Index: webrtc/media/base/videoadapter.cc |
diff --git a/webrtc/media/base/videoadapter.cc b/webrtc/media/base/videoadapter.cc |
index e3ddc922410081047e3b246c519de77bb2f5fc5c..9bba9f2c5200cd98d9c8d990e96e1de3b2ee4f38 100644 |
--- a/webrtc/media/base/videoadapter.cc |
+++ b/webrtc/media/base/videoadapter.cc |
@@ -10,161 +10,98 @@ |
#include "webrtc/media/base/videoadapter.h" |
-#include <limits.h> // For INT_MAX |
#include <algorithm> |
+#include <cmath> |
#include "webrtc/base/logging.h" |
-#include "webrtc/base/timeutils.h" |
#include "webrtc/media/base/mediaconstants.h" |
#include "webrtc/media/base/videocommon.h" |
-#include "webrtc/media/base/videoframe.h" |
-namespace cricket { |
- |
-// TODO(fbarchard): Make downgrades settable |
-static const int kMaxCpuDowngrades = 2; // Downgrade at most 2 times for CPU. |
-// The number of cpu samples to require before adapting. This value depends on |
-// the cpu monitor sampling frequency being 2000ms. |
-static const int kCpuLoadMinSamples = 3; |
-// The amount of weight to give to each new cpu load sample. The lower the |
-// value, the slower we'll adapt to changing cpu conditions. |
-static const float kCpuLoadWeightCoefficient = 0.4f; |
-// The seed value for the cpu load moving average. |
-static const float kCpuLoadInitialAverage = 0.5f; |
- |
-// Desktop needs 1/8 scale for HD (1280 x 720) to QQVGA (160 x 90) |
-static const float kScaleFactors[] = { |
- 1.f / 1.f, // Full size. |
- 3.f / 4.f, // 3/4 scale. |
- 1.f / 2.f, // 1/2 scale. |
- 3.f / 8.f, // 3/8 scale. |
- 1.f / 4.f, // 1/4 scale. |
- 3.f / 16.f, // 3/16 scale. |
- 1.f / 8.f, // 1/8 scale. |
- 0.f // End of table. |
-}; |
- |
-// TODO(fbarchard): Use this table (optionally) for CPU and GD as well. |
-static const float kViewScaleFactors[] = { |
- 1.f / 1.f, // Full size. |
- 3.f / 4.f, // 3/4 scale. |
- 2.f / 3.f, // 2/3 scale. // Allow 1080p to 720p. |
- 1.f / 2.f, // 1/2 scale. |
- 3.f / 8.f, // 3/8 scale. |
- 1.f / 3.f, // 1/3 scale. // Allow 1080p to 360p. |
- 1.f / 4.f, // 1/4 scale. |
- 3.f / 16.f, // 3/16 scale. |
- 1.f / 8.f, // 1/8 scale. |
- 0.f // End of table. |
+namespace { |
+ |
+// Scale factors optimized for in libYUV that we accept. |
+// Must be sorted in decreasing scale factors for FindScaleLargerThan to work. |
+const float kScaleFactors[] = { |
+ 1.f / 1.f, // Full size. |
+ 3.f / 4.f, // 3/4 scale. |
+ 1.f / 2.f, // 1/2 scale. |
+ 3.f / 8.f, // 3/8 scale. |
+ 1.f / 4.f, // 1/4 scale. |
+ 3.f / 16.f, // 3/16 scale. |
+ 0.f // |
nisse-webrtc
2016/04/01 12:11:07
Still don't understand why 0 needs to be in the ta
perkj_webrtc
2016/04/04 06:14:04
removed
|
}; |
-const float* VideoAdapter::GetViewScaleFactors() const { |
- return scale_third_ ? kViewScaleFactors : kScaleFactors; |
-} |
- |
-// For resolutions that would scale down a little instead of up a little, |
-// bias toward scaling up a little. This will tend to choose 3/4 scale instead |
-// of 2/3 scale, when the 2/3 is not an exact match. |
-static const float kUpBias = -0.9f; |
-// Find the scale factor that, when applied to width and height, is closest |
-// to num_pixels. |
-float VideoAdapter::FindScale(const float* scale_factors, |
- const float upbias, |
- int width, int height, |
- int target_num_pixels) { |
- const float kMinNumPixels = 160 * 90; |
- if (!target_num_pixels) { |
- return 0.f; |
- } |
- float best_distance = static_cast<float>(INT_MAX); |
- float best_scale = 1.f; // Default to unscaled if nothing matches. |
- float pixels = static_cast<float>(width * height); |
- for (int i = 0; ; ++i) { |
- float scale = scale_factors[i]; |
+float FindScaleLessThanOrEqual(int width, |
+ int height, |
+ int target_num_pixels, |
+ int* resulting_number_of_pixels) { |
+ float best_distance = HUGE_VALF; |
+ float best_scale = 0.0f; // Default to 0 if nothing matches. |
+ float pixels = width * height; |
+ float best_number_of_pixels = 0.0f; |
+ for (const auto& scale : kScaleFactors) { |
float test_num_pixels = pixels * scale * scale; |
- // Do not consider scale factors that produce too small images. |
- // Scale factor of 0 at end of table will also exit here. |
- if (test_num_pixels < kMinNumPixels) { |
- break; |
- } |
float diff = target_num_pixels - test_num_pixels; |
- // If resolution is higher than desired, bias the difference based on |
- // preference for slightly larger for nearest, or avoid completely if |
- // looking for lower resolutions only. |
if (diff < 0) { |
- diff = diff * kUpBias; |
+ continue; |
} |
if (diff < best_distance) { |
best_distance = diff; |
best_scale = scale; |
+ best_number_of_pixels = test_num_pixels; |
if (best_distance == 0) { // Found exact match. |
break; |
} |
} |
} |
+ if (resulting_number_of_pixels) { |
+ *resulting_number_of_pixels = static_cast<int>(best_number_of_pixels + .5f); |
+ } |
return best_scale; |
} |
-// Find the closest scale factor. |
-float VideoAdapter::FindClosestScale(int width, int height, |
- int target_num_pixels) { |
- return FindScale(kScaleFactors, kUpBias, |
- width, height, target_num_pixels); |
+float FindScaleLargerThan(int width, |
+ int height, |
+ int target_num_pixels, |
+ int* resulting_number_of_pixels) { |
+ float best_distance = HUGE_VALF; |
+ float best_scale = 1.f; // Default to unscaled if nothing matches. |
+ float pixels = width * height; |
+ float best_number_of_pixels = 0.0f; |
+ for (const auto& scale : kScaleFactors) { |
+ float test_num_pixels = pixels * scale * scale; |
+ float diff = test_num_pixels - target_num_pixels; |
+ if (diff <= 0) { |
+ break; |
+ } |
+ if (diff < best_distance) { |
+ best_distance = diff; |
+ best_scale = scale; |
+ best_number_of_pixels = test_num_pixels; |
+ } |
+ } |
+ if (resulting_number_of_pixels) { |
+ *resulting_number_of_pixels = static_cast<int>(best_number_of_pixels + .5f); |
+ } |
+ return best_scale; |
} |
-// Find the closest view scale factor. |
-float VideoAdapter::FindClosestViewScale(int width, int height, |
- int target_num_pixels) { |
- return FindScale(GetViewScaleFactors(), kUpBias, |
- width, height, target_num_pixels); |
-} |
+} // namespace |
-// Finds the scale factor that, when applied to width and height, produces |
-// fewer than num_pixels. |
-static const float kUpAvoidBias = -1000000000.f; |
-float VideoAdapter::FindLowerScale(int width, int height, |
- int target_num_pixels) { |
- return FindScale(GetViewScaleFactors(), kUpAvoidBias, |
- width, height, target_num_pixels); |
-} |
+namespace cricket { |
-// There are several frame sizes used by Adapter. This explains them |
-// input_format - set once by server to frame size expected from the camera. |
-// The input frame size is also updated in AdaptFrameResolution. |
-// output_format - size that output would like to be. Includes framerate. |
-// The output frame size is also updated in AdaptFrameResolution. |
-// output_num_pixels - size that output should be constrained to. Used to |
-// compute output_format from in_frame. |
-// in_frame - actual camera captured frame size, which is typically the same |
-// as input_format. This can also be rotated or cropped for aspect ratio. |
-// out_frame - actual frame output by adapter. Should be a direct scale of |
-// in_frame maintaining rotation and aspect ratio. |
-// OnOutputFormatRequest - server requests you send this resolution based on |
-// view requests. |
-// OnEncoderResolutionRequest - encoder requests you send this resolution based |
-// on bandwidth |
-// OnCpuLoadUpdated - cpu monitor requests you send this resolution based on |
-// cpu load. |
+VideoAdapter::VideoAdapter() {} |
-/////////////////////////////////////////////////////////////////////// |
-// Implementation of VideoAdapter |
-VideoAdapter::VideoAdapter() |
- : output_num_pixels_(INT_MAX), |
- scale_third_(false), |
- frames_in_(0), |
- frames_out_(0), |
- frames_scaled_(0), |
- adaption_changes_(0), |
- previous_width_(0), |
- previous_height_(0), |
- interval_next_frame_(0) { |
-} |
+VideoAdapter::~VideoAdapter() {} |
-VideoAdapter::~VideoAdapter() { |
+void VideoAdapter::SetExpectedInputFrameInterval(int64_t interval) { |
+ rtc::CritScope cs(&critical_section_); |
+ input_format_.interval = interval; |
} |
void VideoAdapter::SetInputFormat(const VideoFormat& format) { |
- rtc::CritScope cs(&critical_section_); |
+ bool is_resolution_change = (input_format().width != format.width || |
+ input_format().height != format.height); |
int64_t old_input_interval = input_format_.interval; |
input_format_ = format; |
output_format_.interval = |
@@ -173,73 +110,21 @@ void VideoAdapter::SetInputFormat(const VideoFormat& format) { |
LOG(LS_INFO) << "VAdapt input interval changed from " |
<< old_input_interval << " to " << input_format_.interval; |
} |
-} |
- |
-void CoordinatedVideoAdapter::SetInputFormat(const VideoFormat& format) { |
- int previous_width = input_format().width; |
- int previous_height = input_format().height; |
- bool is_resolution_change = previous_width > 0 && format.width > 0 && |
- (previous_width != format.width || |
- previous_height != format.height); |
- VideoAdapter::SetInputFormat(format); |
if (is_resolution_change) { |
- int width, height; |
// Trigger the adaptation logic again, to potentially reset the adaptation |
// state for things like view requests that may not longer be capping |
// output (or may now cap output). |
- AdaptToMinimumFormat(&width, &height); |
- LOG(LS_INFO) << "VAdapt Input Resolution Change: " |
- << "Previous input resolution: " |
- << previous_width << "x" << previous_height |
- << " New input resolution: " |
- << format.width << "x" << format.height |
- << " New output resolution: " |
- << width << "x" << height; |
+ Adapt(std::min(format_request_max_pixel_count_, |
+ resolution_request_max_pixel_count_), |
+ 0); |
} |
} |
-void CoordinatedVideoAdapter::set_cpu_smoothing(bool enable) { |
- LOG(LS_INFO) << "CPU smoothing is now " |
- << (enable ? "enabled" : "disabled"); |
- cpu_smoothing_ = enable; |
-} |
- |
-void VideoAdapter::SetOutputFormat(const VideoFormat& format) { |
- rtc::CritScope cs(&critical_section_); |
- int64_t old_output_interval = output_format_.interval; |
- output_format_ = format; |
- output_num_pixels_ = output_format_.width * output_format_.height; |
- output_format_.interval = |
- std::max(output_format_.interval, input_format_.interval); |
- if (old_output_interval != output_format_.interval) { |
- LOG(LS_INFO) << "VAdapt output interval changed from " |
- << old_output_interval << " to " << output_format_.interval; |
- } |
-} |
- |
-const VideoFormat& VideoAdapter::input_format() { |
+const VideoFormat& VideoAdapter::input_format() const { |
rtc::CritScope cs(&critical_section_); |
return input_format_; |
} |
-bool VideoAdapter::drops_all_frames() const { |
- return output_num_pixels_ == 0; |
-} |
- |
-const VideoFormat& VideoAdapter::output_format() { |
- rtc::CritScope cs(&critical_section_); |
- return output_format_; |
-} |
- |
-// Constrain output resolution to this many pixels overall |
-void VideoAdapter::SetOutputNumPixels(int num_pixels) { |
- output_num_pixels_ = num_pixels; |
-} |
- |
-int VideoAdapter::GetOutputNumPixels() const { |
- return output_num_pixels_; |
-} |
- |
VideoFormat VideoAdapter::AdaptFrameResolution(int in_width, int in_height) { |
rtc::CritScope cs(&critical_section_); |
++frames_in_; |
@@ -284,10 +169,10 @@ VideoFormat VideoAdapter::AdaptFrameResolution(int in_width, int in_height) { |
return VideoFormat(); // Drop frame. |
} |
- const float scale = VideoAdapter::FindClosestViewScale( |
- in_width, in_height, output_num_pixels_); |
- const size_t output_width = static_cast<size_t>(in_width * scale + .5f); |
- const size_t output_height = static_cast<size_t>(in_height * scale + .5f); |
+ const float scale = FindScaleLessThanOrEqual(in_width, in_height, |
+ output_num_pixels_, nullptr); |
+ const int output_width = static_cast<int>(in_width * scale + .5f); |
+ const int output_height = static_cast<int>(in_height * scale + .5f); |
++frames_out_; |
if (scale != 1) |
@@ -332,385 +217,55 @@ VideoFormat VideoAdapter::AdaptFrameResolution(int in_width, int in_height) { |
return output_format_; |
} |
-void VideoAdapter::set_scale_third(bool enable) { |
- LOG(LS_INFO) << "Video Adapter third scaling is now " |
- << (enable ? "enabled" : "disabled"); |
- scale_third_ = enable; |
-} |
- |
-/////////////////////////////////////////////////////////////////////// |
-// Implementation of CoordinatedVideoAdapter |
-CoordinatedVideoAdapter::CoordinatedVideoAdapter() |
- : cpu_adaptation_(true), |
- cpu_smoothing_(false), |
- gd_adaptation_(true), |
- view_adaptation_(true), |
- view_switch_(false), |
- cpu_downgrade_count_(0), |
- cpu_load_min_samples_(kCpuLoadMinSamples), |
- cpu_load_num_samples_(0), |
- high_system_threshold_(kHighSystemCpuThreshold), |
- low_system_threshold_(kLowSystemCpuThreshold), |
- process_threshold_(kProcessCpuThreshold), |
- view_desired_num_pixels_(INT_MAX), |
- view_desired_interval_(0), |
- encoder_desired_num_pixels_(INT_MAX), |
- cpu_desired_num_pixels_(INT_MAX), |
- adapt_reason_(ADAPTREASON_NONE), |
- system_load_average_(kCpuLoadInitialAverage) { |
-} |
- |
-// Helper function to UPGRADE or DOWNGRADE a number of pixels |
-void CoordinatedVideoAdapter::StepPixelCount( |
- CoordinatedVideoAdapter::AdaptRequest request, |
- int* num_pixels) { |
- switch (request) { |
- case CoordinatedVideoAdapter::DOWNGRADE: |
- *num_pixels /= 2; |
- break; |
- |
- case CoordinatedVideoAdapter::UPGRADE: |
- *num_pixels *= 2; |
- break; |
- |
- default: // No change in pixel count |
- break; |
- } |
- return; |
-} |
- |
-// Find the adaptation request of the cpu based on the load. Return UPGRADE if |
-// the load is low, DOWNGRADE if the load is high, and KEEP otherwise. |
-CoordinatedVideoAdapter::AdaptRequest CoordinatedVideoAdapter::FindCpuRequest( |
- int current_cpus, int max_cpus, |
- float process_load, float system_load) { |
- // Downgrade if system is high and plugin is at least more than midrange. |
- if (system_load >= high_system_threshold_ * max_cpus && |
- process_load >= process_threshold_ * current_cpus) { |
- return CoordinatedVideoAdapter::DOWNGRADE; |
- // Upgrade if system is low. |
- } else if (system_load < low_system_threshold_ * max_cpus) { |
- return CoordinatedVideoAdapter::UPGRADE; |
- } |
- return CoordinatedVideoAdapter::KEEP; |
-} |
- |
-// A remote view request for a new resolution. |
-void CoordinatedVideoAdapter::OnOutputFormatRequest(const VideoFormat& format) { |
- rtc::CritScope cs(&request_critical_section_); |
- if (!view_adaptation_) { |
- return; |
- } |
- // Set output for initial aspect ratio in mediachannel unittests. |
- int old_num_pixels = GetOutputNumPixels(); |
- SetOutputFormat(format); |
- SetOutputNumPixels(old_num_pixels); |
- view_desired_num_pixels_ = format.width * format.height; |
- view_desired_interval_ = format.interval; |
- int new_width, new_height; |
- bool changed = AdaptToMinimumFormat(&new_width, &new_height); |
- LOG(LS_INFO) << "VAdapt View Request: " |
- << format.width << "x" << format.height |
- << " Pixels: " << view_desired_num_pixels_ |
- << " Changed: " << (changed ? "true" : "false") |
- << " To: " << new_width << "x" << new_height; |
-} |
- |
-void CoordinatedVideoAdapter::set_cpu_load_min_samples( |
- int cpu_load_min_samples) { |
- if (cpu_load_min_samples_ != cpu_load_min_samples) { |
- LOG(LS_INFO) << "VAdapt Change Cpu Adapt Min Samples from: " |
- << cpu_load_min_samples_ << " to " |
- << cpu_load_min_samples; |
- cpu_load_min_samples_ = cpu_load_min_samples; |
- } |
-} |
- |
-void CoordinatedVideoAdapter::set_high_system_threshold( |
- float high_system_threshold) { |
- ASSERT(high_system_threshold <= 1.0f); |
- ASSERT(high_system_threshold >= 0.0f); |
- if (high_system_threshold_ != high_system_threshold) { |
- LOG(LS_INFO) << "VAdapt Change High System Threshold from: " |
- << high_system_threshold_ << " to " << high_system_threshold; |
- high_system_threshold_ = high_system_threshold; |
- } |
-} |
- |
-void CoordinatedVideoAdapter::set_low_system_threshold( |
- float low_system_threshold) { |
- ASSERT(low_system_threshold <= 1.0f); |
- ASSERT(low_system_threshold >= 0.0f); |
- if (low_system_threshold_ != low_system_threshold) { |
- LOG(LS_INFO) << "VAdapt Change Low System Threshold from: " |
- << low_system_threshold_ << " to " << low_system_threshold; |
- low_system_threshold_ = low_system_threshold; |
- } |
-} |
- |
-void CoordinatedVideoAdapter::set_process_threshold(float process_threshold) { |
- ASSERT(process_threshold <= 1.0f); |
- ASSERT(process_threshold >= 0.0f); |
- if (process_threshold_ != process_threshold) { |
- LOG(LS_INFO) << "VAdapt Change High Process Threshold from: " |
- << process_threshold_ << " to " << process_threshold; |
- process_threshold_ = process_threshold; |
- } |
-} |
- |
-// A Bandwidth GD request for new resolution |
-void CoordinatedVideoAdapter::OnEncoderResolutionRequest( |
- int width, int height, AdaptRequest request) { |
- rtc::CritScope cs(&request_critical_section_); |
- if (!gd_adaptation_) { |
- return; |
- } |
- int old_encoder_desired_num_pixels = encoder_desired_num_pixels_; |
- if (KEEP != request) { |
- int new_encoder_desired_num_pixels = width * height; |
- int old_num_pixels = GetOutputNumPixels(); |
- if (new_encoder_desired_num_pixels != old_num_pixels) { |
- LOG(LS_VERBOSE) << "VAdapt GD resolution stale. Ignored"; |
- } else { |
- // Update the encoder desired format based on the request. |
- encoder_desired_num_pixels_ = new_encoder_desired_num_pixels; |
- StepPixelCount(request, &encoder_desired_num_pixels_); |
- } |
- } |
- int new_width, new_height; |
- bool changed = AdaptToMinimumFormat(&new_width, &new_height); |
- |
- // Ignore up or keep if no change. |
- if (DOWNGRADE != request && view_switch_ && !changed) { |
- encoder_desired_num_pixels_ = old_encoder_desired_num_pixels; |
- LOG(LS_VERBOSE) << "VAdapt ignoring GD request."; |
- } |
- |
- LOG(LS_INFO) << "VAdapt GD Request: " |
- << (DOWNGRADE == request ? "down" : |
- (UPGRADE == request ? "up" : "keep")) |
- << " From: " << width << "x" << height |
- << " Pixels: " << encoder_desired_num_pixels_ |
- << " Changed: " << (changed ? "true" : "false") |
- << " To: " << new_width << "x" << new_height; |
+void VideoAdapter::OnOutputFormatRequest(const VideoFormat& format) { |
+ rtc::CritScope cs(&critical_section_); |
+ format_request_max_pixel_count_ = format.width * format.height; |
+ output_format_.interval = format.interval; |
+ Adapt(std::min(format_request_max_pixel_count_, |
+ resolution_request_max_pixel_count_), |
+ 0); |
} |
-void CoordinatedVideoAdapter::OnCpuResolutionRequest( |
+void VideoAdapter::OnResolutionRequest( |
rtc::Optional<int> max_pixel_count, |
rtc::Optional<int> max_pixel_count_step_up) { |
- rtc::CritScope cs(&request_critical_section_); |
- // TODO(perkj): We should support taking larger steps up and down and |
- // actually look at the values set in max_pixel_count and |
- // max_pixel_count_step_up. |
- if (max_pixel_count && *max_pixel_count < GetOutputNumPixels()) { |
- OnCpuResolutionRequest(DOWNGRADE); |
- } else if (max_pixel_count_step_up && |
- *max_pixel_count_step_up >= GetOutputNumPixels()) { |
- OnCpuResolutionRequest(UPGRADE); |
- } |
-} |
- |
-// A Bandwidth GD request for new resolution |
-void CoordinatedVideoAdapter::OnCpuResolutionRequest(AdaptRequest request) { |
- rtc::CritScope cs(&request_critical_section_); |
- if (!cpu_adaptation_) { |
- return; |
- } |
- |
- // Update how many times we have downgraded due to the cpu load. |
- switch (request) { |
- case DOWNGRADE: |
- // Ignore downgrades if we have downgraded the maximum times. |
- if (cpu_downgrade_count_ < kMaxCpuDowngrades) { |
- ++cpu_downgrade_count_; |
- } else { |
- LOG(LS_VERBOSE) << "VAdapt CPU load high but do not downgrade " |
- "because maximum downgrades reached"; |
- SignalCpuAdaptationUnable(); |
- } |
- break; |
- case UPGRADE: |
- if (cpu_downgrade_count_ > 0) { |
- bool is_min = IsMinimumFormat(cpu_desired_num_pixels_); |
- if (is_min) { |
- --cpu_downgrade_count_; |
- } else { |
- LOG(LS_VERBOSE) << "VAdapt CPU load low but do not upgrade " |
- "because cpu is not limiting resolution"; |
- } |
- } else { |
- LOG(LS_VERBOSE) << "VAdapt CPU load low but do not upgrade " |
- "because minimum downgrades reached"; |
- } |
- break; |
- case KEEP: |
- default: |
- break; |
- } |
- if (KEEP != request) { |
- // TODO(fbarchard): compute stepping up/down from OutputNumPixels but |
- // clamp to inputpixels / 4 (2 steps) |
- cpu_desired_num_pixels_ = cpu_downgrade_count_ == 0 ? INT_MAX : |
- static_cast<int>(input_format().width * input_format().height >> |
- cpu_downgrade_count_); |
- } |
- int new_width, new_height; |
- bool changed = AdaptToMinimumFormat(&new_width, &new_height); |
- LOG(LS_INFO) << "VAdapt CPU Request: " |
- << (DOWNGRADE == request ? "down" : |
- (UPGRADE == request ? "up" : "keep")) |
- << " Steps: " << cpu_downgrade_count_ |
- << " Changed: " << (changed ? "true" : "false") |
- << " To: " << new_width << "x" << new_height; |
-} |
- |
-// A CPU request for new resolution |
-// TODO(fbarchard): Move outside adapter. |
-void CoordinatedVideoAdapter::OnCpuLoadUpdated( |
- int current_cpus, int max_cpus, float process_load, float system_load) { |
- rtc::CritScope cs(&request_critical_section_); |
- if (!cpu_adaptation_) { |
- return; |
- } |
- // Update the moving average of system load. Even if we aren't smoothing, |
- // we'll still calculate this information, in case smoothing is later enabled. |
- system_load_average_ = kCpuLoadWeightCoefficient * system_load + |
- (1.0f - kCpuLoadWeightCoefficient) * system_load_average_; |
- ++cpu_load_num_samples_; |
- if (cpu_smoothing_) { |
- system_load = system_load_average_; |
- } |
- AdaptRequest request = FindCpuRequest(current_cpus, max_cpus, |
- process_load, system_load); |
- // Make sure we're not adapting too quickly. |
- if (request != KEEP) { |
- if (cpu_load_num_samples_ < cpu_load_min_samples_) { |
- LOG(LS_VERBOSE) << "VAdapt CPU load high/low but do not adapt until " |
- << (cpu_load_min_samples_ - cpu_load_num_samples_) |
- << " more samples"; |
- request = KEEP; |
- } |
- } |
- |
- OnCpuResolutionRequest(request); |
-} |
- |
-// Called by cpu adapter on up requests. |
-bool CoordinatedVideoAdapter::IsMinimumFormat(int pixels) { |
- // Find closest scale factor that matches input resolution to min_num_pixels |
- // and set that for output resolution. This is not needed for VideoAdapter, |
- // but provides feedback to unittests and users on expected resolution. |
- // Actual resolution is based on input frame. |
- VideoFormat new_output = output_format(); |
- VideoFormat input = input_format(); |
- if (input_format().IsSize0x0()) { |
- input = new_output; |
- } |
- float scale = 1.0f; |
- if (!input.IsSize0x0()) { |
- scale = FindClosestScale(input.width, |
- input.height, |
- pixels); |
- } |
- new_output.width = static_cast<int>(input.width * scale + .5f); |
- new_output.height = static_cast<int>(input.height * scale + .5f); |
- int new_pixels = new_output.width * new_output.height; |
- int num_pixels = GetOutputNumPixels(); |
- return new_pixels <= num_pixels; |
-} |
- |
-// Called by all coordinators when there is a change. |
-bool CoordinatedVideoAdapter::AdaptToMinimumFormat(int* new_width, |
- int* new_height) { |
- VideoFormat new_output = output_format(); |
- VideoFormat input = input_format(); |
- if (input_format().IsSize0x0()) { |
- input = new_output; |
- } |
- int old_num_pixels = GetOutputNumPixels(); |
- int min_num_pixels = INT_MAX; |
- adapt_reason_ = ADAPTREASON_NONE; |
- |
- // Reduce resolution based on encoder bandwidth (GD). |
- if (encoder_desired_num_pixels_ && |
- (encoder_desired_num_pixels_ < min_num_pixels)) { |
- adapt_reason_ |= ADAPTREASON_BANDWIDTH; |
- min_num_pixels = encoder_desired_num_pixels_; |
- } |
- // Reduce resolution based on CPU. |
- if (cpu_adaptation_ && cpu_desired_num_pixels_ && |
- (cpu_desired_num_pixels_ <= min_num_pixels)) { |
- if (cpu_desired_num_pixels_ < min_num_pixels) { |
- adapt_reason_ = ADAPTREASON_CPU; |
- } else { |
- adapt_reason_ |= ADAPTREASON_CPU; |
- } |
- min_num_pixels = cpu_desired_num_pixels_; |
- } |
- // Round resolution for GD or CPU to allow 1/2 to map to 9/16. |
- if (!input.IsSize0x0() && min_num_pixels != INT_MAX) { |
- float scale = FindClosestScale(input.width, input.height, min_num_pixels); |
- min_num_pixels = static_cast<int>(input.width * scale + .5f) * |
- static_cast<int>(input.height * scale + .5f); |
- } |
- // Reduce resolution based on View Request. |
- if (view_desired_num_pixels_ <= min_num_pixels) { |
- if (view_desired_num_pixels_ < min_num_pixels) { |
- adapt_reason_ = ADAPTREASON_VIEW; |
- } else { |
- adapt_reason_ |= ADAPTREASON_VIEW; |
- } |
- min_num_pixels = view_desired_num_pixels_; |
- } |
- // Snap to a scale factor. |
- float scale = 1.0f; |
- if (!input.IsSize0x0()) { |
- scale = FindLowerScale(input.width, input.height, min_num_pixels); |
- min_num_pixels = static_cast<int>(input.width * scale + .5f) * |
- static_cast<int>(input.height * scale + .5f); |
- } |
- if (scale == 1.0f) { |
- adapt_reason_ = ADAPTREASON_NONE; |
- } |
- *new_width = new_output.width = static_cast<int>(input.width * scale + .5f); |
- *new_height = new_output.height = static_cast<int>(input.height * scale + |
- .5f); |
- SetOutputNumPixels(min_num_pixels); |
- |
- new_output.interval = view_desired_interval_; |
- SetOutputFormat(new_output); |
- int new_num_pixels = GetOutputNumPixels(); |
- bool changed = new_num_pixels != old_num_pixels; |
- |
- static const char* kReasons[8] = { |
- "None", |
- "CPU", |
- "BANDWIDTH", |
- "CPU+BANDWIDTH", |
- "VIEW", |
- "CPU+VIEW", |
- "BANDWIDTH+VIEW", |
- "CPU+BANDWIDTH+VIEW", |
- }; |
- |
- LOG(LS_VERBOSE) << "VAdapt Status View: " << view_desired_num_pixels_ |
- << " GD: " << encoder_desired_num_pixels_ |
- << " CPU: " << cpu_desired_num_pixels_ |
- << " Pixels: " << min_num_pixels |
- << " Input: " << input.width |
- << "x" << input.height |
- << " Scale: " << scale |
- << " Resolution: " << new_output.width |
- << "x" << new_output.height |
- << " Changed: " << (changed ? "true" : "false") |
- << " Reason: " << kReasons[adapt_reason_]; |
- |
- if (changed) { |
- // When any adaptation occurs, historic CPU load levels are no longer |
- // accurate. Clear out our state so we can re-learn at the new normal. |
- cpu_load_num_samples_ = 0; |
- system_load_average_ = kCpuLoadInitialAverage; |
- } |
+ rtc::CritScope cs(&critical_section_); |
+ resolution_request_max_pixel_count_ = max_pixel_count.value_or(INT_MAX); |
+ Adapt(std::min(format_request_max_pixel_count_, |
+ resolution_request_max_pixel_count_), |
+ max_pixel_count_step_up.value_or(0)); |
+} |
+ |
+bool VideoAdapter::Adapt(int max_num_pixels, int max_pixel_count_step_up) { |
+ float scale_lower = |
+ FindScaleLessThanOrEqual(input_format_.width, input_format_.height, |
+ max_num_pixels, &max_num_pixels); |
+ float scale_upper = |
+ max_pixel_count_step_up > 0 |
+ ? FindScaleLargerThan(input_format_.width, input_format_.height, |
+ max_pixel_count_step_up, |
+ &max_pixel_count_step_up) |
+ : 1.f; |
+ |
+ bool increase_resolution = |
+ max_pixel_count_step_up > 0 && max_num_pixels > max_pixel_count_step_up; |
+ output_num_pixels_ = |
+ increase_resolution ? max_pixel_count_step_up : max_num_pixels; |
+ |
+ // Log the new size. |
+ float scale = increase_resolution ? scale_upper : scale_lower; |
+ int new_width = static_cast<int>(input_format_.width * scale + .5f); |
+ int new_height = static_cast<int>(input_format_.height * scale + .5f); |
+ int old_num_pixels = output_num_pixels_; |
+ bool changed = output_num_pixels_ != old_num_pixels; |
+ LOG(LS_VERBOSE) << "VAdapt Adapt: " |
+ << " Max pixels: " << max_num_pixels |
+ << " Max pixels step up: " << max_pixel_count_step_up |
+ << " Output Pixels: " << output_num_pixels_ |
+ << " Input: " << input_format_.width << "x" |
+ << input_format_.height << " Scale: " << scale |
+ << " Resolution: " << new_width << "x" << new_height |
+ << " Changed: " << (changed ? "true" : "false"); |
return changed; |
} |