Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(28)

Side by Side Diff: webrtc/modules/audio_processing/gain_control_unittest.cc

Issue 1835073004: Reland of Added a bitexactness test for the gain controller in the audio processing module. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « no previous file | webrtc/modules/modules.gyp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10 #include <vector>
11
12 #include "testing/gtest/include/gtest/gtest.h"
13 #include "webrtc/base/array_view.h"
14 #include "webrtc/modules/audio_processing/audio_buffer.h"
15 #include "webrtc/modules/audio_processing/gain_control_impl.h"
16 #include "webrtc/modules/audio_processing/test/audio_buffer_tools.h"
17 #include "webrtc/modules/audio_processing/test/bitexactness_tools.h"
18
19 #if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
hlundin-webrtc 2016/03/29 21:21:42 I think it is better to disable the test itself, r
peah-webrtc 2016/03/30 05:03:32 Good point! I will create a CL to change that.
20 defined(WEBRTC_ANDROID))
21
22 namespace webrtc {
23 namespace {
24
25 const int kNumFramesToProcess = 100;
26
27 void ProcessOneFrame(int sample_rate_hz,
28 AudioBuffer* render_audio_buffer,
29 AudioBuffer* capture_audio_buffer,
30 GainControlImpl* gain_controller) {
31 if (sample_rate_hz > AudioProcessing::kSampleRate16kHz) {
32 render_audio_buffer->SplitIntoFrequencyBands();
33 capture_audio_buffer->SplitIntoFrequencyBands();
34 }
35
36 gain_controller->ProcessRenderAudio(render_audio_buffer);
37 gain_controller->AnalyzeCaptureAudio(capture_audio_buffer);
38 gain_controller->ProcessCaptureAudio(capture_audio_buffer, false);
39
40 if (sample_rate_hz > AudioProcessing::kSampleRate16kHz) {
41 capture_audio_buffer->MergeFrequencyBands();
42 }
43 }
44
45 void SetupComponent(int sample_rate_hz,
46 GainControl::Mode mode,
47 int target_level_dbfs,
48 int stream_analog_level,
49 int compression_gain_db,
50 bool enable_limiter,
51 int analog_level_min,
52 int analog_level_max,
53 GainControlImpl* gain_controller) {
54 gain_controller->Initialize(1, sample_rate_hz);
55 GainControl* gc = static_cast<GainControl*>(gain_controller);
56 gc->Enable(true);
57 gc->set_mode(mode);
58 gc->set_stream_analog_level(stream_analog_level);
59 gc->set_target_level_dbfs(target_level_dbfs);
60 gc->set_compression_gain_db(compression_gain_db);
61 gc->enable_limiter(enable_limiter);
62 gc->set_analog_level_limits(analog_level_min, analog_level_max);
63 }
64
65 void RunBitExactnessTest(int sample_rate_hz,
66 size_t num_channels,
67 GainControl::Mode mode,
68 int target_level_dbfs,
69 int stream_analog_level,
70 int compression_gain_db,
71 bool enable_limiter,
72 int analog_level_min,
73 int analog_level_max,
74 int achieved_stream_analog_level_reference,
75 rtc::ArrayView<const float> output_reference) {
76 rtc::CriticalSection crit_render;
77 rtc::CriticalSection crit_capture;
78 GainControlImpl gain_controller(&crit_render, &crit_capture);
79 SetupComponent(sample_rate_hz, mode, target_level_dbfs, stream_analog_level,
80 compression_gain_db, enable_limiter, analog_level_min,
81 analog_level_max, &gain_controller);
82
83 const int samples_per_channel = rtc::CheckedDivExact(sample_rate_hz, 100);
84 const StreamConfig render_config(sample_rate_hz, num_channels, false);
85 AudioBuffer render_buffer(
86 render_config.num_frames(), render_config.num_channels(),
87 render_config.num_frames(), 1, render_config.num_frames());
88 test::InputAudioFile render_file(
89 test::GetApmRenderTestVectorFileName(sample_rate_hz));
90 std::vector<float> render_input(samples_per_channel * num_channels);
91
92 const StreamConfig capture_config(sample_rate_hz, num_channels, false);
93 AudioBuffer capture_buffer(
94 capture_config.num_frames(), capture_config.num_channels(),
95 capture_config.num_frames(), 1, capture_config.num_frames());
96 test::InputAudioFile capture_file(
97 test::GetApmCaptureTestVectorFileName(sample_rate_hz));
98 std::vector<float> capture_input(samples_per_channel * num_channels);
99
100 for (int frame_no = 0; frame_no < kNumFramesToProcess; ++frame_no) {
101 ReadFloatSamplesFromStereoFile(samples_per_channel, num_channels,
102 &render_file, render_input);
103 ReadFloatSamplesFromStereoFile(samples_per_channel, num_channels,
104 &capture_file, capture_input);
105
106 test::CopyVectorToAudioBuffer(render_config, render_input, &render_buffer);
107 test::CopyVectorToAudioBuffer(capture_config, capture_input,
108 &capture_buffer);
109
110 ProcessOneFrame(sample_rate_hz, &render_buffer, &capture_buffer,
111 &gain_controller);
112 }
113
114 // Extract and verify the test results.
115 std::vector<float> capture_output;
116 test::ExtractVectorFromAudioBuffer(capture_config, &capture_buffer,
117 &capture_output);
118
119 EXPECT_EQ(achieved_stream_analog_level_reference,
120 gain_controller.stream_analog_level());
121
122 // Compare the output with the reference. Only the first values of the output
123 // from last frame processed are compared in order not having to specify all
124 // preceeding frames as testvectors. As the algorithm being tested has a
125 // memory, testing only the last frame implicitly also tests the preceeding
126 // frames.
127 const float kTolerance = 1.0f / 32768.0f;
128 EXPECT_TRUE(test::BitExactFrame(
129 capture_config.num_frames(), capture_config.num_channels(),
130 output_reference, capture_output, kTolerance));
131 }
132
133 } // namespace
134
135 TEST(GainControlBitExactnessTest,
136 Mono8kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
137 const int kStreamAnalogLevelReference = 50;
138 const float kOutputReference[] = {-0.006622f, -0.002747f, 0.001587f};
139 RunBitExactnessTest(8000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
140 true, 0, 100, kStreamAnalogLevelReference,
141 kOutputReference);
142 }
143
144 TEST(GainControlBitExactnessTest,
145 Mono16kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
146 const int kStreamAnalogLevelReference = 50;
147 const float kOutputReference[] = {-0.006561f, -0.004608f, -0.002899f};
148 RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
149 true, 0, 100, kStreamAnalogLevelReference,
150 kOutputReference);
151 }
152
153 TEST(GainControlBitExactnessTest,
154 Stereo16kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
155 const int kStreamAnalogLevelReference = 50;
156 const float kOutputReference[] = {-0.027313f, -0.015900f, -0.028107f,
157 -0.027313f, -0.015900f, -0.028107f};
158 RunBitExactnessTest(16000, 2, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
159 true, 0, 100, kStreamAnalogLevelReference,
160 kOutputReference);
161 }
162
163 TEST(GainControlBitExactnessTest,
164 Mono32kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
165 const int kStreamAnalogLevelReference = 50;
166 const float kOutputReference[] = {-0.010162f, -0.009155f, -0.008301f};
167 RunBitExactnessTest(32000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
168 true, 0, 100, kStreamAnalogLevelReference,
169 kOutputReference);
170 }
171
172 TEST(GainControlBitExactnessTest,
173 Mono48kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
174 const int kStreamAnalogLevelReference = 50;
175 const float kOutputReference[] = {-0.010162f, -0.009155f, -0.008301f};
176 RunBitExactnessTest(32000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
177 true, 0, 100, kStreamAnalogLevelReference,
178 kOutputReference);
179 }
180
181 TEST(GainControlBitExactnessTest,
182 Mono8kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
183 const int kStreamAnalogLevelReference = 50;
184 const float kOutputReference[] = {-0.006317f, -0.002625f, 0.001495f};
185 RunBitExactnessTest(8000, 1, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
186 true, 0, 100, kStreamAnalogLevelReference,
187 kOutputReference);
188 }
189
190 TEST(GainControlBitExactnessTest,
191 Mono16kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
192 const int kStreamAnalogLevelReference = 50;
193 const float kOutputReference[] = {-0.006256f, -0.004395f, -0.002777f};
194 RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
195 true, 0, 100, kStreamAnalogLevelReference,
196 kOutputReference);
197 }
198
199 TEST(GainControlBitExactnessTest,
200 Stereo16kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
201 const int kStreamAnalogLevelReference = 50;
202 const float kOutputReference[] = {-0.023956f, -0.013947f, -0.024597f,
203 -0.023956f, -0.013947f, -0.024597f};
204 RunBitExactnessTest(16000, 2, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
205 true, 0, 100, kStreamAnalogLevelReference,
206 kOutputReference);
207 }
208
209 TEST(GainControlBitExactnessTest,
210 Mono32kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
211 const int kStreamAnalogLevelReference = 50;
212 const float kOutputReference[] = {-0.009644f, -0.008728f, -0.007904f};
213 RunBitExactnessTest(32000, 1, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
214 true, 0, 100, kStreamAnalogLevelReference,
215 kOutputReference);
216 }
217
218 TEST(GainControlBitExactnessTest,
219 Mono48kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
220 const int kStreamAnalogLevelReference = 50;
221 const float kOutputReference[] = {-0.009644f, -0.008728f, -0.007904f};
222 RunBitExactnessTest(32000, 1, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
223 true, 0, 100, kStreamAnalogLevelReference,
224 kOutputReference);
225 }
226
227 TEST(GainControlBitExactnessTest,
228 Mono8kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
229 const int kStreamAnalogLevelReference = 50;
230 const float kOutputReference[] = {-0.011871f, -0.004944f, 0.002838f};
231 RunBitExactnessTest(8000, 1, GainControl::Mode::kFixedDigital, 10, 50, 5,
232 true, 0, 100, kStreamAnalogLevelReference,
233 kOutputReference);
234 }
235
236 TEST(GainControlBitExactnessTest,
237 Mono16kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
238 const int kStreamAnalogLevelReference = 50;
239 const float kOutputReference[] = {-0.011780f, -0.008270f, -0.005219f};
240 RunBitExactnessTest(16000, 1, GainControl::Mode::kFixedDigital, 10, 50, 5,
241 true, 0, 100, kStreamAnalogLevelReference,
242 kOutputReference);
243 }
244
245 TEST(GainControlBitExactnessTest,
246 Stereo16kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
247 const int kStreamAnalogLevelReference = 50;
248 const float kOutputReference[] = {-0.048950f, -0.028503f, -0.050354f,
249 -0.048950f, -0.028503f, -0.050354f};
250 RunBitExactnessTest(16000, 2, GainControl::Mode::kFixedDigital, 10, 50, 5,
251 true, 0, 100, kStreamAnalogLevelReference,
252 kOutputReference);
253 }
254
255 TEST(GainControlBitExactnessTest,
256 Mono32kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
257 const int kStreamAnalogLevelReference = 50;
258 const float kOutputReference[] = {-0.018188f, -0.016418f, -0.014862f};
259 RunBitExactnessTest(32000, 1, GainControl::Mode::kFixedDigital, 10, 50, 5,
260 true, 0, 100, kStreamAnalogLevelReference,
261 kOutputReference);
262 }
263
264 TEST(GainControlBitExactnessTest,
265 Mono48kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
266 const int kStreamAnalogLevelReference = 50;
267 const float kOutputReference[] = {-0.018188f, -0.016418f, -0.014862f};
268 RunBitExactnessTest(32000, 1, GainControl::Mode::kFixedDigital, 10, 50, 5,
269 true, 0, 100, kStreamAnalogLevelReference,
270 kOutputReference);
271 }
272
273 TEST(GainControlBitExactnessTest,
274 Mono16kHz_AdaptiveAnalog_Tl10_SL10_CG5_Lim_AL0_100) {
275 const int kStreamAnalogLevelReference = 12;
276 const float kOutputReference[] = {-0.006561f, -0.004608f, -0.002899f};
277 RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 10, 5,
278 true, 0, 100, kStreamAnalogLevelReference,
279 kOutputReference);
280 }
281
282 TEST(GainControlBitExactnessTest,
283 Mono16kHz_AdaptiveAnalog_Tl10_SL100_CG5_Lim_AL70_80) {
284 const int kStreamAnalogLevelReference = 100;
285 const float kOutputReference[] = {-0.006348f, -0.004456f, -0.002808f};
286 RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 100, 5,
287 true, 70, 80, kStreamAnalogLevelReference,
288 kOutputReference);
289 }
290
291 TEST(GainControlBitExactnessTest,
292 Mono16kHz_AdaptiveDigital_Tl10_SL100_CG5_NoLim_AL0_100) {
293 const int kStreamAnalogLevelReference = 100;
294 const float kOutputReference[] = {-0.006592f, -0.004639f, -0.002930f};
295 RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveDigital, 10, 100, 5,
296 false, 0, 100, kStreamAnalogLevelReference,
297 kOutputReference);
298 }
299
300 TEST(GainControlBitExactnessTest,
301 Mono16kHz_AdaptiveDigital_Tl40_SL100_CG5_Lim_AL0_100) {
302 const int kStreamAnalogLevelReference = 100;
303 const float kOutputReference[] = {-0.008759f, -0.006134f, -0.003876f};
304 RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveDigital, 40, 100, 5,
305 true, 0, 100, kStreamAnalogLevelReference,
306 kOutputReference);
307 }
308
309 TEST(GainControlBitExactnessTest,
310 Mono16kHz_AdaptiveDigital_Tl10_SL100_CG30_Lim_AL0_100) {
311 const int kStreamAnalogLevelReference = 100;
312 const float kOutputReference[] = {-0.006134f, -0.004303f, -0.002716f};
313 RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveDigital, 10, 100,
314 30, true, 0, 100, kStreamAnalogLevelReference,
315 kOutputReference);
316 }
317
318 } // namespace webrtc
319
320 #endif
OLDNEW
« no previous file with comments | « no previous file | webrtc/modules/modules.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698