value at the minimum, in Q14. | |
91 static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self, | |
92 int candidate_delay, | |
93 int32_t valley_depth_q14, | |
94 int32_t valley_level_q14) { | |
95 const float valley_depth = valley_depth_q14 * kQ14Scaling; | |
96 float decrease_in_last_set = valley_depth; | |
97 const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ? | |
98 kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal; | |
99 int i = 0; | |
100 | |
101 assert(self->history_size == self->farend->history_size); | |
102 // Reset |candidate_hits| if we have a new candidate. | |
103 if (candidate_delay != self->last_candidate_delay) { | |
104 self->candidate_hits = 0; | |
105 self->last_candidate_delay = candidate_delay; | |
106 } | |
107 self->candidate_hits++; | |
108 | |
109 // The |histogram| is updated differently across the bins. | |
110 // 1. The |candidate_delay| histogram bin is increased with the | |
111 // |valley_depth|, which is a simple measure of how reliable the | |
112 // |candidate_delay| is. The histogram is not increased above | |
113 // |kHistogramMax|. | |
114 self->histogram[candidate_delay] += valley_depth; | |
115 if (self->histogram[candidate_delay] > kHistogramMax) { | |
116 self->histogram[candidate_delay] = kHistogramMax; | |
117 } | |
118 // 2. The histogram bins in the neighborhood of |candidate_delay| are | |
119 // unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}. | |
120 // 3. The histogram bins in the neighborhood of |last_delay| are decreased | |
121 // with |decrease_in_last_set|. This value equals the difference between | |
122 // the cost function values at the locations |candidate_delay| and | |
123 // |last_delay| until we reach |max_hits_for_slow_change| consecutive hits | |
124 // at the |candidate_delay|. If we exceed this amount of hits the | |
125 // |candidate_delay| is a "potential" candidate and we start decreasing | |
126 // these histogram bins more rapidly with |valley_depth|. | |
127 if (self->candidate_hits < max_hits_for_slow_change) { | |
128 decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] - | |
129 valley_level_q14) * kQ14Scaling; | |
130 } | |
131 // 4. All other bins are decreased with |valley_depth|. | |
132 // TODO(bjornv): Investigate how to make this loop more efficient. Split up | |
133 // the loop? Remove parts that doesn't add too much. | |
134 for (i = 0; i < self->history_size; ++i) { | |
135 int is_in_last_set = (i >= self->last_delay - 2) && | |
136 (i <= self->last_delay + 1) && (i != candidate_delay); | |
137 int is_in_candidate_set = (i >= candidate_delay - 2) && | |
138 (i <= candidate_delay + 1); | |
139 self->histogram[i] -= decrease_in_last_set * is_in_last_set + | |
140 valley_depth * (!is_in_last_set && !is_in_candidate_set); | |
141 // 5. No histogram bin can go below 0. | |
142 if (self->histogram[i] < 0) { | |
143 self->histogram[i] = 0; | |
144 } | |
145 } | |
146 } | |
147 | |
148 // Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(), | |
149 // based on a mix of counting concurring hits with a modified histogram | |
150 // of recent delay estimates. In brief a candidate is valid (returns 1) if it | |
151 // is the most likely according to the histogram. There are a couple of | |
152 // exceptions that are worth mentioning: | |
153 // 1. If the |candidate_delay| < |last_delay| it can be that we are in a | |
154 // non-causal state, breaking a possible echo control algorithm. Hence, we | |
155 // open up for a quicker change by allowing the change even if the | |
156 // |candidate_delay| is not the most likely one according to the histogram. | |
157 // 2. There's a minimum number of hits (kMinRequiredHits) and the histogram | |
158 // value has to reached a minimum (kMinHistogramThreshold) to be valid. | |
159 // 3. The action is also depending on the filter length used for echo control. | |
160 // If the delay difference is larger than what the filter can capture, we | |
161 // also move quicker towards a change. | |
162 // For further description see commented code. | |
163 // | |
164 // Input: | |
165 // - candidate_delay : The delay to validate. | |
166 // | |
167 // Return value: | |
168 // - is_histogram_valid : 1 - The |candidate_delay| is valid. | |
169 // 0 - Otherwise. | |
170 static int HistogramBasedValidation(const BinaryDelayEstimator* self, | |
171 int candidate_delay) { | |
172 float fraction = 1.f; | |
173 float histogram_threshold = self->histogram[self->compare_delay]; | |
174 const int delay_difference = candidate_delay - self->last_delay; | |
175 int is_histogram_valid = 0; | |
176 | |
177 // The histogram based validation of |candidate_delay| is done by comparing | |
178 // the |histogram| at bin |candidate_delay| with a |histogram_threshold|. | |
179 // This |histogram_threshold| equals a |fraction| of the |histogram| at bin | |
180 // |last_delay|. The |fraction| is a piecewise linear function of the | |
181 // |delay_difference| between the |candidate_delay| and the |last_delay| | |
182 // allowing for a quicker move if | |
183 // i) a potential echo control filter can not handle these large differences. | |
184 // ii) keeping |last_delay| instead of updating to |candidate_delay| could | |
185 // force an echo control into a non-causal state. | |
186 // We further require the histogram to have reached a minimum value of | |
187 // |kMinHistogramThreshold|. In addition, we also require the number of | |
188 // |candidate_hits| to be more than |kMinRequiredHits| to remove spurious | |
189 // values. | |
190 | |
191 // Calculate a comparison histogram value (|histogram_threshold|) that is | |
192 // depending on the distance between the |candidate_delay| and |last_delay|. | |
193 // TODO(bjornv): How much can we gain by turning the fraction calculation | |
194 // into tables? | |
195 if (delay_difference > self->allowed_offset) { | |
196 fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset); | |
197 fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction : | |
198 kMinFractionWhenPossiblyCausal); | |
199 } else if (delay_difference < 0) { | |
200 fraction = kMinFractionWhenPossiblyNonCausal - | |
201 kFractionSlope * delay_difference; | |
202 fraction = (fraction > 1.f ? 1.f : fraction); | |
203 } | |
204 histogram_threshold *= fraction; | |
205 histogram_threshold = (histogram_threshold > kMinHistogramThreshold ? | |
206 histogram_threshold : kMinHistogramThreshold); | |
207 | |
208 is_histogram_valid = | |
209 (self->histogram[candidate_delay] >= histogram_threshold) && | |
210 (self->candidate_hits > kMinRequiredHits); | |
211 | |
212 return is_histogram_valid; | |
213 } | |
214 | |
215 // Performs a robust validation of the |candidate_delay| estimated in | |
216 // WebRtc_ProcessBinarySpectrum(). The algorithm takes the | |
217 // |is_instantaneous_valid| and the |is_histogram_valid| and combines them | |
218 // into a robust validation. The HistogramBasedValidation() has to be called | |
219 // prior to this call. | |
220 // For further description on how the combination is done, see commented code. | |
221 // | |
222 // Inputs: | |
223 // - candidate_delay : The delay to validate. | |
224 // - is_instantaneous_valid : The instantaneous validation performed in | |
225 // WebRtc_ProcessBinarySpectrum(). | |
226 // - is_histogram_valid : The histogram based validation. | |
227 // | |
228 // Return value: | |
229 // - is_robust : 1 - The candidate_delay is valid according to a | |
230 // combination of the two inputs. | |
231 // : 0 - Otherwise. | |
232 static int RobustValidation(const BinaryDelayEstimator* self, | |
233 int candidate_delay, | |
234 int is_instantaneous_valid, | |
235 int is_histogram_valid) { | |
236 int is_robust = 0; | |
237 | |
238 // The final robust validation is based on the two algorithms; 1) the | |
239 // |is_instantaneous_valid| and 2) the histogram based with result stored in | |
240 // |is_histogram_valid|. | |
241 // i) Before we actually have a valid estimate (|last_delay| == -2), we say | |
242 // a candidate is valid if either algorithm states so | |
243 // (|is_instantaneous_valid| OR |is_histogram_valid|). | |
244 is_robust = (self->last_delay < 0) && | |
245 (is_instantaneous_valid || is_histogram_valid); | |
246 // ii) Otherwise, we need both algorithms to be certain | |
247 // (|is_instantaneous_valid| AND |is_histogram_valid|) | |
248 is_robust |= is_instantaneous_valid && is_histogram_valid; | |
249 // iii) With one exception, i.e., the histogram based algorithm can overrule | |
250 // the instantaneous one if |is_histogram_valid| = 1 and the histogram | |
251 // is significantly strong. | |
252 is_robust |= is_histogram_valid && | |
253 (self->histogram[candidate_delay] > self->last_delay_histogram); | |
254 | |
255 return is_robust; | |
256 } | |
257 | |
258 void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { | |
259 | |
260 if (self == NULL) { | |
261 return; | |
262 } | |
263 | |
264 free(self->binary_far_history); | |
265 self->binary_far_history = NULL; | |
266 | |
267 free(self->far_bit_counts); | |
268 self->far_bit_counts = NULL; | |
269 | |
270 free(self); | |
271 } | |
272 | |
273 BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend( | |
274 int history_size) { | |
275 BinaryDelayEstimatorFarend* self = NULL; | |
276 | |
277 if (history_size > 1) { | |
278 // Sanity conditions fulfilled. | |
279 self = malloc(sizeof(BinaryDelayEstimatorFarend)); | |
280 } | |
281 if (self == NULL) { | |
282 return NULL; | |
283 } | |
284 | |
285 self->history_size = 0; | |
286 self->binary_far_history = NULL; | |
287 self->far_bit_counts = NULL; | |
288 if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) { | |
289 WebRtc_FreeBinaryDelayEstimatorFarend(self); | |
290 self = NULL; | |
291 } | |
292 return self; | |
293 } | |
294 | |
295 int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self, | |
296 int history_size) { | |
297 assert(self != NULL); | |
298 // (Re-)Allocate memory for history buffers. | |
299 self->binary_far_history = | |
300 realloc(self->binary_far_history, | |
301 history_size * sizeof(*self->binary_far_history)); | |
302 self->far_bit_counts = realloc(self->far_bit_counts, | |
303 history_size * sizeof(*self->far_bit_counts)); | |
304 if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) { | |
305 history_size = 0; | |
306 } | |
307 // Fill with zeros if we have expanded the buffers. | |
308 if (history_size > self->history_size) { | |
309 int size_diff = history_size - self->history_size; | |
310 memset(&self->binary_far_history[self->history_size], | |
311 0, | |
312 sizeof(*self->binary_far_history) * size_diff); | |
313 memset(&self->far_bit_counts[self->history_size], | |
314 0, | |
315 sizeof(*self->far_bit_counts) * size_diff); | |
316 } | |
317 self->history_size = history_size; | |
318 | |
319 return self->history_size; | |
320 } | |
321 | |
322 void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { | |
323 assert(self != NULL); | |
324 memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size); | |
325 memset(self->far_bit_counts, 0, sizeof(int) * self->history_size); | |
326 } | |
327 | |
328 void WebRtc_SoftResetBinaryDelayEstimatorFarend( | |
329 BinaryDelayEstimatorFarend* self, int delay_shift) { | |
330 int abs_shift = abs(delay_shift); | |
331 int shift_size = 0; | |
332 int dest_index = 0; | |
333 int src_index = 0; | |
334 int padding_index = 0; | |
335 | |
336 assert(self != NULL); | |
337 shift_size = self->history_size - abs_shift; | |
338 assert(shift_size > 0); | |
339 if (delay_shift == 0) { | |
340 return; | |
341 } else if (delay_shift > 0) { | |
342 dest_index = abs_shift; | |
343 } else if (delay_shift < 0) { | |
344 src_index = abs_shift; | |
345 padding_index = shift_size; | |
346 } | |
347 | |
348 // Shift and zero pad buffers. | |
349 memmove(&self->binary_far_history[dest_index], | |
350 &self->binary_far_history[src_index], | |
351 sizeof(*self->binary_far_history) * shift_size); | |
352 memset(&self->binary_far_history[padding_index], 0, | |
353 sizeof(*self->binary_far_history) * abs_shift); | |
354 memmove(&self->far_bit_counts[dest_index], | |
355 &self->far_bit_counts[src_index], | |
356 sizeof(*self->far_bit_counts) * shift_size); | |
357 memset(&self->far_bit_counts[padding_index], 0, | |
358 sizeof(*self->far_bit_counts) * abs_shift); | |
359 } | |
360 | |
361 void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle, | |
362 uint32_t binary_far_spectrum) { | |
363 assert(handle != NULL); | |
364 // Shift binary spectrum history and insert current |binary_far_spectrum|. | |
365 memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]), | |
366 (handle->history_size - 1) * sizeof(uint32_t)); | |
367 handle->binary_far_history[0] = binary_far_spectrum; | |
368 | |
369 // Shift history of far-end binary spectrum bit counts and insert bit count | |
370 // of current |binary_far_spectrum|. | |
371 memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]), | |
372 (handle->history_size - 1) * sizeof(int)); | |
373 handle->far_bit_counts[0] = BitCount(binary_far_spectrum); | |
374 } | |
375 | |
376 void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) { | |
377 | |
378 if (self == NULL) { | |
379 return; | |
380 } | |
381 | |
382 free(self->mean_bit_counts); | |
383 self->mean_bit_counts = NULL; | |
384 | |
385 free(self->bit_counts); | |
386 self->bit_counts = NULL; | |
387 | |
388 free(self->binary_near_history); | |
389 self->binary_near_history = NULL; | |
390 | |
391 free(self->histogram); | |
392 self->histogram = NULL; | |
393 | |
394 // BinaryDelayEstimator does not have ownership of |farend|, hence we do not | |
395 // free the memory here. That should be handled separately by the user. | |
396 self->farend = NULL; | |
397 | |
398 free(self); | |
399 } | |
400 | |
401 BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator( | |
402 BinaryDelayEstimatorFarend* farend, int max_lookahead) { | |
403 BinaryDelayEstimator* self = NULL; | |
404 | |
405 if ((farend != NULL) && (max_lookahead >= 0)) { | |
406 // Sanity conditions fulfilled. | |
407 self = malloc(sizeof(BinaryDelayEstimator)); | |
408 } | |
409 if (self == NULL) { | |
410 return NULL; | |
411 } | |
412 | |
413 self->farend = farend; | |
414 self->near_history_size = max_lookahead + 1; | |
415 self->history_size = 0; | |
416 self->robust_validation_enabled = 0; // Disabled by default. | |
417 self->allowed_offset = 0; | |
418 | |
419 self->lookahead = max_lookahead; | |
420 | |
421 // Allocate memory for spectrum and history buffers. | |
422 self->mean_bit_counts = NULL; | |
423 self->bit_counts = NULL; | |
424 self->histogram = NULL; | |
425 self->binary_near_history = | |
426 malloc((max_lookahead + 1) * sizeof(*self->binary_near_history)); | |
427 if (self->binary_near_history == NULL || | |
428 WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) { | |
429 WebRtc_FreeBinaryDelayEstimator(self); | |
430 self = NULL; | |
431 } | |
432 | |
433 return self; | |
434 } | |
435 | |
436 int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self, | |
437 int history_size) { | |
438 BinaryDelayEstimatorFarend* far = self->farend; | |
439 // (Re-)Allocate memory for spectrum and history buffers. | |
440 if (history_size != far->history_size) { | |
441 // Only update far-end buffers if we need. | |
442 history_size = WebRtc_AllocateFarendBufferMemory(far, history_size); | |
443 } | |
444 // The extra array element in |mean_bit_counts| and |histogram| is a dummy | |
445 // element only used while |last_delay| == -2, i.e., before we have a valid | |
446 // estimate. | |
447 self->mean_bit_counts = | |
448 realloc(self->mean_bit_counts, | |
449 (history_size + 1) * sizeof(*self->mean_bit_counts)); | |
450 self->bit_counts = | |
451 realloc(self->bit_counts, history_size * sizeof(*self->bit_counts)); | |
452 self->histogram = | |
453 realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram)); | |
454 | |
455 if ((self->mean_bit_counts == NULL) || | |
456 (self->bit_counts == NULL) || | |
457 (self->histogram == NULL)) { | |
458 history_size = 0; | |
459 } | |
460 // Fill with zeros if we have expanded the buffers. | |
461 if (history_size > self->history_size) { | |
462 int size_diff = history_size - self->history_size; | |
463 memset(&self->mean_bit_counts[self->history_size], | |
464 0, | |
465 sizeof(*self->mean_bit_counts) * size_diff); | |
466 memset(&self->bit_counts[self->history_size], | |
467 0, | |
468 sizeof(*self->bit_counts) * size_diff); | |
469 memset(&self->histogram[self->history_size], | |
470 0, | |
471 sizeof(*self->histogram) * size_diff); | |
472 } | |
473 self->history_size = history_size; | |
474 | |
475 return self->history_size; | |
476 } | |
477 | |
478 void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) { | |
479 int i = 0; | |
480 assert(self != NULL); | |
481 | |
482 memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size); | |
483 memset(self->binary_near_history, | |
484 0, | |
485 sizeof(uint32_t) * self->near_history_size); | |
486 for (i = 0; i <= self->history_size; ++i) { | |
487 self->mean_bit_counts[i] = (20 << 9); // 20 in Q9. | |
488 self->histogram[i] = 0.f; | |
489 } | |
490 self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9. | |
491 self->last_delay_probability = (int) kMaxBitCountsQ9; // 32 in Q9. | |
492 | |
493 // Default return value if we're unable to estimate. -1 is used for errors. | |
494 self->last_delay = -2; | |
495 | |
496 self->last_candidate_delay = -2; | |
497 self->compare_delay = self->history_size; | |
498 self->candidate_hits = 0; | |
499 self->last_delay_histogram = 0.f; | |
500 } | |
501 | |
502 int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self, | |
503 int delay_shift) { | |
504 int lookahead = 0; | |
505 assert(self != NULL); | |
506 lookahead = self->lookahead; | |
507 self->lookahead -= delay_shift; | |
508 if (self->lookahead < 0) { | |
509 self->lookahead = 0; | |
510 } | |
511 if (self->lookahead > self->near_history_size - 1) { | |
512 self->lookahead = self->near_history_size - 1; | |
513 } | |
514 return lookahead - self->lookahead; | |
515 } | |
516 | |
517 int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self, | |
518 uint32_t binary_near_spectrum) { | |
519 int i = 0; | |
520 int candidate_delay = -1; | |
521 int valid_candidate = 0; | |
522 | |
523 int32_t value_best_candidate = kMaxBitCountsQ9; | |
524 int32_t value_worst_candidate = 0; | |
525 int32_t valley_depth = 0; | |
526 | |
527 assert(self != NULL); | |
528 if (self->farend->history_size != self->history_size) { | |
529 // Non matching history sizes. | |
530 return -1; | |
531 } | |
532 if (self->near_history_size > 1) { | |
533 // If we apply lookahead, shift near-end binary spectrum history. Insert | |
534 // current |binary_near_spectrum| and pull out the delayed one. | |
535 memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]), | |
536 (self->near_history_size - 1) * sizeof(uint32_t)); | |
537 self->binary_near_history[0] = binary_near_spectrum; | |
538 binary_near_spectrum = self->binary_near_history[self->lookahead]; | |
539 } | |
540 | |
541 // Compare with delayed spectra and store the |bit_counts| for each delay. | |
542 BitCountComparison(binary_near_spectrum, self->farend->binary_far_history, | |
543 self->history_size, self->bit_counts); | |
544 | |
545 // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|. | |
546 for (i = 0; i < self->history_size; i++) { | |
547 // |bit_counts| is constrained to [0, 32], meaning we can smooth with a | |
548 // factor up to 2^26. We use Q9. | |
549 int32_t bit_count = (self->bit_counts[i] << 9); // Q9. | |
550 | |
551 // Update |mean_bit_counts| only when far-end signal has something to | |
552 // contribute. If |far_bit_counts| is zero the far-end signal is weak and | |
553 // we likely have a poor echo condition, hence don't update. | |
554 if (self->farend->far_bit_counts[i] > 0) { | |
555 // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|. | |
556 int shifts = kShiftsAtZero; | |
557 shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4; | |
558 WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i])); | |
559 } | |
560 } | |
561 | |
562 // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate| | |
563 // of |mean_bit_counts|. | |
564 for (i = 0; i < self->history_size; i++) { | |
565 if (self->mean_bit_counts[i] < value_best_candidate) { | |
566 value_best_candidate = self->mean_bit_counts[i]; | |
567 candidate_delay = i; | |
568 } | |
569 if (self->mean_bit_counts[i] > value_worst_candidate) { | |
570 value_worst_candidate = self->mean_bit_counts[i]; | |
571 } | |
572 } | |
573 valley_depth = value_worst_candidate - value_best_candidate; | |
574 | |
575 // The |value_best_candidate| is a good indicator on the probability of | |
576 // |candidate_delay| being an accurate delay (a small |value_best_candidate| | |
577 // means a good binary match). In the following sections we make a decision | |
578 // whether to update |last_delay| or not. | |
579 // 1) If the difference bit counts between the best and the worst delay | |
580 // candidates is too small we consider the situation to be unreliable and | |
581 // don't update |last_delay|. | |
582 // 2) If the situation is reliable we update |last_delay| if the value of the | |
583 // best candidate delay has a value less than | |
584 // i) an adaptive threshold |minimum_probability|, or | |
585 // ii) this corresponding value |last_delay_probability|, but updated at | |
586 // this time instant. | |
587 | |
588 // Update |minimum_probability|. | |
589 if ((self->minimum_probability > kProbabilityLowerLimit) && | |
590 (valley_depth > kProbabilityMinSpread)) { | |
591 // The "hard" threshold can't be lower than 17 (in Q9). | |
592 // The valley in the curve also has to be distinct, i.e., the | |
593 // difference between |value_worst_candidate| and |value_best_candidate| has | |
594 // to be large enough. | |
595 int32_t threshold = value_best_candidate + kProbabilityOffset; | |
596 if (threshold < kProbabilityLowerLimit) { | |
597 threshold = kProbabilityLowerLimit; | |
598 } | |
599 if (self->minimum_probability > threshold) { | |
600 self->minimum_probability = threshold; | |
601 } | |
602 } | |
603 // Update |last_delay_probability|. | |
604 // We use a Markov type model, i.e., a slowly increasing level over time. | |
605 self->last_delay_probability++; | |
606 // Validate |candidate_delay|. We have a reliable instantaneous delay | |
607 // estimate if | |
608 // 1) The valley is distinct enough (|valley_depth| > |kProbabilityOffset|) | |
609 // and | |
610 // 2) The depth of the valley is deep enough | |
611 // (|value_best_candidate| < |minimum_probability|) | |
612 // and deeper than the best estimate so far | |
613 // (|value_best_candidate| < |last_delay_probability|) | |
614 valid_candidate = ((valley_depth > kProbabilityOffset) && | |
615 ((value_best_candidate < self->minimum_probability) || | |
616 (value_best_candidate < self->last_delay_probability))); | |
617 | |
618 UpdateRobustValidationStatistics(self, candidate_delay, valley_depth, | |
619 value_best_candidate); | |
620 if (self->robust_validation_enabled) { | |
621 int is_histogram_valid = HistogramBasedValidation(self, candidate_delay); | |
622 valid_candidate = RobustValidation(self, candidate_delay, valid_candidate, | |
623 is_histogram_valid); | |
624 | |
625 } | |
626 if (valid_candidate) { | |
627 if (candidate_delay != self->last_delay) { | |
628 self->last_delay_histogram = | |
629 (self->histogram[candidate_delay] > kLastHistogramMax ? | |
630 kLastHistogramMax : self->histogram[candidate_delay]); | |
631 // Adjust the histogram if we made a change to |last_delay|, though it was | |
632 // not the most likely one according to the histogram. | |
633 if (self->histogram[candidate_delay] < | |
634 self->histogram[self->compare_delay]) { | |
635 self->histogram[self->compare_delay] = self->histogram[candidate_delay]; | |
636 } | |
637 } | |
638 self->last_delay = candidate_delay; | |
639 if (value_best_candidate < self->last_delay_probability) { | |
640 self->last_delay_probability = value_best_candidate; | |
641 } | |
642 self->compare_delay = self->last_delay; | |
643 } | |
644 | |
645 return self->last_delay; | |
646 } | |
647 | |
648 int WebRtc_binary_last_delay(BinaryDelayEstimator* self) { | |
649 assert(self != NULL); | |
650 return self->last_delay; | |
651 } | |
652 | |
653 float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) { | |
654 float quality = 0; | |
655 assert(self != NULL); | |
656 | |
657 if (self->robust_validation_enabled) { | |
658 // Simply a linear function of the histogram height at delay estimate. | |
659 quality = self->histogram[self->compare_delay] / kHistogramMax; | |
660 } else { | |
661 // Note that |last_delay_probability| states how deep the minimum of the | |
662 // cost function is, so it is rather an error probability. | |
663 quality = (float) (kMaxBitCountsQ9 - self->last_delay_probability) / | |
664 kMaxBitCountsQ9; | |
665 if (quality < 0) { | |
666 quality = 0; | |
667 } | |
668 } | |
669 return quality; | |
670 } | |
671 | |
672 void WebRtc_MeanEstimatorFix(int32_t new_value, | |
673 int factor, | |
674 int32_t* mean_value) { | |
675 int32_t diff = new_value - *mean_value; | |
676 | |
677 // mean_new = mean_value + ((new_value - mean_value) >> factor); | |
678 if (diff < 0) { | |
679 diff = -((-diff) >> factor); | |
680 } else { | |
681 diff = (diff >> factor); | |
682 } | |
683 *mean_value += diff; | |
684 } | |
OLD | NEW |