Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1264)

Side by Side Diff: webrtc/modules/audio_processing/test/audio_processing_unittest.cc

Issue 1846323002: Moved the audioprocessing unittest to the audio_processing folder (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12 #include <stdio.h>
13
14 #include <algorithm>
15 #include <limits>
16 #include <memory>
17 #include <queue>
18
19 #include "webrtc/base/arraysize.h"
20 #include "webrtc/common_audio/include/audio_util.h"
21 #include "webrtc/common_audio/resampler/include/push_resampler.h"
22 #include "webrtc/common_audio/resampler/push_sinc_resampler.h"
23 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h"
24 #include "webrtc/modules/audio_processing/beamformer/mock_nonlinear_beamformer.h "
25 #include "webrtc/modules/audio_processing/common.h"
26 #include "webrtc/modules/audio_processing/include/audio_processing.h"
27 #include "webrtc/modules/audio_processing/test/protobuf_utils.h"
28 #include "webrtc/modules/audio_processing/test/test_utils.h"
29 #include "webrtc/modules/include/module_common_types.h"
30 #include "webrtc/system_wrappers/include/event_wrapper.h"
31 #include "webrtc/system_wrappers/include/trace.h"
32 #include "webrtc/test/testsupport/fileutils.h"
33 #ifdef WEBRTC_ANDROID_PLATFORM_BUILD
34 #include "gtest/gtest.h"
35 #include "external/webrtc/webrtc/modules/audio_processing/test/unittest.pb.h"
36 #else
37 #include "testing/gtest/include/gtest/gtest.h"
38 #include "webrtc/modules/audio_processing/unittest.pb.h"
39 #endif
40
41 namespace webrtc {
42 namespace {
43
44 // TODO(ekmeyerson): Switch to using StreamConfig and ProcessingConfig where
45 // applicable.
46
47 // TODO(bjornv): This is not feasible until the functionality has been
48 // re-implemented; see comment at the bottom of this file. For now, the user has
49 // to hard code the |write_ref_data| value.
50 // When false, this will compare the output data with the results stored to
51 // file. This is the typical case. When the file should be updated, it can
52 // be set to true with the command-line switch --write_ref_data.
53 bool write_ref_data = false;
54 const google::protobuf::int32 kChannels[] = {1, 2};
55 const int kSampleRates[] = {8000, 16000, 32000, 48000};
56
57 #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
58 // Android doesn't support 48kHz.
59 const int kProcessSampleRates[] = {8000, 16000, 32000};
60 #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
61 const int kProcessSampleRates[] = {8000, 16000, 32000, 48000};
62 #endif
63
64 enum StreamDirection { kForward = 0, kReverse };
65
66 void ConvertToFloat(const int16_t* int_data, ChannelBuffer<float>* cb) {
67 ChannelBuffer<int16_t> cb_int(cb->num_frames(),
68 cb->num_channels());
69 Deinterleave(int_data,
70 cb->num_frames(),
71 cb->num_channels(),
72 cb_int.channels());
73 for (size_t i = 0; i < cb->num_channels(); ++i) {
74 S16ToFloat(cb_int.channels()[i],
75 cb->num_frames(),
76 cb->channels()[i]);
77 }
78 }
79
80 void ConvertToFloat(const AudioFrame& frame, ChannelBuffer<float>* cb) {
81 ConvertToFloat(frame.data_, cb);
82 }
83
84 // Number of channels including the keyboard channel.
85 size_t TotalChannelsFromLayout(AudioProcessing::ChannelLayout layout) {
86 switch (layout) {
87 case AudioProcessing::kMono:
88 return 1;
89 case AudioProcessing::kMonoAndKeyboard:
90 case AudioProcessing::kStereo:
91 return 2;
92 case AudioProcessing::kStereoAndKeyboard:
93 return 3;
94 }
95 assert(false);
96 return 0;
97 }
98
99 int TruncateToMultipleOf10(int value) {
100 return (value / 10) * 10;
101 }
102
103 void MixStereoToMono(const float* stereo, float* mono,
104 size_t samples_per_channel) {
105 for (size_t i = 0; i < samples_per_channel; ++i)
106 mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) / 2;
107 }
108
109 void MixStereoToMono(const int16_t* stereo, int16_t* mono,
110 size_t samples_per_channel) {
111 for (size_t i = 0; i < samples_per_channel; ++i)
112 mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) >> 1;
113 }
114
115 void CopyLeftToRightChannel(int16_t* stereo, size_t samples_per_channel) {
116 for (size_t i = 0; i < samples_per_channel; i++) {
117 stereo[i * 2 + 1] = stereo[i * 2];
118 }
119 }
120
121 void VerifyChannelsAreEqual(int16_t* stereo, size_t samples_per_channel) {
122 for (size_t i = 0; i < samples_per_channel; i++) {
123 EXPECT_EQ(stereo[i * 2 + 1], stereo[i * 2]);
124 }
125 }
126
127 void SetFrameTo(AudioFrame* frame, int16_t value) {
128 for (size_t i = 0; i < frame->samples_per_channel_ * frame->num_channels_;
129 ++i) {
130 frame->data_[i] = value;
131 }
132 }
133
134 void SetFrameTo(AudioFrame* frame, int16_t left, int16_t right) {
135 ASSERT_EQ(2u, frame->num_channels_);
136 for (size_t i = 0; i < frame->samples_per_channel_ * 2; i += 2) {
137 frame->data_[i] = left;
138 frame->data_[i + 1] = right;
139 }
140 }
141
142 void ScaleFrame(AudioFrame* frame, float scale) {
143 for (size_t i = 0; i < frame->samples_per_channel_ * frame->num_channels_;
144 ++i) {
145 frame->data_[i] = FloatS16ToS16(frame->data_[i] * scale);
146 }
147 }
148
149 bool FrameDataAreEqual(const AudioFrame& frame1, const AudioFrame& frame2) {
150 if (frame1.samples_per_channel_ != frame2.samples_per_channel_) {
151 return false;
152 }
153 if (frame1.num_channels_ != frame2.num_channels_) {
154 return false;
155 }
156 if (memcmp(frame1.data_, frame2.data_,
157 frame1.samples_per_channel_ * frame1.num_channels_ *
158 sizeof(int16_t))) {
159 return false;
160 }
161 return true;
162 }
163
164 void EnableAllAPComponents(AudioProcessing* ap) {
165 #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
166 EXPECT_NOERR(ap->echo_control_mobile()->Enable(true));
167
168 EXPECT_NOERR(ap->gain_control()->set_mode(GainControl::kAdaptiveDigital));
169 EXPECT_NOERR(ap->gain_control()->Enable(true));
170 #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
171 EXPECT_NOERR(ap->echo_cancellation()->enable_drift_compensation(true));
172 EXPECT_NOERR(ap->echo_cancellation()->enable_metrics(true));
173 EXPECT_NOERR(ap->echo_cancellation()->enable_delay_logging(true));
174 EXPECT_NOERR(ap->echo_cancellation()->Enable(true));
175
176 EXPECT_NOERR(ap->gain_control()->set_mode(GainControl::kAdaptiveAnalog));
177 EXPECT_NOERR(ap->gain_control()->set_analog_level_limits(0, 255));
178 EXPECT_NOERR(ap->gain_control()->Enable(true));
179 #endif
180
181 EXPECT_NOERR(ap->high_pass_filter()->Enable(true));
182 EXPECT_NOERR(ap->level_estimator()->Enable(true));
183 EXPECT_NOERR(ap->noise_suppression()->Enable(true));
184
185 EXPECT_NOERR(ap->voice_detection()->Enable(true));
186 }
187
188 // These functions are only used by ApmTest.Process.
189 template <class T>
190 T AbsValue(T a) {
191 return a > 0 ? a: -a;
192 }
193
194 int16_t MaxAudioFrame(const AudioFrame& frame) {
195 const size_t length = frame.samples_per_channel_ * frame.num_channels_;
196 int16_t max_data = AbsValue(frame.data_[0]);
197 for (size_t i = 1; i < length; i++) {
198 max_data = std::max(max_data, AbsValue(frame.data_[i]));
199 }
200
201 return max_data;
202 }
203
204 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
205 void TestStats(const AudioProcessing::Statistic& test,
206 const audioproc::Test::Statistic& reference) {
207 EXPECT_NEAR(reference.instant(), test.instant, 2);
208 EXPECT_NEAR(reference.average(), test.average, 2);
209 EXPECT_NEAR(reference.maximum(), test.maximum, 3);
210 EXPECT_NEAR(reference.minimum(), test.minimum, 2);
211 }
212
213 void WriteStatsMessage(const AudioProcessing::Statistic& output,
214 audioproc::Test::Statistic* msg) {
215 msg->set_instant(output.instant);
216 msg->set_average(output.average);
217 msg->set_maximum(output.maximum);
218 msg->set_minimum(output.minimum);
219 }
220 #endif
221
222 void OpenFileAndWriteMessage(const std::string filename,
223 const ::google::protobuf::MessageLite& msg) {
224 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
225 FILE* file = fopen(filename.c_str(), "wb");
226 ASSERT_TRUE(file != NULL);
227
228 int32_t size = msg.ByteSize();
229 ASSERT_GT(size, 0);
230 std::unique_ptr<uint8_t[]> array(new uint8_t[size]);
231 ASSERT_TRUE(msg.SerializeToArray(array.get(), size));
232
233 ASSERT_EQ(1u, fwrite(&size, sizeof(size), 1, file));
234 ASSERT_EQ(static_cast<size_t>(size),
235 fwrite(array.get(), sizeof(array[0]), size, file));
236 fclose(file);
237 #else
238 std::cout << "Warning: Writing new reference is only allowed on Linux!"
239 << std::endl;
240 #endif
241 }
242
243 std::string ResourceFilePath(std::string name, int sample_rate_hz) {
244 std::ostringstream ss;
245 // Resource files are all stereo.
246 ss << name << sample_rate_hz / 1000 << "_stereo";
247 return test::ResourcePath(ss.str(), "pcm");
248 }
249
250 // Temporary filenames unique to this process. Used to be able to run these
251 // tests in parallel as each process needs to be running in isolation they can't
252 // have competing filenames.
253 std::map<std::string, std::string> temp_filenames;
254
255 std::string OutputFilePath(std::string name,
256 int input_rate,
257 int output_rate,
258 int reverse_input_rate,
259 int reverse_output_rate,
260 size_t num_input_channels,
261 size_t num_output_channels,
262 size_t num_reverse_input_channels,
263 size_t num_reverse_output_channels,
264 StreamDirection file_direction) {
265 std::ostringstream ss;
266 ss << name << "_i" << num_input_channels << "_" << input_rate / 1000 << "_ir"
267 << num_reverse_input_channels << "_" << reverse_input_rate / 1000 << "_";
268 if (num_output_channels == 1) {
269 ss << "mono";
270 } else if (num_output_channels == 2) {
271 ss << "stereo";
272 } else {
273 assert(false);
274 }
275 ss << output_rate / 1000;
276 if (num_reverse_output_channels == 1) {
277 ss << "_rmono";
278 } else if (num_reverse_output_channels == 2) {
279 ss << "_rstereo";
280 } else {
281 assert(false);
282 }
283 ss << reverse_output_rate / 1000;
284 ss << "_d" << file_direction << "_pcm";
285
286 std::string filename = ss.str();
287 if (temp_filenames[filename].empty())
288 temp_filenames[filename] = test::TempFilename(test::OutputPath(), filename);
289 return temp_filenames[filename];
290 }
291
292 void ClearTempFiles() {
293 for (auto& kv : temp_filenames)
294 remove(kv.second.c_str());
295 }
296
297 void OpenFileAndReadMessage(const std::string filename,
298 ::google::protobuf::MessageLite* msg) {
299 FILE* file = fopen(filename.c_str(), "rb");
300 ASSERT_TRUE(file != NULL);
301 ReadMessageFromFile(file, msg);
302 fclose(file);
303 }
304
305 // Reads a 10 ms chunk of int16 interleaved audio from the given (assumed
306 // stereo) file, converts to deinterleaved float (optionally downmixing) and
307 // returns the result in |cb|. Returns false if the file ended (or on error) and
308 // true otherwise.
309 //
310 // |int_data| and |float_data| are just temporary space that must be
311 // sufficiently large to hold the 10 ms chunk.
312 bool ReadChunk(FILE* file, int16_t* int_data, float* float_data,
313 ChannelBuffer<float>* cb) {
314 // The files always contain stereo audio.
315 size_t frame_size = cb->num_frames() * 2;
316 size_t read_count = fread(int_data, sizeof(int16_t), frame_size, file);
317 if (read_count != frame_size) {
318 // Check that the file really ended.
319 assert(feof(file));
320 return false; // This is expected.
321 }
322
323 S16ToFloat(int_data, frame_size, float_data);
324 if (cb->num_channels() == 1) {
325 MixStereoToMono(float_data, cb->channels()[0], cb->num_frames());
326 } else {
327 Deinterleave(float_data, cb->num_frames(), 2,
328 cb->channels());
329 }
330
331 return true;
332 }
333
334 class ApmTest : public ::testing::Test {
335 protected:
336 ApmTest();
337 virtual void SetUp();
338 virtual void TearDown();
339
340 static void SetUpTestCase() {
341 Trace::CreateTrace();
342 }
343
344 static void TearDownTestCase() {
345 Trace::ReturnTrace();
346 ClearTempFiles();
347 }
348
349 // Used to select between int and float interface tests.
350 enum Format {
351 kIntFormat,
352 kFloatFormat
353 };
354
355 void Init(int sample_rate_hz,
356 int output_sample_rate_hz,
357 int reverse_sample_rate_hz,
358 size_t num_input_channels,
359 size_t num_output_channels,
360 size_t num_reverse_channels,
361 bool open_output_file);
362 void Init(AudioProcessing* ap);
363 void EnableAllComponents();
364 bool ReadFrame(FILE* file, AudioFrame* frame);
365 bool ReadFrame(FILE* file, AudioFrame* frame, ChannelBuffer<float>* cb);
366 void ReadFrameWithRewind(FILE* file, AudioFrame* frame);
367 void ReadFrameWithRewind(FILE* file, AudioFrame* frame,
368 ChannelBuffer<float>* cb);
369 void ProcessWithDefaultStreamParameters(AudioFrame* frame);
370 void ProcessDelayVerificationTest(int delay_ms, int system_delay_ms,
371 int delay_min, int delay_max);
372 void TestChangingChannelsInt16Interface(
373 size_t num_channels,
374 AudioProcessing::Error expected_return);
375 void TestChangingForwardChannels(size_t num_in_channels,
376 size_t num_out_channels,
377 AudioProcessing::Error expected_return);
378 void TestChangingReverseChannels(size_t num_rev_channels,
379 AudioProcessing::Error expected_return);
380 void RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate);
381 void RunManualVolumeChangeIsPossibleTest(int sample_rate);
382 void StreamParametersTest(Format format);
383 int ProcessStreamChooser(Format format);
384 int AnalyzeReverseStreamChooser(Format format);
385 void ProcessDebugDump(const std::string& in_filename,
386 const std::string& out_filename,
387 Format format,
388 int max_size_bytes);
389 void VerifyDebugDumpTest(Format format);
390
391 const std::string output_path_;
392 const std::string ref_path_;
393 const std::string ref_filename_;
394 std::unique_ptr<AudioProcessing> apm_;
395 AudioFrame* frame_;
396 AudioFrame* revframe_;
397 std::unique_ptr<ChannelBuffer<float> > float_cb_;
398 std::unique_ptr<ChannelBuffer<float> > revfloat_cb_;
399 int output_sample_rate_hz_;
400 size_t num_output_channels_;
401 FILE* far_file_;
402 FILE* near_file_;
403 FILE* out_file_;
404 };
405
406 ApmTest::ApmTest()
407 : output_path_(test::OutputPath()),
408 ref_path_(test::ProjectRootPath() + "data/audio_processing/"),
409 #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
410 ref_filename_(ref_path_ + "output_data_fixed.pb"),
411 #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
412 #if defined(WEBRTC_MAC)
413 // A different file for Mac is needed because on this platform the AEC
414 // constant |kFixedDelayMs| value is 20 and not 50 as it is on the rest.
415 ref_filename_(ref_path_ + "output_data_mac.pb"),
416 #else
417 ref_filename_(ref_path_ + "output_data_float.pb"),
418 #endif
419 #endif
420 frame_(NULL),
421 revframe_(NULL),
422 output_sample_rate_hz_(0),
423 num_output_channels_(0),
424 far_file_(NULL),
425 near_file_(NULL),
426 out_file_(NULL) {
427 Config config;
428 config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
429 apm_.reset(AudioProcessing::Create(config));
430 }
431
432 void ApmTest::SetUp() {
433 ASSERT_TRUE(apm_.get() != NULL);
434
435 frame_ = new AudioFrame();
436 revframe_ = new AudioFrame();
437
438 Init(32000, 32000, 32000, 2, 2, 2, false);
439 }
440
441 void ApmTest::TearDown() {
442 if (frame_) {
443 delete frame_;
444 }
445 frame_ = NULL;
446
447 if (revframe_) {
448 delete revframe_;
449 }
450 revframe_ = NULL;
451
452 if (far_file_) {
453 ASSERT_EQ(0, fclose(far_file_));
454 }
455 far_file_ = NULL;
456
457 if (near_file_) {
458 ASSERT_EQ(0, fclose(near_file_));
459 }
460 near_file_ = NULL;
461
462 if (out_file_) {
463 ASSERT_EQ(0, fclose(out_file_));
464 }
465 out_file_ = NULL;
466 }
467
468 void ApmTest::Init(AudioProcessing* ap) {
469 ASSERT_EQ(kNoErr,
470 ap->Initialize(
471 {{{frame_->sample_rate_hz_, frame_->num_channels_},
472 {output_sample_rate_hz_, num_output_channels_},
473 {revframe_->sample_rate_hz_, revframe_->num_channels_},
474 {revframe_->sample_rate_hz_, revframe_->num_channels_}}}));
475 }
476
477 void ApmTest::Init(int sample_rate_hz,
478 int output_sample_rate_hz,
479 int reverse_sample_rate_hz,
480 size_t num_input_channels,
481 size_t num_output_channels,
482 size_t num_reverse_channels,
483 bool open_output_file) {
484 SetContainerFormat(sample_rate_hz, num_input_channels, frame_, &float_cb_);
485 output_sample_rate_hz_ = output_sample_rate_hz;
486 num_output_channels_ = num_output_channels;
487
488 SetContainerFormat(reverse_sample_rate_hz, num_reverse_channels, revframe_,
489 &revfloat_cb_);
490 Init(apm_.get());
491
492 if (far_file_) {
493 ASSERT_EQ(0, fclose(far_file_));
494 }
495 std::string filename = ResourceFilePath("far", sample_rate_hz);
496 far_file_ = fopen(filename.c_str(), "rb");
497 ASSERT_TRUE(far_file_ != NULL) << "Could not open file " <<
498 filename << "\n";
499
500 if (near_file_) {
501 ASSERT_EQ(0, fclose(near_file_));
502 }
503 filename = ResourceFilePath("near", sample_rate_hz);
504 near_file_ = fopen(filename.c_str(), "rb");
505 ASSERT_TRUE(near_file_ != NULL) << "Could not open file " <<
506 filename << "\n";
507
508 if (open_output_file) {
509 if (out_file_) {
510 ASSERT_EQ(0, fclose(out_file_));
511 }
512 filename = OutputFilePath(
513 "out", sample_rate_hz, output_sample_rate_hz, reverse_sample_rate_hz,
514 reverse_sample_rate_hz, num_input_channels, num_output_channels,
515 num_reverse_channels, num_reverse_channels, kForward);
516 out_file_ = fopen(filename.c_str(), "wb");
517 ASSERT_TRUE(out_file_ != NULL) << "Could not open file " <<
518 filename << "\n";
519 }
520 }
521
522 void ApmTest::EnableAllComponents() {
523 EnableAllAPComponents(apm_.get());
524 }
525
526 bool ApmTest::ReadFrame(FILE* file, AudioFrame* frame,
527 ChannelBuffer<float>* cb) {
528 // The files always contain stereo audio.
529 size_t frame_size = frame->samples_per_channel_ * 2;
530 size_t read_count = fread(frame->data_,
531 sizeof(int16_t),
532 frame_size,
533 file);
534 if (read_count != frame_size) {
535 // Check that the file really ended.
536 EXPECT_NE(0, feof(file));
537 return false; // This is expected.
538 }
539
540 if (frame->num_channels_ == 1) {
541 MixStereoToMono(frame->data_, frame->data_,
542 frame->samples_per_channel_);
543 }
544
545 if (cb) {
546 ConvertToFloat(*frame, cb);
547 }
548 return true;
549 }
550
551 bool ApmTest::ReadFrame(FILE* file, AudioFrame* frame) {
552 return ReadFrame(file, frame, NULL);
553 }
554
555 // If the end of the file has been reached, rewind it and attempt to read the
556 // frame again.
557 void ApmTest::ReadFrameWithRewind(FILE* file, AudioFrame* frame,
558 ChannelBuffer<float>* cb) {
559 if (!ReadFrame(near_file_, frame_, cb)) {
560 rewind(near_file_);
561 ASSERT_TRUE(ReadFrame(near_file_, frame_, cb));
562 }
563 }
564
565 void ApmTest::ReadFrameWithRewind(FILE* file, AudioFrame* frame) {
566 ReadFrameWithRewind(file, frame, NULL);
567 }
568
569 void ApmTest::ProcessWithDefaultStreamParameters(AudioFrame* frame) {
570 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
571 apm_->echo_cancellation()->set_stream_drift_samples(0);
572 EXPECT_EQ(apm_->kNoError,
573 apm_->gain_control()->set_stream_analog_level(127));
574 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame));
575 }
576
577 int ApmTest::ProcessStreamChooser(Format format) {
578 if (format == kIntFormat) {
579 return apm_->ProcessStream(frame_);
580 }
581 return apm_->ProcessStream(float_cb_->channels(),
582 frame_->samples_per_channel_,
583 frame_->sample_rate_hz_,
584 LayoutFromChannels(frame_->num_channels_),
585 output_sample_rate_hz_,
586 LayoutFromChannels(num_output_channels_),
587 float_cb_->channels());
588 }
589
590 int ApmTest::AnalyzeReverseStreamChooser(Format format) {
591 if (format == kIntFormat) {
592 return apm_->ProcessReverseStream(revframe_);
593 }
594 return apm_->AnalyzeReverseStream(
595 revfloat_cb_->channels(),
596 revframe_->samples_per_channel_,
597 revframe_->sample_rate_hz_,
598 LayoutFromChannels(revframe_->num_channels_));
599 }
600
601 void ApmTest::ProcessDelayVerificationTest(int delay_ms, int system_delay_ms,
602 int delay_min, int delay_max) {
603 // The |revframe_| and |frame_| should include the proper frame information,
604 // hence can be used for extracting information.
605 AudioFrame tmp_frame;
606 std::queue<AudioFrame*> frame_queue;
607 bool causal = true;
608
609 tmp_frame.CopyFrom(*revframe_);
610 SetFrameTo(&tmp_frame, 0);
611
612 EXPECT_EQ(apm_->kNoError, apm_->Initialize());
613 // Initialize the |frame_queue| with empty frames.
614 int frame_delay = delay_ms / 10;
615 while (frame_delay < 0) {
616 AudioFrame* frame = new AudioFrame();
617 frame->CopyFrom(tmp_frame);
618 frame_queue.push(frame);
619 frame_delay++;
620 causal = false;
621 }
622 while (frame_delay > 0) {
623 AudioFrame* frame = new AudioFrame();
624 frame->CopyFrom(tmp_frame);
625 frame_queue.push(frame);
626 frame_delay--;
627 }
628 // Run for 4.5 seconds, skipping statistics from the first 2.5 seconds. We
629 // need enough frames with audio to have reliable estimates, but as few as
630 // possible to keep processing time down. 4.5 seconds seemed to be a good
631 // compromise for this recording.
632 for (int frame_count = 0; frame_count < 450; ++frame_count) {
633 AudioFrame* frame = new AudioFrame();
634 frame->CopyFrom(tmp_frame);
635 // Use the near end recording, since that has more speech in it.
636 ASSERT_TRUE(ReadFrame(near_file_, frame));
637 frame_queue.push(frame);
638 AudioFrame* reverse_frame = frame;
639 AudioFrame* process_frame = frame_queue.front();
640 if (!causal) {
641 reverse_frame = frame_queue.front();
642 // When we call ProcessStream() the frame is modified, so we can't use the
643 // pointer directly when things are non-causal. Use an intermediate frame
644 // and copy the data.
645 process_frame = &tmp_frame;
646 process_frame->CopyFrom(*frame);
647 }
648 EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(reverse_frame));
649 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(system_delay_ms));
650 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(process_frame));
651 frame = frame_queue.front();
652 frame_queue.pop();
653 delete frame;
654
655 if (frame_count == 250) {
656 int median;
657 int std;
658 float poor_fraction;
659 // Discard the first delay metrics to avoid convergence effects.
660 EXPECT_EQ(apm_->kNoError,
661 apm_->echo_cancellation()->GetDelayMetrics(&median, &std,
662 &poor_fraction));
663 }
664 }
665
666 rewind(near_file_);
667 while (!frame_queue.empty()) {
668 AudioFrame* frame = frame_queue.front();
669 frame_queue.pop();
670 delete frame;
671 }
672 // Calculate expected delay estimate and acceptable regions. Further,
673 // limit them w.r.t. AEC delay estimation support.
674 const size_t samples_per_ms =
675 std::min(static_cast<size_t>(16), frame_->samples_per_channel_ / 10);
676 int expected_median = std::min(std::max(delay_ms - system_delay_ms,
677 delay_min), delay_max);
678 int expected_median_high = std::min(
679 std::max(expected_median + static_cast<int>(96 / samples_per_ms),
680 delay_min),
681 delay_max);
682 int expected_median_low = std::min(
683 std::max(expected_median - static_cast<int>(96 / samples_per_ms),
684 delay_min),
685 delay_max);
686 // Verify delay metrics.
687 int median;
688 int std;
689 float poor_fraction;
690 EXPECT_EQ(apm_->kNoError,
691 apm_->echo_cancellation()->GetDelayMetrics(&median, &std,
692 &poor_fraction));
693 EXPECT_GE(expected_median_high, median);
694 EXPECT_LE(expected_median_low, median);
695 }
696
697 void ApmTest::StreamParametersTest(Format format) {
698 // No errors when the components are disabled.
699 EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
700
701 // -- Missing AGC level --
702 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
703 EXPECT_EQ(apm_->kStreamParameterNotSetError,
704 ProcessStreamChooser(format));
705
706 // Resets after successful ProcessStream().
707 EXPECT_EQ(apm_->kNoError,
708 apm_->gain_control()->set_stream_analog_level(127));
709 EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
710 EXPECT_EQ(apm_->kStreamParameterNotSetError,
711 ProcessStreamChooser(format));
712
713 // Other stream parameters set correctly.
714 EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
715 EXPECT_EQ(apm_->kNoError,
716 apm_->echo_cancellation()->enable_drift_compensation(true));
717 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
718 apm_->echo_cancellation()->set_stream_drift_samples(0);
719 EXPECT_EQ(apm_->kStreamParameterNotSetError,
720 ProcessStreamChooser(format));
721 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
722 EXPECT_EQ(apm_->kNoError,
723 apm_->echo_cancellation()->enable_drift_compensation(false));
724
725 // -- Missing delay --
726 EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
727 EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
728 EXPECT_EQ(apm_->kStreamParameterNotSetError,
729 ProcessStreamChooser(format));
730
731 // Resets after successful ProcessStream().
732 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
733 EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
734 EXPECT_EQ(apm_->kStreamParameterNotSetError,
735 ProcessStreamChooser(format));
736
737 // Other stream parameters set correctly.
738 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
739 EXPECT_EQ(apm_->kNoError,
740 apm_->echo_cancellation()->enable_drift_compensation(true));
741 apm_->echo_cancellation()->set_stream_drift_samples(0);
742 EXPECT_EQ(apm_->kNoError,
743 apm_->gain_control()->set_stream_analog_level(127));
744 EXPECT_EQ(apm_->kStreamParameterNotSetError,
745 ProcessStreamChooser(format));
746 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
747
748 // -- Missing drift --
749 EXPECT_EQ(apm_->kStreamParameterNotSetError,
750 ProcessStreamChooser(format));
751
752 // Resets after successful ProcessStream().
753 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
754 apm_->echo_cancellation()->set_stream_drift_samples(0);
755 EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
756 EXPECT_EQ(apm_->kStreamParameterNotSetError,
757 ProcessStreamChooser(format));
758
759 // Other stream parameters set correctly.
760 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
761 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
762 EXPECT_EQ(apm_->kNoError,
763 apm_->gain_control()->set_stream_analog_level(127));
764 EXPECT_EQ(apm_->kStreamParameterNotSetError,
765 ProcessStreamChooser(format));
766
767 // -- No stream parameters --
768 EXPECT_EQ(apm_->kNoError,
769 AnalyzeReverseStreamChooser(format));
770 EXPECT_EQ(apm_->kStreamParameterNotSetError,
771 ProcessStreamChooser(format));
772
773 // -- All there --
774 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
775 apm_->echo_cancellation()->set_stream_drift_samples(0);
776 EXPECT_EQ(apm_->kNoError,
777 apm_->gain_control()->set_stream_analog_level(127));
778 EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
779 }
780
781 TEST_F(ApmTest, StreamParametersInt) {
782 StreamParametersTest(kIntFormat);
783 }
784
785 TEST_F(ApmTest, StreamParametersFloat) {
786 StreamParametersTest(kFloatFormat);
787 }
788
789 TEST_F(ApmTest, DefaultDelayOffsetIsZero) {
790 EXPECT_EQ(0, apm_->delay_offset_ms());
791 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(50));
792 EXPECT_EQ(50, apm_->stream_delay_ms());
793 }
794
795 TEST_F(ApmTest, DelayOffsetWithLimitsIsSetProperly) {
796 // High limit of 500 ms.
797 apm_->set_delay_offset_ms(100);
798 EXPECT_EQ(100, apm_->delay_offset_ms());
799 EXPECT_EQ(apm_->kBadStreamParameterWarning, apm_->set_stream_delay_ms(450));
800 EXPECT_EQ(500, apm_->stream_delay_ms());
801 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
802 EXPECT_EQ(200, apm_->stream_delay_ms());
803
804 // Low limit of 0 ms.
805 apm_->set_delay_offset_ms(-50);
806 EXPECT_EQ(-50, apm_->delay_offset_ms());
807 EXPECT_EQ(apm_->kBadStreamParameterWarning, apm_->set_stream_delay_ms(20));
808 EXPECT_EQ(0, apm_->stream_delay_ms());
809 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
810 EXPECT_EQ(50, apm_->stream_delay_ms());
811 }
812
813 void ApmTest::TestChangingChannelsInt16Interface(
814 size_t num_channels,
815 AudioProcessing::Error expected_return) {
816 frame_->num_channels_ = num_channels;
817 EXPECT_EQ(expected_return, apm_->ProcessStream(frame_));
818 EXPECT_EQ(expected_return, apm_->ProcessReverseStream(frame_));
819 }
820
821 void ApmTest::TestChangingForwardChannels(
822 size_t num_in_channels,
823 size_t num_out_channels,
824 AudioProcessing::Error expected_return) {
825 const StreamConfig input_stream = {frame_->sample_rate_hz_, num_in_channels};
826 const StreamConfig output_stream = {output_sample_rate_hz_, num_out_channels};
827
828 EXPECT_EQ(expected_return,
829 apm_->ProcessStream(float_cb_->channels(), input_stream,
830 output_stream, float_cb_->channels()));
831 }
832
833 void ApmTest::TestChangingReverseChannels(
834 size_t num_rev_channels,
835 AudioProcessing::Error expected_return) {
836 const ProcessingConfig processing_config = {
837 {{frame_->sample_rate_hz_, apm_->num_input_channels()},
838 {output_sample_rate_hz_, apm_->num_output_channels()},
839 {frame_->sample_rate_hz_, num_rev_channels},
840 {frame_->sample_rate_hz_, num_rev_channels}}};
841
842 EXPECT_EQ(
843 expected_return,
844 apm_->ProcessReverseStream(
845 float_cb_->channels(), processing_config.reverse_input_stream(),
846 processing_config.reverse_output_stream(), float_cb_->channels()));
847 }
848
849 TEST_F(ApmTest, ChannelsInt16Interface) {
850 // Testing number of invalid and valid channels.
851 Init(16000, 16000, 16000, 4, 4, 4, false);
852
853 TestChangingChannelsInt16Interface(0, apm_->kBadNumberChannelsError);
854
855 for (size_t i = 1; i < 4; i++) {
856 TestChangingChannelsInt16Interface(i, kNoErr);
857 EXPECT_EQ(i, apm_->num_input_channels());
858 // We always force the number of reverse channels used for processing to 1.
859 EXPECT_EQ(1u, apm_->num_reverse_channels());
860 }
861 }
862
863 TEST_F(ApmTest, Channels) {
864 // Testing number of invalid and valid channels.
865 Init(16000, 16000, 16000, 4, 4, 4, false);
866
867 TestChangingForwardChannels(0, 1, apm_->kBadNumberChannelsError);
868 TestChangingReverseChannels(0, apm_->kBadNumberChannelsError);
869
870 for (size_t i = 1; i < 4; ++i) {
871 for (size_t j = 0; j < 1; ++j) {
872 // Output channels much be one or match input channels.
873 if (j == 1 || i == j) {
874 TestChangingForwardChannels(i, j, kNoErr);
875 TestChangingReverseChannels(i, kNoErr);
876
877 EXPECT_EQ(i, apm_->num_input_channels());
878 EXPECT_EQ(j, apm_->num_output_channels());
879 // The number of reverse channels used for processing to is always 1.
880 EXPECT_EQ(1u, apm_->num_reverse_channels());
881 } else {
882 TestChangingForwardChannels(i, j,
883 AudioProcessing::kBadNumberChannelsError);
884 }
885 }
886 }
887 }
888
889 TEST_F(ApmTest, SampleRatesInt) {
890 // Testing invalid sample rates
891 SetContainerFormat(10000, 2, frame_, &float_cb_);
892 EXPECT_EQ(apm_->kBadSampleRateError, ProcessStreamChooser(kIntFormat));
893 // Testing valid sample rates
894 int fs[] = {8000, 16000, 32000, 48000};
895 for (size_t i = 0; i < arraysize(fs); i++) {
896 SetContainerFormat(fs[i], 2, frame_, &float_cb_);
897 EXPECT_NOERR(ProcessStreamChooser(kIntFormat));
898 }
899 }
900
901 TEST_F(ApmTest, EchoCancellation) {
902 EXPECT_EQ(apm_->kNoError,
903 apm_->echo_cancellation()->enable_drift_compensation(true));
904 EXPECT_TRUE(apm_->echo_cancellation()->is_drift_compensation_enabled());
905 EXPECT_EQ(apm_->kNoError,
906 apm_->echo_cancellation()->enable_drift_compensation(false));
907 EXPECT_FALSE(apm_->echo_cancellation()->is_drift_compensation_enabled());
908
909 EchoCancellation::SuppressionLevel level[] = {
910 EchoCancellation::kLowSuppression,
911 EchoCancellation::kModerateSuppression,
912 EchoCancellation::kHighSuppression,
913 };
914 for (size_t i = 0; i < arraysize(level); i++) {
915 EXPECT_EQ(apm_->kNoError,
916 apm_->echo_cancellation()->set_suppression_level(level[i]));
917 EXPECT_EQ(level[i],
918 apm_->echo_cancellation()->suppression_level());
919 }
920
921 EchoCancellation::Metrics metrics;
922 EXPECT_EQ(apm_->kNotEnabledError,
923 apm_->echo_cancellation()->GetMetrics(&metrics));
924
925 EXPECT_EQ(apm_->kNoError,
926 apm_->echo_cancellation()->enable_metrics(true));
927 EXPECT_TRUE(apm_->echo_cancellation()->are_metrics_enabled());
928 EXPECT_EQ(apm_->kNoError,
929 apm_->echo_cancellation()->enable_metrics(false));
930 EXPECT_FALSE(apm_->echo_cancellation()->are_metrics_enabled());
931
932 int median = 0;
933 int std = 0;
934 float poor_fraction = 0;
935 EXPECT_EQ(apm_->kNotEnabledError,
936 apm_->echo_cancellation()->GetDelayMetrics(&median, &std,
937 &poor_fraction));
938
939 EXPECT_EQ(apm_->kNoError,
940 apm_->echo_cancellation()->enable_delay_logging(true));
941 EXPECT_TRUE(apm_->echo_cancellation()->is_delay_logging_enabled());
942 EXPECT_EQ(apm_->kNoError,
943 apm_->echo_cancellation()->enable_delay_logging(false));
944 EXPECT_FALSE(apm_->echo_cancellation()->is_delay_logging_enabled());
945
946 EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
947 EXPECT_TRUE(apm_->echo_cancellation()->is_enabled());
948 EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(false));
949 EXPECT_FALSE(apm_->echo_cancellation()->is_enabled());
950
951 EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
952 EXPECT_TRUE(apm_->echo_cancellation()->is_enabled());
953 EXPECT_TRUE(apm_->echo_cancellation()->aec_core() != NULL);
954 EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(false));
955 EXPECT_FALSE(apm_->echo_cancellation()->is_enabled());
956 EXPECT_FALSE(apm_->echo_cancellation()->aec_core() != NULL);
957 }
958
959 TEST_F(ApmTest, DISABLED_EchoCancellationReportsCorrectDelays) {
960 // TODO(bjornv): Fix this test to work with DA-AEC.
961 // Enable AEC only.
962 EXPECT_EQ(apm_->kNoError,
963 apm_->echo_cancellation()->enable_drift_compensation(false));
964 EXPECT_EQ(apm_->kNoError,
965 apm_->echo_cancellation()->enable_metrics(false));
966 EXPECT_EQ(apm_->kNoError,
967 apm_->echo_cancellation()->enable_delay_logging(true));
968 EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
969 Config config;
970 config.Set<DelayAgnostic>(new DelayAgnostic(false));
971 apm_->SetExtraOptions(config);
972
973 // Internally in the AEC the amount of lookahead the delay estimation can
974 // handle is 15 blocks and the maximum delay is set to 60 blocks.
975 const int kLookaheadBlocks = 15;
976 const int kMaxDelayBlocks = 60;
977 // The AEC has a startup time before it actually starts to process. This
978 // procedure can flush the internal far-end buffer, which of course affects
979 // the delay estimation. Therefore, we set a system_delay high enough to
980 // avoid that. The smallest system_delay you can report without flushing the
981 // buffer is 66 ms in 8 kHz.
982 //
983 // It is known that for 16 kHz (and 32 kHz) sampling frequency there is an
984 // additional stuffing of 8 ms on the fly, but it seems to have no impact on
985 // delay estimation. This should be noted though. In case of test failure,
986 // this could be the cause.
987 const int kSystemDelayMs = 66;
988 // Test a couple of corner cases and verify that the estimated delay is
989 // within a valid region (set to +-1.5 blocks). Note that these cases are
990 // sampling frequency dependent.
991 for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) {
992 Init(kProcessSampleRates[i],
993 kProcessSampleRates[i],
994 kProcessSampleRates[i],
995 2,
996 2,
997 2,
998 false);
999 // Sampling frequency dependent variables.
1000 const int num_ms_per_block =
1001 std::max(4, static_cast<int>(640 / frame_->samples_per_channel_));
1002 const int delay_min_ms = -kLookaheadBlocks * num_ms_per_block;
1003 const int delay_max_ms = (kMaxDelayBlocks - 1) * num_ms_per_block;
1004
1005 // 1) Verify correct delay estimate at lookahead boundary.
1006 int delay_ms = TruncateToMultipleOf10(kSystemDelayMs + delay_min_ms);
1007 ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
1008 delay_max_ms);
1009 // 2) A delay less than maximum lookahead should give an delay estimate at
1010 // the boundary (= -kLookaheadBlocks * num_ms_per_block).
1011 delay_ms -= 20;
1012 ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
1013 delay_max_ms);
1014 // 3) Three values around zero delay. Note that we need to compensate for
1015 // the fake system_delay.
1016 delay_ms = TruncateToMultipleOf10(kSystemDelayMs - 10);
1017 ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
1018 delay_max_ms);
1019 delay_ms = TruncateToMultipleOf10(kSystemDelayMs);
1020 ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
1021 delay_max_ms);
1022 delay_ms = TruncateToMultipleOf10(kSystemDelayMs + 10);
1023 ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
1024 delay_max_ms);
1025 // 4) Verify correct delay estimate at maximum delay boundary.
1026 delay_ms = TruncateToMultipleOf10(kSystemDelayMs + delay_max_ms);
1027 ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
1028 delay_max_ms);
1029 // 5) A delay above the maximum delay should give an estimate at the
1030 // boundary (= (kMaxDelayBlocks - 1) * num_ms_per_block).
1031 delay_ms += 20;
1032 ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
1033 delay_max_ms);
1034 }
1035 }
1036
1037 TEST_F(ApmTest, EchoControlMobile) {
1038 // Turn AECM on (and AEC off)
1039 Init(16000, 16000, 16000, 2, 2, 2, false);
1040 EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(true));
1041 EXPECT_TRUE(apm_->echo_control_mobile()->is_enabled());
1042
1043 // Toggle routing modes
1044 EchoControlMobile::RoutingMode mode[] = {
1045 EchoControlMobile::kQuietEarpieceOrHeadset,
1046 EchoControlMobile::kEarpiece,
1047 EchoControlMobile::kLoudEarpiece,
1048 EchoControlMobile::kSpeakerphone,
1049 EchoControlMobile::kLoudSpeakerphone,
1050 };
1051 for (size_t i = 0; i < arraysize(mode); i++) {
1052 EXPECT_EQ(apm_->kNoError,
1053 apm_->echo_control_mobile()->set_routing_mode(mode[i]));
1054 EXPECT_EQ(mode[i],
1055 apm_->echo_control_mobile()->routing_mode());
1056 }
1057 // Turn comfort noise off/on
1058 EXPECT_EQ(apm_->kNoError,
1059 apm_->echo_control_mobile()->enable_comfort_noise(false));
1060 EXPECT_FALSE(apm_->echo_control_mobile()->is_comfort_noise_enabled());
1061 EXPECT_EQ(apm_->kNoError,
1062 apm_->echo_control_mobile()->enable_comfort_noise(true));
1063 EXPECT_TRUE(apm_->echo_control_mobile()->is_comfort_noise_enabled());
1064 // Set and get echo path
1065 const size_t echo_path_size =
1066 apm_->echo_control_mobile()->echo_path_size_bytes();
1067 std::unique_ptr<char[]> echo_path_in(new char[echo_path_size]);
1068 std::unique_ptr<char[]> echo_path_out(new char[echo_path_size]);
1069 EXPECT_EQ(apm_->kNullPointerError,
1070 apm_->echo_control_mobile()->SetEchoPath(NULL, echo_path_size));
1071 EXPECT_EQ(apm_->kNullPointerError,
1072 apm_->echo_control_mobile()->GetEchoPath(NULL, echo_path_size));
1073 EXPECT_EQ(apm_->kBadParameterError,
1074 apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(), 1));
1075 EXPECT_EQ(apm_->kNoError,
1076 apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(),
1077 echo_path_size));
1078 for (size_t i = 0; i < echo_path_size; i++) {
1079 echo_path_in[i] = echo_path_out[i] + 1;
1080 }
1081 EXPECT_EQ(apm_->kBadParameterError,
1082 apm_->echo_control_mobile()->SetEchoPath(echo_path_in.get(), 1));
1083 EXPECT_EQ(apm_->kNoError,
1084 apm_->echo_control_mobile()->SetEchoPath(echo_path_in.get(),
1085 echo_path_size));
1086 EXPECT_EQ(apm_->kNoError,
1087 apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(),
1088 echo_path_size));
1089 for (size_t i = 0; i < echo_path_size; i++) {
1090 EXPECT_EQ(echo_path_in[i], echo_path_out[i]);
1091 }
1092
1093 // Process a few frames with NS in the default disabled state. This exercises
1094 // a different codepath than with it enabled.
1095 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
1096 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1097 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
1098 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1099
1100 // Turn AECM off
1101 EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(false));
1102 EXPECT_FALSE(apm_->echo_control_mobile()->is_enabled());
1103 }
1104
1105 TEST_F(ApmTest, GainControl) {
1106 // Testing gain modes
1107 EXPECT_EQ(apm_->kNoError,
1108 apm_->gain_control()->set_mode(
1109 apm_->gain_control()->mode()));
1110
1111 GainControl::Mode mode[] = {
1112 GainControl::kAdaptiveAnalog,
1113 GainControl::kAdaptiveDigital,
1114 GainControl::kFixedDigital
1115 };
1116 for (size_t i = 0; i < arraysize(mode); i++) {
1117 EXPECT_EQ(apm_->kNoError,
1118 apm_->gain_control()->set_mode(mode[i]));
1119 EXPECT_EQ(mode[i], apm_->gain_control()->mode());
1120 }
1121 // Testing invalid target levels
1122 EXPECT_EQ(apm_->kBadParameterError,
1123 apm_->gain_control()->set_target_level_dbfs(-3));
1124 EXPECT_EQ(apm_->kBadParameterError,
1125 apm_->gain_control()->set_target_level_dbfs(-40));
1126 // Testing valid target levels
1127 EXPECT_EQ(apm_->kNoError,
1128 apm_->gain_control()->set_target_level_dbfs(
1129 apm_->gain_control()->target_level_dbfs()));
1130
1131 int level_dbfs[] = {0, 6, 31};
1132 for (size_t i = 0; i < arraysize(level_dbfs); i++) {
1133 EXPECT_EQ(apm_->kNoError,
1134 apm_->gain_control()->set_target_level_dbfs(level_dbfs[i]));
1135 EXPECT_EQ(level_dbfs[i], apm_->gain_control()->target_level_dbfs());
1136 }
1137
1138 // Testing invalid compression gains
1139 EXPECT_EQ(apm_->kBadParameterError,
1140 apm_->gain_control()->set_compression_gain_db(-1));
1141 EXPECT_EQ(apm_->kBadParameterError,
1142 apm_->gain_control()->set_compression_gain_db(100));
1143
1144 // Testing valid compression gains
1145 EXPECT_EQ(apm_->kNoError,
1146 apm_->gain_control()->set_compression_gain_db(
1147 apm_->gain_control()->compression_gain_db()));
1148
1149 int gain_db[] = {0, 10, 90};
1150 for (size_t i = 0; i < arraysize(gain_db); i++) {
1151 EXPECT_EQ(apm_->kNoError,
1152 apm_->gain_control()->set_compression_gain_db(gain_db[i]));
1153 EXPECT_EQ(gain_db[i], apm_->gain_control()->compression_gain_db());
1154 }
1155
1156 // Testing limiter off/on
1157 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(false));
1158 EXPECT_FALSE(apm_->gain_control()->is_limiter_enabled());
1159 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(true));
1160 EXPECT_TRUE(apm_->gain_control()->is_limiter_enabled());
1161
1162 // Testing invalid level limits
1163 EXPECT_EQ(apm_->kBadParameterError,
1164 apm_->gain_control()->set_analog_level_limits(-1, 512));
1165 EXPECT_EQ(apm_->kBadParameterError,
1166 apm_->gain_control()->set_analog_level_limits(100000, 512));
1167 EXPECT_EQ(apm_->kBadParameterError,
1168 apm_->gain_control()->set_analog_level_limits(512, -1));
1169 EXPECT_EQ(apm_->kBadParameterError,
1170 apm_->gain_control()->set_analog_level_limits(512, 100000));
1171 EXPECT_EQ(apm_->kBadParameterError,
1172 apm_->gain_control()->set_analog_level_limits(512, 255));
1173
1174 // Testing valid level limits
1175 EXPECT_EQ(apm_->kNoError,
1176 apm_->gain_control()->set_analog_level_limits(
1177 apm_->gain_control()->analog_level_minimum(),
1178 apm_->gain_control()->analog_level_maximum()));
1179
1180 int min_level[] = {0, 255, 1024};
1181 for (size_t i = 0; i < arraysize(min_level); i++) {
1182 EXPECT_EQ(apm_->kNoError,
1183 apm_->gain_control()->set_analog_level_limits(min_level[i], 1024));
1184 EXPECT_EQ(min_level[i], apm_->gain_control()->analog_level_minimum());
1185 }
1186
1187 int max_level[] = {0, 1024, 65535};
1188 for (size_t i = 0; i < arraysize(min_level); i++) {
1189 EXPECT_EQ(apm_->kNoError,
1190 apm_->gain_control()->set_analog_level_limits(0, max_level[i]));
1191 EXPECT_EQ(max_level[i], apm_->gain_control()->analog_level_maximum());
1192 }
1193
1194 // TODO(ajm): stream_is_saturated() and stream_analog_level()
1195
1196 // Turn AGC off
1197 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
1198 EXPECT_FALSE(apm_->gain_control()->is_enabled());
1199 }
1200
1201 void ApmTest::RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate) {
1202 Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false);
1203 EXPECT_EQ(apm_->kNoError,
1204 apm_->gain_control()->set_mode(GainControl::kAdaptiveAnalog));
1205 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
1206
1207 int out_analog_level = 0;
1208 for (int i = 0; i < 2000; ++i) {
1209 ReadFrameWithRewind(near_file_, frame_);
1210 // Ensure the audio is at a low level, so the AGC will try to increase it.
1211 ScaleFrame(frame_, 0.25);
1212
1213 // Always pass in the same volume.
1214 EXPECT_EQ(apm_->kNoError,
1215 apm_->gain_control()->set_stream_analog_level(100));
1216 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1217 out_analog_level = apm_->gain_control()->stream_analog_level();
1218 }
1219
1220 // Ensure the AGC is still able to reach the maximum.
1221 EXPECT_EQ(255, out_analog_level);
1222 }
1223
1224 // Verifies that despite volume slider quantization, the AGC can continue to
1225 // increase its volume.
1226 TEST_F(ApmTest, QuantizedVolumeDoesNotGetStuck) {
1227 for (size_t i = 0; i < arraysize(kSampleRates); ++i) {
1228 RunQuantizedVolumeDoesNotGetStuckTest(kSampleRates[i]);
1229 }
1230 }
1231
1232 void ApmTest::RunManualVolumeChangeIsPossibleTest(int sample_rate) {
1233 Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false);
1234 EXPECT_EQ(apm_->kNoError,
1235 apm_->gain_control()->set_mode(GainControl::kAdaptiveAnalog));
1236 EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
1237
1238 int out_analog_level = 100;
1239 for (int i = 0; i < 1000; ++i) {
1240 ReadFrameWithRewind(near_file_, frame_);
1241 // Ensure the audio is at a low level, so the AGC will try to increase it.
1242 ScaleFrame(frame_, 0.25);
1243
1244 EXPECT_EQ(apm_->kNoError,
1245 apm_->gain_control()->set_stream_analog_level(out_analog_level));
1246 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1247 out_analog_level = apm_->gain_control()->stream_analog_level();
1248 }
1249
1250 // Ensure the volume was raised.
1251 EXPECT_GT(out_analog_level, 100);
1252 int highest_level_reached = out_analog_level;
1253 // Simulate a user manual volume change.
1254 out_analog_level = 100;
1255
1256 for (int i = 0; i < 300; ++i) {
1257 ReadFrameWithRewind(near_file_, frame_);
1258 ScaleFrame(frame_, 0.25);
1259
1260 EXPECT_EQ(apm_->kNoError,
1261 apm_->gain_control()->set_stream_analog_level(out_analog_level));
1262 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1263 out_analog_level = apm_->gain_control()->stream_analog_level();
1264 // Check that AGC respected the manually adjusted volume.
1265 EXPECT_LT(out_analog_level, highest_level_reached);
1266 }
1267 // Check that the volume was still raised.
1268 EXPECT_GT(out_analog_level, 100);
1269 }
1270
1271 TEST_F(ApmTest, ManualVolumeChangeIsPossible) {
1272 for (size_t i = 0; i < arraysize(kSampleRates); ++i) {
1273 RunManualVolumeChangeIsPossibleTest(kSampleRates[i]);
1274 }
1275 }
1276
1277 #if !defined(WEBRTC_ANDROID) && !defined(WEBRTC_IOS)
1278 TEST_F(ApmTest, AgcOnlyAdaptsWhenTargetSignalIsPresent) {
1279 const int kSampleRateHz = 16000;
1280 const size_t kSamplesPerChannel =
1281 static_cast<size_t>(AudioProcessing::kChunkSizeMs * kSampleRateHz / 1000);
1282 const size_t kNumInputChannels = 2;
1283 const size_t kNumOutputChannels = 1;
1284 const size_t kNumChunks = 700;
1285 const float kScaleFactor = 0.25f;
1286 Config config;
1287 std::vector<webrtc::Point> geometry;
1288 geometry.push_back(webrtc::Point(0.f, 0.f, 0.f));
1289 geometry.push_back(webrtc::Point(0.05f, 0.f, 0.f));
1290 config.Set<Beamforming>(new Beamforming(true, geometry));
1291 testing::NiceMock<MockNonlinearBeamformer>* beamformer =
1292 new testing::NiceMock<MockNonlinearBeamformer>(geometry);
1293 std::unique_ptr<AudioProcessing> apm(
1294 AudioProcessing::Create(config, beamformer));
1295 EXPECT_EQ(kNoErr, apm->gain_control()->Enable(true));
1296 ChannelBuffer<float> src_buf(kSamplesPerChannel, kNumInputChannels);
1297 ChannelBuffer<float> dest_buf(kSamplesPerChannel, kNumOutputChannels);
1298 const size_t max_length = kSamplesPerChannel * std::max(kNumInputChannels,
1299 kNumOutputChannels);
1300 std::unique_ptr<int16_t[]> int_data(new int16_t[max_length]);
1301 std::unique_ptr<float[]> float_data(new float[max_length]);
1302 std::string filename = ResourceFilePath("far", kSampleRateHz);
1303 FILE* far_file = fopen(filename.c_str(), "rb");
1304 ASSERT_TRUE(far_file != NULL) << "Could not open file " << filename << "\n";
1305 const int kDefaultVolume = apm->gain_control()->stream_analog_level();
1306 const int kDefaultCompressionGain =
1307 apm->gain_control()->compression_gain_db();
1308 bool is_target = false;
1309 EXPECT_CALL(*beamformer, is_target_present())
1310 .WillRepeatedly(testing::ReturnPointee(&is_target));
1311 for (size_t i = 0; i < kNumChunks; ++i) {
1312 ASSERT_TRUE(ReadChunk(far_file,
1313 int_data.get(),
1314 float_data.get(),
1315 &src_buf));
1316 for (size_t j = 0; j < kNumInputChannels; ++j) {
1317 for (size_t k = 0; k < kSamplesPerChannel; ++k) {
1318 src_buf.channels()[j][k] *= kScaleFactor;
1319 }
1320 }
1321 EXPECT_EQ(kNoErr,
1322 apm->ProcessStream(src_buf.channels(),
1323 src_buf.num_frames(),
1324 kSampleRateHz,
1325 LayoutFromChannels(src_buf.num_channels()),
1326 kSampleRateHz,
1327 LayoutFromChannels(dest_buf.num_channels()),
1328 dest_buf.channels()));
1329 }
1330 EXPECT_EQ(kDefaultVolume,
1331 apm->gain_control()->stream_analog_level());
1332 EXPECT_EQ(kDefaultCompressionGain,
1333 apm->gain_control()->compression_gain_db());
1334 rewind(far_file);
1335 is_target = true;
1336 for (size_t i = 0; i < kNumChunks; ++i) {
1337 ASSERT_TRUE(ReadChunk(far_file,
1338 int_data.get(),
1339 float_data.get(),
1340 &src_buf));
1341 for (size_t j = 0; j < kNumInputChannels; ++j) {
1342 for (size_t k = 0; k < kSamplesPerChannel; ++k) {
1343 src_buf.channels()[j][k] *= kScaleFactor;
1344 }
1345 }
1346 EXPECT_EQ(kNoErr,
1347 apm->ProcessStream(src_buf.channels(),
1348 src_buf.num_frames(),
1349 kSampleRateHz,
1350 LayoutFromChannels(src_buf.num_channels()),
1351 kSampleRateHz,
1352 LayoutFromChannels(dest_buf.num_channels()),
1353 dest_buf.channels()));
1354 }
1355 EXPECT_LT(kDefaultVolume,
1356 apm->gain_control()->stream_analog_level());
1357 EXPECT_LT(kDefaultCompressionGain,
1358 apm->gain_control()->compression_gain_db());
1359 ASSERT_EQ(0, fclose(far_file));
1360 }
1361 #endif
1362
1363 TEST_F(ApmTest, NoiseSuppression) {
1364 // Test valid suppression levels.
1365 NoiseSuppression::Level level[] = {
1366 NoiseSuppression::kLow,
1367 NoiseSuppression::kModerate,
1368 NoiseSuppression::kHigh,
1369 NoiseSuppression::kVeryHigh
1370 };
1371 for (size_t i = 0; i < arraysize(level); i++) {
1372 EXPECT_EQ(apm_->kNoError,
1373 apm_->noise_suppression()->set_level(level[i]));
1374 EXPECT_EQ(level[i], apm_->noise_suppression()->level());
1375 }
1376
1377 // Turn NS on/off
1378 EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(true));
1379 EXPECT_TRUE(apm_->noise_suppression()->is_enabled());
1380 EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(false));
1381 EXPECT_FALSE(apm_->noise_suppression()->is_enabled());
1382 }
1383
1384 TEST_F(ApmTest, HighPassFilter) {
1385 // Turn HP filter on/off
1386 EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(true));
1387 EXPECT_TRUE(apm_->high_pass_filter()->is_enabled());
1388 EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(false));
1389 EXPECT_FALSE(apm_->high_pass_filter()->is_enabled());
1390 }
1391
1392 TEST_F(ApmTest, LevelEstimator) {
1393 // Turn level estimator on/off
1394 EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false));
1395 EXPECT_FALSE(apm_->level_estimator()->is_enabled());
1396
1397 EXPECT_EQ(apm_->kNotEnabledError, apm_->level_estimator()->RMS());
1398
1399 EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true));
1400 EXPECT_TRUE(apm_->level_estimator()->is_enabled());
1401
1402 // Run this test in wideband; in super-wb, the splitting filter distorts the
1403 // audio enough to cause deviation from the expectation for small values.
1404 frame_->samples_per_channel_ = 160;
1405 frame_->num_channels_ = 2;
1406 frame_->sample_rate_hz_ = 16000;
1407
1408 // Min value if no frames have been processed.
1409 EXPECT_EQ(127, apm_->level_estimator()->RMS());
1410
1411 // Min value on zero frames.
1412 SetFrameTo(frame_, 0);
1413 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1414 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1415 EXPECT_EQ(127, apm_->level_estimator()->RMS());
1416
1417 // Try a few RMS values.
1418 // (These also test that the value resets after retrieving it.)
1419 SetFrameTo(frame_, 32767);
1420 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1421 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1422 EXPECT_EQ(0, apm_->level_estimator()->RMS());
1423
1424 SetFrameTo(frame_, 30000);
1425 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1426 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1427 EXPECT_EQ(1, apm_->level_estimator()->RMS());
1428
1429 SetFrameTo(frame_, 10000);
1430 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1431 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1432 EXPECT_EQ(10, apm_->level_estimator()->RMS());
1433
1434 SetFrameTo(frame_, 10);
1435 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1436 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1437 EXPECT_EQ(70, apm_->level_estimator()->RMS());
1438
1439 // Verify reset after enable/disable.
1440 SetFrameTo(frame_, 32767);
1441 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1442 EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false));
1443 EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true));
1444 SetFrameTo(frame_, 1);
1445 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1446 EXPECT_EQ(90, apm_->level_estimator()->RMS());
1447
1448 // Verify reset after initialize.
1449 SetFrameTo(frame_, 32767);
1450 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1451 EXPECT_EQ(apm_->kNoError, apm_->Initialize());
1452 SetFrameTo(frame_, 1);
1453 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1454 EXPECT_EQ(90, apm_->level_estimator()->RMS());
1455 }
1456
1457 TEST_F(ApmTest, VoiceDetection) {
1458 // Test external VAD
1459 EXPECT_EQ(apm_->kNoError,
1460 apm_->voice_detection()->set_stream_has_voice(true));
1461 EXPECT_TRUE(apm_->voice_detection()->stream_has_voice());
1462 EXPECT_EQ(apm_->kNoError,
1463 apm_->voice_detection()->set_stream_has_voice(false));
1464 EXPECT_FALSE(apm_->voice_detection()->stream_has_voice());
1465
1466 // Test valid likelihoods
1467 VoiceDetection::Likelihood likelihood[] = {
1468 VoiceDetection::kVeryLowLikelihood,
1469 VoiceDetection::kLowLikelihood,
1470 VoiceDetection::kModerateLikelihood,
1471 VoiceDetection::kHighLikelihood
1472 };
1473 for (size_t i = 0; i < arraysize(likelihood); i++) {
1474 EXPECT_EQ(apm_->kNoError,
1475 apm_->voice_detection()->set_likelihood(likelihood[i]));
1476 EXPECT_EQ(likelihood[i], apm_->voice_detection()->likelihood());
1477 }
1478
1479 /* TODO(bjornv): Enable once VAD supports other frame lengths than 10 ms
1480 // Test invalid frame sizes
1481 EXPECT_EQ(apm_->kBadParameterError,
1482 apm_->voice_detection()->set_frame_size_ms(12));
1483
1484 // Test valid frame sizes
1485 for (int i = 10; i <= 30; i += 10) {
1486 EXPECT_EQ(apm_->kNoError,
1487 apm_->voice_detection()->set_frame_size_ms(i));
1488 EXPECT_EQ(i, apm_->voice_detection()->frame_size_ms());
1489 }
1490 */
1491
1492 // Turn VAD on/off
1493 EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
1494 EXPECT_TRUE(apm_->voice_detection()->is_enabled());
1495 EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
1496 EXPECT_FALSE(apm_->voice_detection()->is_enabled());
1497
1498 // Test that AudioFrame activity is maintained when VAD is disabled.
1499 EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
1500 AudioFrame::VADActivity activity[] = {
1501 AudioFrame::kVadActive,
1502 AudioFrame::kVadPassive,
1503 AudioFrame::kVadUnknown
1504 };
1505 for (size_t i = 0; i < arraysize(activity); i++) {
1506 frame_->vad_activity_ = activity[i];
1507 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1508 EXPECT_EQ(activity[i], frame_->vad_activity_);
1509 }
1510
1511 // Test that AudioFrame activity is set when VAD is enabled.
1512 EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
1513 frame_->vad_activity_ = AudioFrame::kVadUnknown;
1514 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1515 EXPECT_NE(AudioFrame::kVadUnknown, frame_->vad_activity_);
1516
1517 // TODO(bjornv): Add tests for streamed voice; stream_has_voice()
1518 }
1519
1520 TEST_F(ApmTest, AllProcessingDisabledByDefault) {
1521 EXPECT_FALSE(apm_->echo_cancellation()->is_enabled());
1522 EXPECT_FALSE(apm_->echo_control_mobile()->is_enabled());
1523 EXPECT_FALSE(apm_->gain_control()->is_enabled());
1524 EXPECT_FALSE(apm_->high_pass_filter()->is_enabled());
1525 EXPECT_FALSE(apm_->level_estimator()->is_enabled());
1526 EXPECT_FALSE(apm_->noise_suppression()->is_enabled());
1527 EXPECT_FALSE(apm_->voice_detection()->is_enabled());
1528 }
1529
1530 TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabled) {
1531 for (size_t i = 0; i < arraysize(kSampleRates); i++) {
1532 Init(kSampleRates[i], kSampleRates[i], kSampleRates[i], 2, 2, 2, false);
1533 SetFrameTo(frame_, 1000, 2000);
1534 AudioFrame frame_copy;
1535 frame_copy.CopyFrom(*frame_);
1536 for (int j = 0; j < 1000; j++) {
1537 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1538 EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
1539 EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(frame_));
1540 EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
1541 }
1542 }
1543 }
1544
1545 TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabledFloat) {
1546 // Test that ProcessStream copies input to output even with no processing.
1547 const size_t kSamples = 80;
1548 const int sample_rate = 8000;
1549 const float src[kSamples] = {
1550 -1.0f, 0.0f, 1.0f
1551 };
1552 float dest[kSamples] = {};
1553
1554 auto src_channels = &src[0];
1555 auto dest_channels = &dest[0];
1556
1557 apm_.reset(AudioProcessing::Create());
1558 EXPECT_NOERR(apm_->ProcessStream(
1559 &src_channels, kSamples, sample_rate, LayoutFromChannels(1),
1560 sample_rate, LayoutFromChannels(1), &dest_channels));
1561
1562 for (size_t i = 0; i < kSamples; ++i) {
1563 EXPECT_EQ(src[i], dest[i]);
1564 }
1565
1566 // Same for ProcessReverseStream.
1567 float rev_dest[kSamples] = {};
1568 auto rev_dest_channels = &rev_dest[0];
1569
1570 StreamConfig input_stream = {sample_rate, 1};
1571 StreamConfig output_stream = {sample_rate, 1};
1572 EXPECT_NOERR(apm_->ProcessReverseStream(&src_channels, input_stream,
1573 output_stream, &rev_dest_channels));
1574
1575 for (size_t i = 0; i < kSamples; ++i) {
1576 EXPECT_EQ(src[i], rev_dest[i]);
1577 }
1578 }
1579
1580 TEST_F(ApmTest, IdenticalInputChannelsResultInIdenticalOutputChannels) {
1581 EnableAllComponents();
1582
1583 for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) {
1584 Init(kProcessSampleRates[i],
1585 kProcessSampleRates[i],
1586 kProcessSampleRates[i],
1587 2,
1588 2,
1589 2,
1590 false);
1591 int analog_level = 127;
1592 ASSERT_EQ(0, feof(far_file_));
1593 ASSERT_EQ(0, feof(near_file_));
1594 while (ReadFrame(far_file_, revframe_) && ReadFrame(near_file_, frame_)) {
1595 CopyLeftToRightChannel(revframe_->data_, revframe_->samples_per_channel_);
1596
1597 ASSERT_EQ(kNoErr, apm_->ProcessReverseStream(revframe_));
1598
1599 CopyLeftToRightChannel(frame_->data_, frame_->samples_per_channel_);
1600 frame_->vad_activity_ = AudioFrame::kVadUnknown;
1601
1602 ASSERT_EQ(kNoErr, apm_->set_stream_delay_ms(0));
1603 apm_->echo_cancellation()->set_stream_drift_samples(0);
1604 ASSERT_EQ(kNoErr,
1605 apm_->gain_control()->set_stream_analog_level(analog_level));
1606 ASSERT_EQ(kNoErr, apm_->ProcessStream(frame_));
1607 analog_level = apm_->gain_control()->stream_analog_level();
1608
1609 VerifyChannelsAreEqual(frame_->data_, frame_->samples_per_channel_);
1610 }
1611 rewind(far_file_);
1612 rewind(near_file_);
1613 }
1614 }
1615
1616 TEST_F(ApmTest, SplittingFilter) {
1617 // Verify the filter is not active through undistorted audio when:
1618 // 1. No components are enabled...
1619 SetFrameTo(frame_, 1000);
1620 AudioFrame frame_copy;
1621 frame_copy.CopyFrom(*frame_);
1622 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1623 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1624 EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
1625
1626 // 2. Only the level estimator is enabled...
1627 SetFrameTo(frame_, 1000);
1628 frame_copy.CopyFrom(*frame_);
1629 EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true));
1630 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1631 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1632 EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
1633 EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false));
1634
1635 // 3. Only VAD is enabled...
1636 SetFrameTo(frame_, 1000);
1637 frame_copy.CopyFrom(*frame_);
1638 EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
1639 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1640 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1641 EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
1642 EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
1643
1644 // 4. Both VAD and the level estimator are enabled...
1645 SetFrameTo(frame_, 1000);
1646 frame_copy.CopyFrom(*frame_);
1647 EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true));
1648 EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
1649 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1650 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1651 EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
1652 EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false));
1653 EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
1654
1655 // 5. Not using super-wb.
1656 frame_->samples_per_channel_ = 160;
1657 frame_->num_channels_ = 2;
1658 frame_->sample_rate_hz_ = 16000;
1659 // Enable AEC, which would require the filter in super-wb. We rely on the
1660 // first few frames of data being unaffected by the AEC.
1661 // TODO(andrew): This test, and the one below, rely rather tenuously on the
1662 // behavior of the AEC. Think of something more robust.
1663 EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
1664 // Make sure we have extended filter enabled. This makes sure nothing is
1665 // touched until we have a farend frame.
1666 Config config;
1667 config.Set<ExtendedFilter>(new ExtendedFilter(true));
1668 apm_->SetExtraOptions(config);
1669 SetFrameTo(frame_, 1000);
1670 frame_copy.CopyFrom(*frame_);
1671 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
1672 apm_->echo_cancellation()->set_stream_drift_samples(0);
1673 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1674 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
1675 apm_->echo_cancellation()->set_stream_drift_samples(0);
1676 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1677 EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
1678
1679 // Check the test is valid. We should have distortion from the filter
1680 // when AEC is enabled (which won't affect the audio).
1681 frame_->samples_per_channel_ = 320;
1682 frame_->num_channels_ = 2;
1683 frame_->sample_rate_hz_ = 32000;
1684 SetFrameTo(frame_, 1000);
1685 frame_copy.CopyFrom(*frame_);
1686 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
1687 apm_->echo_cancellation()->set_stream_drift_samples(0);
1688 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1689 EXPECT_FALSE(FrameDataAreEqual(*frame_, frame_copy));
1690 }
1691
1692 #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
1693 void ApmTest::ProcessDebugDump(const std::string& in_filename,
1694 const std::string& out_filename,
1695 Format format,
1696 int max_size_bytes) {
1697 FILE* in_file = fopen(in_filename.c_str(), "rb");
1698 ASSERT_TRUE(in_file != NULL);
1699 audioproc::Event event_msg;
1700 bool first_init = true;
1701
1702 while (ReadMessageFromFile(in_file, &event_msg)) {
1703 if (event_msg.type() == audioproc::Event::INIT) {
1704 const audioproc::Init msg = event_msg.init();
1705 int reverse_sample_rate = msg.sample_rate();
1706 if (msg.has_reverse_sample_rate()) {
1707 reverse_sample_rate = msg.reverse_sample_rate();
1708 }
1709 int output_sample_rate = msg.sample_rate();
1710 if (msg.has_output_sample_rate()) {
1711 output_sample_rate = msg.output_sample_rate();
1712 }
1713
1714 Init(msg.sample_rate(),
1715 output_sample_rate,
1716 reverse_sample_rate,
1717 msg.num_input_channels(),
1718 msg.num_output_channels(),
1719 msg.num_reverse_channels(),
1720 false);
1721 if (first_init) {
1722 // StartDebugRecording() writes an additional init message. Don't start
1723 // recording until after the first init to avoid the extra message.
1724 EXPECT_NOERR(
1725 apm_->StartDebugRecording(out_filename.c_str(), max_size_bytes));
1726 first_init = false;
1727 }
1728
1729 } else if (event_msg.type() == audioproc::Event::REVERSE_STREAM) {
1730 const audioproc::ReverseStream msg = event_msg.reverse_stream();
1731
1732 if (msg.channel_size() > 0) {
1733 ASSERT_EQ(revframe_->num_channels_,
1734 static_cast<size_t>(msg.channel_size()));
1735 for (int i = 0; i < msg.channel_size(); ++i) {
1736 memcpy(revfloat_cb_->channels()[i],
1737 msg.channel(i).data(),
1738 msg.channel(i).size());
1739 }
1740 } else {
1741 memcpy(revframe_->data_, msg.data().data(), msg.data().size());
1742 if (format == kFloatFormat) {
1743 // We're using an int16 input file; convert to float.
1744 ConvertToFloat(*revframe_, revfloat_cb_.get());
1745 }
1746 }
1747 AnalyzeReverseStreamChooser(format);
1748
1749 } else if (event_msg.type() == audioproc::Event::STREAM) {
1750 const audioproc::Stream msg = event_msg.stream();
1751 // ProcessStream could have changed this for the output frame.
1752 frame_->num_channels_ = apm_->num_input_channels();
1753
1754 EXPECT_NOERR(apm_->gain_control()->set_stream_analog_level(msg.level()));
1755 EXPECT_NOERR(apm_->set_stream_delay_ms(msg.delay()));
1756 apm_->echo_cancellation()->set_stream_drift_samples(msg.drift());
1757 if (msg.has_keypress()) {
1758 apm_->set_stream_key_pressed(msg.keypress());
1759 } else {
1760 apm_->set_stream_key_pressed(true);
1761 }
1762
1763 if (msg.input_channel_size() > 0) {
1764 ASSERT_EQ(frame_->num_channels_,
1765 static_cast<size_t>(msg.input_channel_size()));
1766 for (int i = 0; i < msg.input_channel_size(); ++i) {
1767 memcpy(float_cb_->channels()[i],
1768 msg.input_channel(i).data(),
1769 msg.input_channel(i).size());
1770 }
1771 } else {
1772 memcpy(frame_->data_, msg.input_data().data(), msg.input_data().size());
1773 if (format == kFloatFormat) {
1774 // We're using an int16 input file; convert to float.
1775 ConvertToFloat(*frame_, float_cb_.get());
1776 }
1777 }
1778 ProcessStreamChooser(format);
1779 }
1780 }
1781 EXPECT_NOERR(apm_->StopDebugRecording());
1782 fclose(in_file);
1783 }
1784
1785 void ApmTest::VerifyDebugDumpTest(Format format) {
1786 const std::string in_filename = test::ResourcePath("ref03", "aecdump");
1787 std::string format_string;
1788 switch (format) {
1789 case kIntFormat:
1790 format_string = "_int";
1791 break;
1792 case kFloatFormat:
1793 format_string = "_float";
1794 break;
1795 }
1796 const std::string ref_filename = test::TempFilename(
1797 test::OutputPath(), std::string("ref") + format_string + "_aecdump");
1798 const std::string out_filename = test::TempFilename(
1799 test::OutputPath(), std::string("out") + format_string + "_aecdump");
1800 const std::string limited_filename = test::TempFilename(
1801 test::OutputPath(), std::string("limited") + format_string + "_aecdump");
1802 const size_t logging_limit_bytes = 100000;
1803 // We expect at least this many bytes in the created logfile.
1804 const size_t logging_expected_bytes = 95000;
1805 EnableAllComponents();
1806 ProcessDebugDump(in_filename, ref_filename, format, -1);
1807 ProcessDebugDump(ref_filename, out_filename, format, -1);
1808 ProcessDebugDump(ref_filename, limited_filename, format, logging_limit_bytes);
1809
1810 FILE* ref_file = fopen(ref_filename.c_str(), "rb");
1811 FILE* out_file = fopen(out_filename.c_str(), "rb");
1812 FILE* limited_file = fopen(limited_filename.c_str(), "rb");
1813 ASSERT_TRUE(ref_file != NULL);
1814 ASSERT_TRUE(out_file != NULL);
1815 ASSERT_TRUE(limited_file != NULL);
1816 std::unique_ptr<uint8_t[]> ref_bytes;
1817 std::unique_ptr<uint8_t[]> out_bytes;
1818 std::unique_ptr<uint8_t[]> limited_bytes;
1819
1820 size_t ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes);
1821 size_t out_size = ReadMessageBytesFromFile(out_file, &out_bytes);
1822 size_t limited_size = ReadMessageBytesFromFile(limited_file, &limited_bytes);
1823 size_t bytes_read = 0;
1824 size_t bytes_read_limited = 0;
1825 while (ref_size > 0 && out_size > 0) {
1826 bytes_read += ref_size;
1827 bytes_read_limited += limited_size;
1828 EXPECT_EQ(ref_size, out_size);
1829 EXPECT_GE(ref_size, limited_size);
1830 EXPECT_EQ(0, memcmp(ref_bytes.get(), out_bytes.get(), ref_size));
1831 EXPECT_EQ(0, memcmp(ref_bytes.get(), limited_bytes.get(), limited_size));
1832 ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes);
1833 out_size = ReadMessageBytesFromFile(out_file, &out_bytes);
1834 limited_size = ReadMessageBytesFromFile(limited_file, &limited_bytes);
1835 }
1836 EXPECT_GT(bytes_read, 0u);
1837 EXPECT_GT(bytes_read_limited, logging_expected_bytes);
1838 EXPECT_LE(bytes_read_limited, logging_limit_bytes);
1839 EXPECT_NE(0, feof(ref_file));
1840 EXPECT_NE(0, feof(out_file));
1841 EXPECT_NE(0, feof(limited_file));
1842 ASSERT_EQ(0, fclose(ref_file));
1843 ASSERT_EQ(0, fclose(out_file));
1844 ASSERT_EQ(0, fclose(limited_file));
1845 remove(ref_filename.c_str());
1846 remove(out_filename.c_str());
1847 remove(limited_filename.c_str());
1848 }
1849
1850 TEST_F(ApmTest, VerifyDebugDumpInt) {
1851 VerifyDebugDumpTest(kIntFormat);
1852 }
1853
1854 TEST_F(ApmTest, VerifyDebugDumpFloat) {
1855 VerifyDebugDumpTest(kFloatFormat);
1856 }
1857 #endif
1858
1859 // TODO(andrew): expand test to verify output.
1860 TEST_F(ApmTest, DebugDump) {
1861 const std::string filename =
1862 test::TempFilename(test::OutputPath(), "debug_aec");
1863 EXPECT_EQ(apm_->kNullPointerError,
1864 apm_->StartDebugRecording(static_cast<const char*>(NULL), -1));
1865
1866 #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
1867 // Stopping without having started should be OK.
1868 EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording());
1869
1870 EXPECT_EQ(apm_->kNoError, apm_->StartDebugRecording(filename.c_str(), -1));
1871 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1872 EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(revframe_));
1873 EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording());
1874
1875 // Verify the file has been written.
1876 FILE* fid = fopen(filename.c_str(), "r");
1877 ASSERT_TRUE(fid != NULL);
1878
1879 // Clean it up.
1880 ASSERT_EQ(0, fclose(fid));
1881 ASSERT_EQ(0, remove(filename.c_str()));
1882 #else
1883 EXPECT_EQ(apm_->kUnsupportedFunctionError,
1884 apm_->StartDebugRecording(filename.c_str(), -1));
1885 EXPECT_EQ(apm_->kUnsupportedFunctionError, apm_->StopDebugRecording());
1886
1887 // Verify the file has NOT been written.
1888 ASSERT_TRUE(fopen(filename.c_str(), "r") == NULL);
1889 #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
1890 }
1891
1892 // TODO(andrew): expand test to verify output.
1893 TEST_F(ApmTest, DebugDumpFromFileHandle) {
1894 FILE* fid = NULL;
1895 EXPECT_EQ(apm_->kNullPointerError, apm_->StartDebugRecording(fid, -1));
1896 const std::string filename =
1897 test::TempFilename(test::OutputPath(), "debug_aec");
1898 fid = fopen(filename.c_str(), "w");
1899 ASSERT_TRUE(fid);
1900
1901 #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
1902 // Stopping without having started should be OK.
1903 EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording());
1904
1905 EXPECT_EQ(apm_->kNoError, apm_->StartDebugRecording(fid, -1));
1906 EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(revframe_));
1907 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
1908 EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording());
1909
1910 // Verify the file has been written.
1911 fid = fopen(filename.c_str(), "r");
1912 ASSERT_TRUE(fid != NULL);
1913
1914 // Clean it up.
1915 ASSERT_EQ(0, fclose(fid));
1916 ASSERT_EQ(0, remove(filename.c_str()));
1917 #else
1918 EXPECT_EQ(apm_->kUnsupportedFunctionError,
1919 apm_->StartDebugRecording(fid, -1));
1920 EXPECT_EQ(apm_->kUnsupportedFunctionError, apm_->StopDebugRecording());
1921
1922 ASSERT_EQ(0, fclose(fid));
1923 #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
1924 }
1925
1926 TEST_F(ApmTest, FloatAndIntInterfacesGiveSimilarResults) {
1927 audioproc::OutputData ref_data;
1928 OpenFileAndReadMessage(ref_filename_, &ref_data);
1929
1930 Config config;
1931 config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
1932 std::unique_ptr<AudioProcessing> fapm(AudioProcessing::Create(config));
1933 EnableAllComponents();
1934 EnableAllAPComponents(fapm.get());
1935 for (int i = 0; i < ref_data.test_size(); i++) {
1936 printf("Running test %d of %d...\n", i + 1, ref_data.test_size());
1937
1938 audioproc::Test* test = ref_data.mutable_test(i);
1939 // TODO(ajm): Restore downmixing test cases.
1940 if (test->num_input_channels() != test->num_output_channels())
1941 continue;
1942
1943 const size_t num_render_channels =
1944 static_cast<size_t>(test->num_reverse_channels());
1945 const size_t num_input_channels =
1946 static_cast<size_t>(test->num_input_channels());
1947 const size_t num_output_channels =
1948 static_cast<size_t>(test->num_output_channels());
1949 const size_t samples_per_channel = static_cast<size_t>(
1950 test->sample_rate() * AudioProcessing::kChunkSizeMs / 1000);
1951
1952 Init(test->sample_rate(), test->sample_rate(), test->sample_rate(),
1953 num_input_channels, num_output_channels, num_render_channels, true);
1954 Init(fapm.get());
1955
1956 ChannelBuffer<int16_t> output_cb(samples_per_channel, num_input_channels);
1957 ChannelBuffer<int16_t> output_int16(samples_per_channel,
1958 num_input_channels);
1959
1960 int analog_level = 127;
1961 size_t num_bad_chunks = 0;
1962 while (ReadFrame(far_file_, revframe_, revfloat_cb_.get()) &&
1963 ReadFrame(near_file_, frame_, float_cb_.get())) {
1964 frame_->vad_activity_ = AudioFrame::kVadUnknown;
1965
1966 EXPECT_NOERR(apm_->ProcessReverseStream(revframe_));
1967 EXPECT_NOERR(fapm->AnalyzeReverseStream(
1968 revfloat_cb_->channels(),
1969 samples_per_channel,
1970 test->sample_rate(),
1971 LayoutFromChannels(num_render_channels)));
1972
1973 EXPECT_NOERR(apm_->set_stream_delay_ms(0));
1974 EXPECT_NOERR(fapm->set_stream_delay_ms(0));
1975 apm_->echo_cancellation()->set_stream_drift_samples(0);
1976 fapm->echo_cancellation()->set_stream_drift_samples(0);
1977 EXPECT_NOERR(apm_->gain_control()->set_stream_analog_level(analog_level));
1978 EXPECT_NOERR(fapm->gain_control()->set_stream_analog_level(analog_level));
1979
1980 EXPECT_NOERR(apm_->ProcessStream(frame_));
1981 Deinterleave(frame_->data_, samples_per_channel, num_output_channels,
1982 output_int16.channels());
1983
1984 EXPECT_NOERR(fapm->ProcessStream(
1985 float_cb_->channels(),
1986 samples_per_channel,
1987 test->sample_rate(),
1988 LayoutFromChannels(num_input_channels),
1989 test->sample_rate(),
1990 LayoutFromChannels(num_output_channels),
1991 float_cb_->channels()));
1992 for (size_t j = 0; j < num_output_channels; ++j) {
1993 FloatToS16(float_cb_->channels()[j],
1994 samples_per_channel,
1995 output_cb.channels()[j]);
1996 float variance = 0;
1997 float snr = ComputeSNR(output_int16.channels()[j],
1998 output_cb.channels()[j],
1999 samples_per_channel, &variance);
2000
2001 const float kVarianceThreshold = 20;
2002 const float kSNRThreshold = 20;
2003
2004 // Skip frames with low energy.
2005 if (sqrt(variance) > kVarianceThreshold && snr < kSNRThreshold) {
2006 ++num_bad_chunks;
2007 }
2008 }
2009
2010 analog_level = fapm->gain_control()->stream_analog_level();
2011 EXPECT_EQ(apm_->gain_control()->stream_analog_level(),
2012 fapm->gain_control()->stream_analog_level());
2013 EXPECT_EQ(apm_->echo_cancellation()->stream_has_echo(),
2014 fapm->echo_cancellation()->stream_has_echo());
2015 EXPECT_NEAR(apm_->noise_suppression()->speech_probability(),
2016 fapm->noise_suppression()->speech_probability(),
2017 0.01);
2018
2019 // Reset in case of downmixing.
2020 frame_->num_channels_ = static_cast<size_t>(test->num_input_channels());
2021 }
2022
2023 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
2024 const size_t kMaxNumBadChunks = 0;
2025 #elif defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
2026 // There are a few chunks in the fixed-point profile that give low SNR.
2027 // Listening confirmed the difference is acceptable.
2028 const size_t kMaxNumBadChunks = 60;
2029 #endif
2030 EXPECT_LE(num_bad_chunks, kMaxNumBadChunks);
2031
2032 rewind(far_file_);
2033 rewind(near_file_);
2034 }
2035 }
2036
2037 // TODO(andrew): Add a test to process a few frames with different combinations
2038 // of enabled components.
2039
2040 TEST_F(ApmTest, Process) {
2041 GOOGLE_PROTOBUF_VERIFY_VERSION;
2042 audioproc::OutputData ref_data;
2043
2044 if (!write_ref_data) {
2045 OpenFileAndReadMessage(ref_filename_, &ref_data);
2046 } else {
2047 // Write the desired tests to the protobuf reference file.
2048 for (size_t i = 0; i < arraysize(kChannels); i++) {
2049 for (size_t j = 0; j < arraysize(kChannels); j++) {
2050 for (size_t l = 0; l < arraysize(kProcessSampleRates); l++) {
2051 audioproc::Test* test = ref_data.add_test();
2052 test->set_num_reverse_channels(kChannels[i]);
2053 test->set_num_input_channels(kChannels[j]);
2054 test->set_num_output_channels(kChannels[j]);
2055 test->set_sample_rate(kProcessSampleRates[l]);
2056 test->set_use_aec_extended_filter(false);
2057 }
2058 }
2059 }
2060 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
2061 // To test the extended filter mode.
2062 audioproc::Test* test = ref_data.add_test();
2063 test->set_num_reverse_channels(2);
2064 test->set_num_input_channels(2);
2065 test->set_num_output_channels(2);
2066 test->set_sample_rate(AudioProcessing::kSampleRate32kHz);
2067 test->set_use_aec_extended_filter(true);
2068 #endif
2069 }
2070
2071 for (int i = 0; i < ref_data.test_size(); i++) {
2072 printf("Running test %d of %d...\n", i + 1, ref_data.test_size());
2073
2074 audioproc::Test* test = ref_data.mutable_test(i);
2075 // TODO(ajm): We no longer allow different input and output channels. Skip
2076 // these tests for now, but they should be removed from the set.
2077 if (test->num_input_channels() != test->num_output_channels())
2078 continue;
2079
2080 Config config;
2081 config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
2082 config.Set<ExtendedFilter>(
2083 new ExtendedFilter(test->use_aec_extended_filter()));
2084 apm_.reset(AudioProcessing::Create(config));
2085
2086 EnableAllComponents();
2087
2088 Init(test->sample_rate(),
2089 test->sample_rate(),
2090 test->sample_rate(),
2091 static_cast<size_t>(test->num_input_channels()),
2092 static_cast<size_t>(test->num_output_channels()),
2093 static_cast<size_t>(test->num_reverse_channels()),
2094 true);
2095
2096 int frame_count = 0;
2097 int has_echo_count = 0;
2098 int has_voice_count = 0;
2099 int is_saturated_count = 0;
2100 int analog_level = 127;
2101 int analog_level_average = 0;
2102 int max_output_average = 0;
2103 float ns_speech_prob_average = 0.0f;
2104
2105 while (ReadFrame(far_file_, revframe_) && ReadFrame(near_file_, frame_)) {
2106 EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(revframe_));
2107
2108 frame_->vad_activity_ = AudioFrame::kVadUnknown;
2109
2110 EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
2111 apm_->echo_cancellation()->set_stream_drift_samples(0);
2112 EXPECT_EQ(apm_->kNoError,
2113 apm_->gain_control()->set_stream_analog_level(analog_level));
2114
2115 EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
2116
2117 // Ensure the frame was downmixed properly.
2118 EXPECT_EQ(static_cast<size_t>(test->num_output_channels()),
2119 frame_->num_channels_);
2120
2121 max_output_average += MaxAudioFrame(*frame_);
2122
2123 if (apm_->echo_cancellation()->stream_has_echo()) {
2124 has_echo_count++;
2125 }
2126
2127 analog_level = apm_->gain_control()->stream_analog_level();
2128 analog_level_average += analog_level;
2129 if (apm_->gain_control()->stream_is_saturated()) {
2130 is_saturated_count++;
2131 }
2132 if (apm_->voice_detection()->stream_has_voice()) {
2133 has_voice_count++;
2134 EXPECT_EQ(AudioFrame::kVadActive, frame_->vad_activity_);
2135 } else {
2136 EXPECT_EQ(AudioFrame::kVadPassive, frame_->vad_activity_);
2137 }
2138
2139 ns_speech_prob_average += apm_->noise_suppression()->speech_probability();
2140
2141 size_t frame_size = frame_->samples_per_channel_ * frame_->num_channels_;
2142 size_t write_count = fwrite(frame_->data_,
2143 sizeof(int16_t),
2144 frame_size,
2145 out_file_);
2146 ASSERT_EQ(frame_size, write_count);
2147
2148 // Reset in case of downmixing.
2149 frame_->num_channels_ = static_cast<size_t>(test->num_input_channels());
2150 frame_count++;
2151 }
2152 max_output_average /= frame_count;
2153 analog_level_average /= frame_count;
2154 ns_speech_prob_average /= frame_count;
2155
2156 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
2157 EchoCancellation::Metrics echo_metrics;
2158 EXPECT_EQ(apm_->kNoError,
2159 apm_->echo_cancellation()->GetMetrics(&echo_metrics));
2160 int median = 0;
2161 int std = 0;
2162 float fraction_poor_delays = 0;
2163 EXPECT_EQ(apm_->kNoError,
2164 apm_->echo_cancellation()->GetDelayMetrics(
2165 &median, &std, &fraction_poor_delays));
2166
2167 int rms_level = apm_->level_estimator()->RMS();
2168 EXPECT_LE(0, rms_level);
2169 EXPECT_GE(127, rms_level);
2170 #endif
2171
2172 if (!write_ref_data) {
2173 const int kIntNear = 1;
2174 // When running the test on a N7 we get a {2, 6} difference of
2175 // |has_voice_count| and |max_output_average| is up to 18 higher.
2176 // All numbers being consistently higher on N7 compare to ref_data.
2177 // TODO(bjornv): If we start getting more of these offsets on Android we
2178 // should consider a different approach. Either using one slack for all,
2179 // or generate a separate android reference.
2180 #if defined(WEBRTC_ANDROID)
2181 const int kHasVoiceCountOffset = 3;
2182 const int kHasVoiceCountNear = 3;
2183 const int kMaxOutputAverageOffset = 9;
2184 const int kMaxOutputAverageNear = 9;
2185 #else
2186 const int kHasVoiceCountOffset = 0;
2187 const int kHasVoiceCountNear = kIntNear;
2188 const int kMaxOutputAverageOffset = 0;
2189 const int kMaxOutputAverageNear = kIntNear;
2190 #endif
2191 EXPECT_NEAR(test->has_echo_count(), has_echo_count, kIntNear);
2192 EXPECT_NEAR(test->has_voice_count(),
2193 has_voice_count - kHasVoiceCountOffset,
2194 kHasVoiceCountNear);
2195 EXPECT_NEAR(test->is_saturated_count(), is_saturated_count, kIntNear);
2196
2197 EXPECT_NEAR(test->analog_level_average(), analog_level_average, kIntNear);
2198 EXPECT_NEAR(test->max_output_average(),
2199 max_output_average - kMaxOutputAverageOffset,
2200 kMaxOutputAverageNear);
2201
2202 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
2203 audioproc::Test::EchoMetrics reference = test->echo_metrics();
2204 TestStats(echo_metrics.residual_echo_return_loss,
2205 reference.residual_echo_return_loss());
2206 TestStats(echo_metrics.echo_return_loss,
2207 reference.echo_return_loss());
2208 TestStats(echo_metrics.echo_return_loss_enhancement,
2209 reference.echo_return_loss_enhancement());
2210 TestStats(echo_metrics.a_nlp,
2211 reference.a_nlp());
2212
2213 const double kFloatNear = 0.0005;
2214 audioproc::Test::DelayMetrics reference_delay = test->delay_metrics();
2215 EXPECT_NEAR(reference_delay.median(), median, kIntNear);
2216 EXPECT_NEAR(reference_delay.std(), std, kIntNear);
2217 EXPECT_NEAR(reference_delay.fraction_poor_delays(), fraction_poor_delays,
2218 kFloatNear);
2219
2220 EXPECT_NEAR(test->rms_level(), rms_level, kIntNear);
2221
2222 EXPECT_NEAR(test->ns_speech_probability_average(),
2223 ns_speech_prob_average,
2224 kFloatNear);
2225 #endif
2226 } else {
2227 test->set_has_echo_count(has_echo_count);
2228 test->set_has_voice_count(has_voice_count);
2229 test->set_is_saturated_count(is_saturated_count);
2230
2231 test->set_analog_level_average(analog_level_average);
2232 test->set_max_output_average(max_output_average);
2233
2234 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
2235 audioproc::Test::EchoMetrics* message = test->mutable_echo_metrics();
2236 WriteStatsMessage(echo_metrics.residual_echo_return_loss,
2237 message->mutable_residual_echo_return_loss());
2238 WriteStatsMessage(echo_metrics.echo_return_loss,
2239 message->mutable_echo_return_loss());
2240 WriteStatsMessage(echo_metrics.echo_return_loss_enhancement,
2241 message->mutable_echo_return_loss_enhancement());
2242 WriteStatsMessage(echo_metrics.a_nlp,
2243 message->mutable_a_nlp());
2244
2245 audioproc::Test::DelayMetrics* message_delay =
2246 test->mutable_delay_metrics();
2247 message_delay->set_median(median);
2248 message_delay->set_std(std);
2249 message_delay->set_fraction_poor_delays(fraction_poor_delays);
2250
2251 test->set_rms_level(rms_level);
2252
2253 EXPECT_LE(0.0f, ns_speech_prob_average);
2254 EXPECT_GE(1.0f, ns_speech_prob_average);
2255 test->set_ns_speech_probability_average(ns_speech_prob_average);
2256 #endif
2257 }
2258
2259 rewind(far_file_);
2260 rewind(near_file_);
2261 }
2262
2263 if (write_ref_data) {
2264 OpenFileAndWriteMessage(ref_filename_, ref_data);
2265 }
2266 }
2267
2268 TEST_F(ApmTest, NoErrorsWithKeyboardChannel) {
2269 struct ChannelFormat {
2270 AudioProcessing::ChannelLayout in_layout;
2271 AudioProcessing::ChannelLayout out_layout;
2272 };
2273 ChannelFormat cf[] = {
2274 {AudioProcessing::kMonoAndKeyboard, AudioProcessing::kMono},
2275 {AudioProcessing::kStereoAndKeyboard, AudioProcessing::kMono},
2276 {AudioProcessing::kStereoAndKeyboard, AudioProcessing::kStereo},
2277 };
2278
2279 std::unique_ptr<AudioProcessing> ap(AudioProcessing::Create());
2280 // Enable one component just to ensure some processing takes place.
2281 ap->noise_suppression()->Enable(true);
2282 for (size_t i = 0; i < arraysize(cf); ++i) {
2283 const int in_rate = 44100;
2284 const int out_rate = 48000;
2285 ChannelBuffer<float> in_cb(SamplesFromRate(in_rate),
2286 TotalChannelsFromLayout(cf[i].in_layout));
2287 ChannelBuffer<float> out_cb(SamplesFromRate(out_rate),
2288 ChannelsFromLayout(cf[i].out_layout));
2289
2290 // Run over a few chunks.
2291 for (int j = 0; j < 10; ++j) {
2292 EXPECT_NOERR(ap->ProcessStream(
2293 in_cb.channels(),
2294 in_cb.num_frames(),
2295 in_rate,
2296 cf[i].in_layout,
2297 out_rate,
2298 cf[i].out_layout,
2299 out_cb.channels()));
2300 }
2301 }
2302 }
2303
2304 // Compares the reference and test arrays over a region around the expected
2305 // delay. Finds the highest SNR in that region and adds the variance and squared
2306 // error results to the supplied accumulators.
2307 void UpdateBestSNR(const float* ref,
2308 const float* test,
2309 size_t length,
2310 int expected_delay,
2311 double* variance_acc,
2312 double* sq_error_acc) {
2313 double best_snr = std::numeric_limits<double>::min();
2314 double best_variance = 0;
2315 double best_sq_error = 0;
2316 // Search over a region of eight samples around the expected delay.
2317 for (int delay = std::max(expected_delay - 4, 0); delay <= expected_delay + 4;
2318 ++delay) {
2319 double sq_error = 0;
2320 double variance = 0;
2321 for (size_t i = 0; i < length - delay; ++i) {
2322 double error = test[i + delay] - ref[i];
2323 sq_error += error * error;
2324 variance += ref[i] * ref[i];
2325 }
2326
2327 if (sq_error == 0) {
2328 *variance_acc += variance;
2329 return;
2330 }
2331 double snr = variance / sq_error;
2332 if (snr > best_snr) {
2333 best_snr = snr;
2334 best_variance = variance;
2335 best_sq_error = sq_error;
2336 }
2337 }
2338
2339 *variance_acc += best_variance;
2340 *sq_error_acc += best_sq_error;
2341 }
2342
2343 // Used to test a multitude of sample rate and channel combinations. It works
2344 // by first producing a set of reference files (in SetUpTestCase) that are
2345 // assumed to be correct, as the used parameters are verified by other tests
2346 // in this collection. Primarily the reference files are all produced at
2347 // "native" rates which do not involve any resampling.
2348
2349 // Each test pass produces an output file with a particular format. The output
2350 // is matched against the reference file closest to its internal processing
2351 // format. If necessary the output is resampled back to its process format.
2352 // Due to the resampling distortion, we don't expect identical results, but
2353 // enforce SNR thresholds which vary depending on the format. 0 is a special
2354 // case SNR which corresponds to inf, or zero error.
2355 typedef std::tr1::tuple<int, int, int, int, double, double>
2356 AudioProcessingTestData;
2357 class AudioProcessingTest
2358 : public testing::TestWithParam<AudioProcessingTestData> {
2359 public:
2360 AudioProcessingTest()
2361 : input_rate_(std::tr1::get<0>(GetParam())),
2362 output_rate_(std::tr1::get<1>(GetParam())),
2363 reverse_input_rate_(std::tr1::get<2>(GetParam())),
2364 reverse_output_rate_(std::tr1::get<3>(GetParam())),
2365 expected_snr_(std::tr1::get<4>(GetParam())),
2366 expected_reverse_snr_(std::tr1::get<5>(GetParam())) {}
2367
2368 virtual ~AudioProcessingTest() {}
2369
2370 static void SetUpTestCase() {
2371 // Create all needed output reference files.
2372 const int kNativeRates[] = {8000, 16000, 32000, 48000};
2373 const size_t kNumChannels[] = {1, 2};
2374 for (size_t i = 0; i < arraysize(kNativeRates); ++i) {
2375 for (size_t j = 0; j < arraysize(kNumChannels); ++j) {
2376 for (size_t k = 0; k < arraysize(kNumChannels); ++k) {
2377 // The reference files always have matching input and output channels.
2378 ProcessFormat(kNativeRates[i], kNativeRates[i], kNativeRates[i],
2379 kNativeRates[i], kNumChannels[j], kNumChannels[j],
2380 kNumChannels[k], kNumChannels[k], "ref");
2381 }
2382 }
2383 }
2384 }
2385
2386 static void TearDownTestCase() {
2387 ClearTempFiles();
2388 }
2389
2390 // Runs a process pass on files with the given parameters and dumps the output
2391 // to a file specified with |output_file_prefix|. Both forward and reverse
2392 // output streams are dumped.
2393 static void ProcessFormat(int input_rate,
2394 int output_rate,
2395 int reverse_input_rate,
2396 int reverse_output_rate,
2397 size_t num_input_channels,
2398 size_t num_output_channels,
2399 size_t num_reverse_input_channels,
2400 size_t num_reverse_output_channels,
2401 std::string output_file_prefix) {
2402 Config config;
2403 config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
2404 std::unique_ptr<AudioProcessing> ap(AudioProcessing::Create(config));
2405 EnableAllAPComponents(ap.get());
2406
2407 ProcessingConfig processing_config = {
2408 {{input_rate, num_input_channels},
2409 {output_rate, num_output_channels},
2410 {reverse_input_rate, num_reverse_input_channels},
2411 {reverse_output_rate, num_reverse_output_channels}}};
2412 ap->Initialize(processing_config);
2413
2414 FILE* far_file =
2415 fopen(ResourceFilePath("far", reverse_input_rate).c_str(), "rb");
2416 FILE* near_file = fopen(ResourceFilePath("near", input_rate).c_str(), "rb");
2417 FILE* out_file =
2418 fopen(OutputFilePath(output_file_prefix, input_rate, output_rate,
2419 reverse_input_rate, reverse_output_rate,
2420 num_input_channels, num_output_channels,
2421 num_reverse_input_channels,
2422 num_reverse_output_channels, kForward).c_str(),
2423 "wb");
2424 FILE* rev_out_file =
2425 fopen(OutputFilePath(output_file_prefix, input_rate, output_rate,
2426 reverse_input_rate, reverse_output_rate,
2427 num_input_channels, num_output_channels,
2428 num_reverse_input_channels,
2429 num_reverse_output_channels, kReverse).c_str(),
2430 "wb");
2431 ASSERT_TRUE(far_file != NULL);
2432 ASSERT_TRUE(near_file != NULL);
2433 ASSERT_TRUE(out_file != NULL);
2434 ASSERT_TRUE(rev_out_file != NULL);
2435
2436 ChannelBuffer<float> fwd_cb(SamplesFromRate(input_rate),
2437 num_input_channels);
2438 ChannelBuffer<float> rev_cb(SamplesFromRate(reverse_input_rate),
2439 num_reverse_input_channels);
2440 ChannelBuffer<float> out_cb(SamplesFromRate(output_rate),
2441 num_output_channels);
2442 ChannelBuffer<float> rev_out_cb(SamplesFromRate(reverse_output_rate),
2443 num_reverse_output_channels);
2444
2445 // Temporary buffers.
2446 const int max_length =
2447 2 * std::max(std::max(out_cb.num_frames(), rev_out_cb.num_frames()),
2448 std::max(fwd_cb.num_frames(), rev_cb.num_frames()));
2449 std::unique_ptr<float[]> float_data(new float[max_length]);
2450 std::unique_ptr<int16_t[]> int_data(new int16_t[max_length]);
2451
2452 int analog_level = 127;
2453 while (ReadChunk(far_file, int_data.get(), float_data.get(), &rev_cb) &&
2454 ReadChunk(near_file, int_data.get(), float_data.get(), &fwd_cb)) {
2455 EXPECT_NOERR(ap->ProcessReverseStream(
2456 rev_cb.channels(), processing_config.reverse_input_stream(),
2457 processing_config.reverse_output_stream(), rev_out_cb.channels()));
2458
2459 EXPECT_NOERR(ap->set_stream_delay_ms(0));
2460 ap->echo_cancellation()->set_stream_drift_samples(0);
2461 EXPECT_NOERR(ap->gain_control()->set_stream_analog_level(analog_level));
2462
2463 EXPECT_NOERR(ap->ProcessStream(
2464 fwd_cb.channels(),
2465 fwd_cb.num_frames(),
2466 input_rate,
2467 LayoutFromChannels(num_input_channels),
2468 output_rate,
2469 LayoutFromChannels(num_output_channels),
2470 out_cb.channels()));
2471
2472 // Dump forward output to file.
2473 Interleave(out_cb.channels(), out_cb.num_frames(), out_cb.num_channels(),
2474 float_data.get());
2475 size_t out_length = out_cb.num_channels() * out_cb.num_frames();
2476
2477 ASSERT_EQ(out_length,
2478 fwrite(float_data.get(), sizeof(float_data[0]),
2479 out_length, out_file));
2480
2481 // Dump reverse output to file.
2482 Interleave(rev_out_cb.channels(), rev_out_cb.num_frames(),
2483 rev_out_cb.num_channels(), float_data.get());
2484 size_t rev_out_length =
2485 rev_out_cb.num_channels() * rev_out_cb.num_frames();
2486
2487 ASSERT_EQ(rev_out_length,
2488 fwrite(float_data.get(), sizeof(float_data[0]), rev_out_length,
2489 rev_out_file));
2490
2491 analog_level = ap->gain_control()->stream_analog_level();
2492 }
2493 fclose(far_file);
2494 fclose(near_file);
2495 fclose(out_file);
2496 fclose(rev_out_file);
2497 }
2498
2499 protected:
2500 int input_rate_;
2501 int output_rate_;
2502 int reverse_input_rate_;
2503 int reverse_output_rate_;
2504 double expected_snr_;
2505 double expected_reverse_snr_;
2506 };
2507
2508 TEST_P(AudioProcessingTest, Formats) {
2509 struct ChannelFormat {
2510 int num_input;
2511 int num_output;
2512 int num_reverse_input;
2513 int num_reverse_output;
2514 };
2515 ChannelFormat cf[] = {
2516 {1, 1, 1, 1},
2517 {1, 1, 2, 1},
2518 {2, 1, 1, 1},
2519 {2, 1, 2, 1},
2520 {2, 2, 1, 1},
2521 {2, 2, 2, 2},
2522 };
2523
2524 for (size_t i = 0; i < arraysize(cf); ++i) {
2525 ProcessFormat(input_rate_, output_rate_, reverse_input_rate_,
2526 reverse_output_rate_, cf[i].num_input, cf[i].num_output,
2527 cf[i].num_reverse_input, cf[i].num_reverse_output, "out");
2528
2529 // Verify output for both directions.
2530 std::vector<StreamDirection> stream_directions;
2531 stream_directions.push_back(kForward);
2532 stream_directions.push_back(kReverse);
2533 for (StreamDirection file_direction : stream_directions) {
2534 const int in_rate = file_direction ? reverse_input_rate_ : input_rate_;
2535 const int out_rate = file_direction ? reverse_output_rate_ : output_rate_;
2536 const int out_num =
2537 file_direction ? cf[i].num_reverse_output : cf[i].num_output;
2538 const double expected_snr =
2539 file_direction ? expected_reverse_snr_ : expected_snr_;
2540
2541 const int min_ref_rate = std::min(in_rate, out_rate);
2542 int ref_rate;
2543
2544 if (min_ref_rate > 32000) {
2545 ref_rate = 48000;
2546 } else if (min_ref_rate > 16000) {
2547 ref_rate = 32000;
2548 } else if (min_ref_rate > 8000) {
2549 ref_rate = 16000;
2550 } else {
2551 ref_rate = 8000;
2552 }
2553 #ifdef WEBRTC_ARCH_ARM_FAMILY
2554 if (file_direction == kForward) {
2555 ref_rate = std::min(ref_rate, 32000);
2556 }
2557 #endif
2558 FILE* out_file = fopen(
2559 OutputFilePath("out", input_rate_, output_rate_, reverse_input_rate_,
2560 reverse_output_rate_, cf[i].num_input,
2561 cf[i].num_output, cf[i].num_reverse_input,
2562 cf[i].num_reverse_output, file_direction).c_str(),
2563 "rb");
2564 // The reference files always have matching input and output channels.
2565 FILE* ref_file = fopen(
2566 OutputFilePath("ref", ref_rate, ref_rate, ref_rate, ref_rate,
2567 cf[i].num_output, cf[i].num_output,
2568 cf[i].num_reverse_output, cf[i].num_reverse_output,
2569 file_direction).c_str(),
2570 "rb");
2571 ASSERT_TRUE(out_file != NULL);
2572 ASSERT_TRUE(ref_file != NULL);
2573
2574 const size_t ref_length = SamplesFromRate(ref_rate) * out_num;
2575 const size_t out_length = SamplesFromRate(out_rate) * out_num;
2576 // Data from the reference file.
2577 std::unique_ptr<float[]> ref_data(new float[ref_length]);
2578 // Data from the output file.
2579 std::unique_ptr<float[]> out_data(new float[out_length]);
2580 // Data from the resampled output, in case the reference and output rates
2581 // don't match.
2582 std::unique_ptr<float[]> cmp_data(new float[ref_length]);
2583
2584 PushResampler<float> resampler;
2585 resampler.InitializeIfNeeded(out_rate, ref_rate, out_num);
2586
2587 // Compute the resampling delay of the output relative to the reference,
2588 // to find the region over which we should search for the best SNR.
2589 float expected_delay_sec = 0;
2590 if (in_rate != ref_rate) {
2591 // Input resampling delay.
2592 expected_delay_sec +=
2593 PushSincResampler::AlgorithmicDelaySeconds(in_rate);
2594 }
2595 if (out_rate != ref_rate) {
2596 // Output resampling delay.
2597 expected_delay_sec +=
2598 PushSincResampler::AlgorithmicDelaySeconds(ref_rate);
2599 // Delay of converting the output back to its processing rate for
2600 // testing.
2601 expected_delay_sec +=
2602 PushSincResampler::AlgorithmicDelaySeconds(out_rate);
2603 }
2604 int expected_delay =
2605 floor(expected_delay_sec * ref_rate + 0.5f) * out_num;
2606
2607 double variance = 0;
2608 double sq_error = 0;
2609 while (fread(out_data.get(), sizeof(out_data[0]), out_length, out_file) &&
2610 fread(ref_data.get(), sizeof(ref_data[0]), ref_length, ref_file)) {
2611 float* out_ptr = out_data.get();
2612 if (out_rate != ref_rate) {
2613 // Resample the output back to its internal processing rate if
2614 // necssary.
2615 ASSERT_EQ(ref_length,
2616 static_cast<size_t>(resampler.Resample(
2617 out_ptr, out_length, cmp_data.get(), ref_length)));
2618 out_ptr = cmp_data.get();
2619 }
2620
2621 // Update the |sq_error| and |variance| accumulators with the highest
2622 // SNR of reference vs output.
2623 UpdateBestSNR(ref_data.get(), out_ptr, ref_length, expected_delay,
2624 &variance, &sq_error);
2625 }
2626
2627 std::cout << "(" << input_rate_ << ", " << output_rate_ << ", "
2628 << reverse_input_rate_ << ", " << reverse_output_rate_ << ", "
2629 << cf[i].num_input << ", " << cf[i].num_output << ", "
2630 << cf[i].num_reverse_input << ", " << cf[i].num_reverse_output
2631 << ", " << file_direction << "): ";
2632 if (sq_error > 0) {
2633 double snr = 10 * log10(variance / sq_error);
2634 EXPECT_GE(snr, expected_snr);
2635 EXPECT_NE(0, expected_snr);
2636 std::cout << "SNR=" << snr << " dB" << std::endl;
2637 } else {
2638 std::cout << "SNR=inf dB" << std::endl;
2639 }
2640
2641 fclose(out_file);
2642 fclose(ref_file);
2643 }
2644 }
2645 }
2646
2647 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
2648 INSTANTIATE_TEST_CASE_P(
2649 CommonFormats,
2650 AudioProcessingTest,
2651 testing::Values(std::tr1::make_tuple(48000, 48000, 48000, 48000, 0, 0),
2652 std::tr1::make_tuple(48000, 48000, 32000, 48000, 35, 30),
2653 std::tr1::make_tuple(48000, 48000, 16000, 48000, 35, 20),
2654 std::tr1::make_tuple(48000, 44100, 48000, 44100, 20, 20),
2655 std::tr1::make_tuple(48000, 44100, 32000, 44100, 20, 15),
2656 std::tr1::make_tuple(48000, 44100, 16000, 44100, 20, 15),
2657 std::tr1::make_tuple(48000, 32000, 48000, 32000, 30, 35),
2658 std::tr1::make_tuple(48000, 32000, 32000, 32000, 30, 0),
2659 std::tr1::make_tuple(48000, 32000, 16000, 32000, 30, 20),
2660 std::tr1::make_tuple(48000, 16000, 48000, 16000, 25, 20),
2661 std::tr1::make_tuple(48000, 16000, 32000, 16000, 25, 20),
2662 std::tr1::make_tuple(48000, 16000, 16000, 16000, 25, 0),
2663
2664 std::tr1::make_tuple(44100, 48000, 48000, 48000, 30, 0),
2665 std::tr1::make_tuple(44100, 48000, 32000, 48000, 30, 30),
2666 std::tr1::make_tuple(44100, 48000, 16000, 48000, 30, 20),
2667 std::tr1::make_tuple(44100, 44100, 48000, 44100, 20, 20),
2668 std::tr1::make_tuple(44100, 44100, 32000, 44100, 20, 15),
2669 std::tr1::make_tuple(44100, 44100, 16000, 44100, 20, 15),
2670 std::tr1::make_tuple(44100, 32000, 48000, 32000, 30, 35),
2671 std::tr1::make_tuple(44100, 32000, 32000, 32000, 30, 0),
2672 std::tr1::make_tuple(44100, 32000, 16000, 32000, 30, 20),
2673 std::tr1::make_tuple(44100, 16000, 48000, 16000, 25, 20),
2674 std::tr1::make_tuple(44100, 16000, 32000, 16000, 25, 20),
2675 std::tr1::make_tuple(44100, 16000, 16000, 16000, 25, 0),
2676
2677 std::tr1::make_tuple(32000, 48000, 48000, 48000, 30, 0),
2678 std::tr1::make_tuple(32000, 48000, 32000, 48000, 35, 30),
2679 std::tr1::make_tuple(32000, 48000, 16000, 48000, 30, 20),
2680 std::tr1::make_tuple(32000, 44100, 48000, 44100, 20, 20),
2681 std::tr1::make_tuple(32000, 44100, 32000, 44100, 20, 15),
2682 std::tr1::make_tuple(32000, 44100, 16000, 44100, 20, 15),
2683 std::tr1::make_tuple(32000, 32000, 48000, 32000, 40, 35),
2684 std::tr1::make_tuple(32000, 32000, 32000, 32000, 0, 0),
2685 std::tr1::make_tuple(32000, 32000, 16000, 32000, 40, 20),
2686 std::tr1::make_tuple(32000, 16000, 48000, 16000, 25, 20),
2687 std::tr1::make_tuple(32000, 16000, 32000, 16000, 25, 20),
2688 std::tr1::make_tuple(32000, 16000, 16000, 16000, 25, 0),
2689
2690 std::tr1::make_tuple(16000, 48000, 48000, 48000, 25, 0),
2691 std::tr1::make_tuple(16000, 48000, 32000, 48000, 25, 30),
2692 std::tr1::make_tuple(16000, 48000, 16000, 48000, 25, 20),
2693 std::tr1::make_tuple(16000, 44100, 48000, 44100, 15, 20),
2694 std::tr1::make_tuple(16000, 44100, 32000, 44100, 15, 15),
2695 std::tr1::make_tuple(16000, 44100, 16000, 44100, 15, 15),
2696 std::tr1::make_tuple(16000, 32000, 48000, 32000, 25, 35),
2697 std::tr1::make_tuple(16000, 32000, 32000, 32000, 25, 0),
2698 std::tr1::make_tuple(16000, 32000, 16000, 32000, 25, 20),
2699 std::tr1::make_tuple(16000, 16000, 48000, 16000, 40, 20),
2700 std::tr1::make_tuple(16000, 16000, 32000, 16000, 40, 20),
2701 std::tr1::make_tuple(16000, 16000, 16000, 16000, 0, 0)));
2702
2703 #elif defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
2704 INSTANTIATE_TEST_CASE_P(
2705 CommonFormats,
2706 AudioProcessingTest,
2707 testing::Values(std::tr1::make_tuple(48000, 48000, 48000, 48000, 20, 0),
2708 std::tr1::make_tuple(48000, 48000, 32000, 48000, 20, 30),
2709 std::tr1::make_tuple(48000, 48000, 16000, 48000, 20, 20),
2710 std::tr1::make_tuple(48000, 44100, 48000, 44100, 15, 20),
2711 std::tr1::make_tuple(48000, 44100, 32000, 44100, 15, 15),
2712 std::tr1::make_tuple(48000, 44100, 16000, 44100, 15, 15),
2713 std::tr1::make_tuple(48000, 32000, 48000, 32000, 20, 35),
2714 std::tr1::make_tuple(48000, 32000, 32000, 32000, 20, 0),
2715 std::tr1::make_tuple(48000, 32000, 16000, 32000, 20, 20),
2716 std::tr1::make_tuple(48000, 16000, 48000, 16000, 20, 20),
2717 std::tr1::make_tuple(48000, 16000, 32000, 16000, 20, 20),
2718 std::tr1::make_tuple(48000, 16000, 16000, 16000, 20, 0),
2719
2720 std::tr1::make_tuple(44100, 48000, 48000, 48000, 15, 0),
2721 std::tr1::make_tuple(44100, 48000, 32000, 48000, 15, 30),
2722 std::tr1::make_tuple(44100, 48000, 16000, 48000, 15, 20),
2723 std::tr1::make_tuple(44100, 44100, 48000, 44100, 15, 20),
2724 std::tr1::make_tuple(44100, 44100, 32000, 44100, 15, 15),
2725 std::tr1::make_tuple(44100, 44100, 16000, 44100, 15, 15),
2726 std::tr1::make_tuple(44100, 32000, 48000, 32000, 20, 35),
2727 std::tr1::make_tuple(44100, 32000, 32000, 32000, 20, 0),
2728 std::tr1::make_tuple(44100, 32000, 16000, 32000, 20, 20),
2729 std::tr1::make_tuple(44100, 16000, 48000, 16000, 20, 20),
2730 std::tr1::make_tuple(44100, 16000, 32000, 16000, 20, 20),
2731 std::tr1::make_tuple(44100, 16000, 16000, 16000, 20, 0),
2732
2733 std::tr1::make_tuple(32000, 48000, 48000, 48000, 35, 0),
2734 std::tr1::make_tuple(32000, 48000, 32000, 48000, 65, 30),
2735 std::tr1::make_tuple(32000, 48000, 16000, 48000, 40, 20),
2736 std::tr1::make_tuple(32000, 44100, 48000, 44100, 20, 20),
2737 std::tr1::make_tuple(32000, 44100, 32000, 44100, 20, 15),
2738 std::tr1::make_tuple(32000, 44100, 16000, 44100, 20, 15),
2739 std::tr1::make_tuple(32000, 32000, 48000, 32000, 35, 35),
2740 std::tr1::make_tuple(32000, 32000, 32000, 32000, 0, 0),
2741 std::tr1::make_tuple(32000, 32000, 16000, 32000, 40, 20),
2742 std::tr1::make_tuple(32000, 16000, 48000, 16000, 20, 20),
2743 std::tr1::make_tuple(32000, 16000, 32000, 16000, 20, 20),
2744 std::tr1::make_tuple(32000, 16000, 16000, 16000, 20, 0),
2745
2746 std::tr1::make_tuple(16000, 48000, 48000, 48000, 25, 0),
2747 std::tr1::make_tuple(16000, 48000, 32000, 48000, 25, 30),
2748 std::tr1::make_tuple(16000, 48000, 16000, 48000, 25, 20),
2749 std::tr1::make_tuple(16000, 44100, 48000, 44100, 15, 20),
2750 std::tr1::make_tuple(16000, 44100, 32000, 44100, 15, 15),
2751 std::tr1::make_tuple(16000, 44100, 16000, 44100, 15, 15),
2752 std::tr1::make_tuple(16000, 32000, 48000, 32000, 25, 35),
2753 std::tr1::make_tuple(16000, 32000, 32000, 32000, 25, 0),
2754 std::tr1::make_tuple(16000, 32000, 16000, 32000, 25, 20),
2755 std::tr1::make_tuple(16000, 16000, 48000, 16000, 35, 20),
2756 std::tr1::make_tuple(16000, 16000, 32000, 16000, 35, 20),
2757 std::tr1::make_tuple(16000, 16000, 16000, 16000, 0, 0)));
2758 #endif
2759
2760 } // namespace
2761 } // namespace webrtc
OLDNEW
« no previous file with comments | « webrtc/modules/audio_processing/audio_processing_unittest.cc ('k') | webrtc/modules/modules.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698