| Index: webrtc/modules/video_processing/video_denoiser.cc
|
| diff --git a/webrtc/modules/video_processing/video_denoiser.cc b/webrtc/modules/video_processing/video_denoiser.cc
|
| index 3951381d22c00ae40d06b5730f90cae0fdd38763..b00da5c90a16c9808149d3c1b562165492a752c2 100644
|
| --- a/webrtc/modules/video_processing/video_denoiser.cc
|
| +++ b/webrtc/modules/video_processing/video_denoiser.cc
|
| @@ -16,50 +16,144 @@ namespace webrtc {
|
| VideoDenoiser::VideoDenoiser(bool runtime_cpu_detection)
|
| : width_(0),
|
| height_(0),
|
| - filter_(DenoiserFilter::Create(runtime_cpu_detection)) {}
|
| -
|
| -void VideoDenoiser::TrailingReduction(int mb_rows,
|
| - int mb_cols,
|
| - const uint8_t* y_src,
|
| - int stride_y,
|
| - uint8_t* y_dst) {
|
| - for (int mb_row = 1; mb_row < mb_rows - 1; ++mb_row) {
|
| - for (int mb_col = 1; mb_col < mb_cols - 1; ++mb_col) {
|
| + filter_(DenoiserFilter::Create(runtime_cpu_detection, &cpu_type_)),
|
| + ne_(new NoiseEstimation()) {}
|
| +
|
| +#if EXPERIMENTAL
|
| +// Check the mb position(1: close to the center, 3: close to the border).
|
| +static int PositionCheck(int mb_row, int mb_col, int mb_rows, int mb_cols) {
|
| + if ((mb_row >= (mb_rows >> 3)) && (mb_row <= (7 * mb_rows >> 3)) &&
|
| + (mb_col >= (mb_cols >> 3)) && (mb_col <= (7 * mb_cols >> 3)))
|
| + return 1;
|
| + else if ((mb_row >= (mb_rows >> 4)) && (mb_row <= (15 * mb_rows >> 4)) &&
|
| + (mb_col >= (mb_cols >> 4)) && (mb_col <= (15 * mb_cols >> 4)))
|
| + return 2;
|
| + else
|
| + return 3;
|
| +}
|
| +
|
| +static void ReduceFalseDetection(const std::unique_ptr<uint8_t[]>& d_status,
|
| + std::unique_ptr<uint8_t[]>* d_status_tmp1,
|
| + std::unique_ptr<uint8_t[]>* d_status_tmp2,
|
| + int noise_level,
|
| + int mb_rows,
|
| + int mb_cols) {
|
| + // Draft. This can be optimized. This code block is to reduce false detection
|
| + // in moving object detection.
|
| + int mb_row_min = noise_level ? mb_rows >> 3 : 1;
|
| + int mb_col_min = noise_level ? mb_cols >> 3 : 1;
|
| + int mb_row_max = noise_level ? (7 * mb_rows >> 3) : mb_rows - 2;
|
| + int mb_col_max = noise_level ? (7 * mb_cols >> 3) : mb_cols - 2;
|
| + memcpy((*d_status_tmp1).get(), d_status.get(), mb_rows * mb_cols);
|
| + // Up left.
|
| + for (int mb_row = mb_row_min; mb_row <= mb_row_max; ++mb_row) {
|
| + for (int mb_col = mb_col_min; mb_col <= mb_col_max; ++mb_col) {
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col] |=
|
| + ((*d_status_tmp1)[(mb_row - 1) * mb_cols + mb_col] |
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col - 1]);
|
| + }
|
| + }
|
| + memcpy((*d_status_tmp2).get(), (*d_status_tmp1).get(), mb_rows * mb_cols);
|
| + memcpy((*d_status_tmp1).get(), d_status.get(), mb_rows * mb_cols);
|
| + // Bottom left.
|
| + for (int mb_row = mb_row_max; mb_row >= mb_row_min; --mb_row) {
|
| + for (int mb_col = mb_col_min; mb_col <= mb_col_max; ++mb_col) {
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col] |=
|
| + ((*d_status_tmp1)[(mb_row + 1) * mb_cols + mb_col] |
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col - 1]);
|
| + (*d_status_tmp2)[mb_row * mb_cols + mb_col] &=
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col];
|
| + }
|
| + }
|
| + memcpy((*d_status_tmp1).get(), d_status.get(), mb_rows * mb_cols);
|
| + // Up right.
|
| + for (int mb_row = mb_row_min; mb_row <= mb_row_max; ++mb_row) {
|
| + for (int mb_col = mb_col_max; mb_col >= mb_col_min; --mb_col) {
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col] |=
|
| + ((*d_status_tmp1)[(mb_row - 1) * mb_cols + mb_col] |
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col + 1]);
|
| + (*d_status_tmp2)[mb_row * mb_cols + mb_col] &=
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col];
|
| + }
|
| + }
|
| + memcpy((*d_status_tmp1).get(), d_status.get(), mb_rows * mb_cols);
|
| + // Bottom right.
|
| + for (int mb_row = mb_row_max; mb_row >= mb_row_min; --mb_row) {
|
| + for (int mb_col = mb_col_max; mb_col >= mb_col_min; --mb_col) {
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col] |=
|
| + ((*d_status_tmp1)[(mb_row + 1) * mb_cols + mb_col] |
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col + 1]);
|
| + (*d_status_tmp2)[mb_row * mb_cols + mb_col] &=
|
| + (*d_status_tmp1)[mb_row * mb_cols + mb_col];
|
| + }
|
| + }
|
| +}
|
| +
|
| +static bool TrailingBlock(const std::unique_ptr<uint8_t[]>& d_status,
|
| + int mb_row,
|
| + int mb_col,
|
| + int mb_rows,
|
| + int mb_cols) {
|
| + int mb_index = mb_row * mb_cols + mb_col;
|
| + if (!mb_row || !mb_col || mb_row == mb_rows - 1 || mb_col == mb_cols - 1)
|
| + return false;
|
| + return d_status[mb_index + 1] || d_status[mb_index - 1] ||
|
| + d_status[mb_index + mb_cols] || d_status[mb_index - mb_cols];
|
| +}
|
| +#endif
|
| +
|
| +#if DISPLAY
|
| +void ShowRect(const std::unique_ptr<DenoiserFilter>& filter,
|
| + const std::unique_ptr<uint8_t[]>& d_status,
|
| + const std::unique_ptr<uint8_t[]>& d_status_tmp2,
|
| + const std::unique_ptr<uint8_t[]>& x_density,
|
| + const std::unique_ptr<uint8_t[]>& y_density,
|
| + const uint8_t* u_src,
|
| + const uint8_t* v_src,
|
| + uint8_t* u_dst,
|
| + uint8_t* v_dst,
|
| + int mb_rows,
|
| + int mb_cols,
|
| + int stride_u,
|
| + int stride_v) {
|
| + for (int mb_row = 0; mb_row < mb_rows; ++mb_row) {
|
| + for (int mb_col = 0; mb_col < mb_cols; ++mb_col) {
|
| int mb_index = mb_row * mb_cols + mb_col;
|
| - uint8_t* mb_dst = y_dst + (mb_row << 4) * stride_y + (mb_col << 4);
|
| - const uint8_t* mb_src = y_src + (mb_row << 4) * stride_y + (mb_col << 4);
|
| - // If the number of denoised neighbors is less than a threshold,
|
| - // do NOT denoise for the block. Set different threshold for skin MB.
|
| - // The change of denoising status will not propagate.
|
| - if (metrics_[mb_index].is_skin) {
|
| - // The threshold is high (more strict) for non-skin MB where the
|
| - // trailing usually happen.
|
| - if (metrics_[mb_index].denoise &&
|
| - metrics_[mb_index + 1].denoise + metrics_[mb_index - 1].denoise +
|
| - metrics_[mb_index + mb_cols].denoise +
|
| - metrics_[mb_index - mb_cols].denoise <=
|
| - 2) {
|
| - metrics_[mb_index].denoise = 0;
|
| - filter_->CopyMem16x16(mb_src, stride_y, mb_dst, stride_y);
|
| - }
|
| - } else if (metrics_[mb_index].denoise &&
|
| - metrics_[mb_index + 1].denoise +
|
| - metrics_[mb_index - 1].denoise +
|
| - metrics_[mb_index + mb_cols + 1].denoise +
|
| - metrics_[mb_index + mb_cols - 1].denoise +
|
| - metrics_[mb_index - mb_cols + 1].denoise +
|
| - metrics_[mb_index - mb_cols - 1].denoise +
|
| - metrics_[mb_index + mb_cols].denoise +
|
| - metrics_[mb_index - mb_cols].denoise <=
|
| - 7) {
|
| - filter_->CopyMem16x16(mb_src, stride_y, mb_dst, stride_y);
|
| + const uint8_t* mb_src_u =
|
| + u_src + (mb_row << 3) * stride_u + (mb_col << 3);
|
| + const uint8_t* mb_src_v =
|
| + v_src + (mb_row << 3) * stride_v + (mb_col << 3);
|
| + uint8_t* mb_dst_u = u_dst + (mb_row << 3) * stride_u + (mb_col << 3);
|
| + uint8_t* mb_dst_v = v_dst + (mb_row << 3) * stride_v + (mb_col << 3);
|
| + uint8_t y_tmp_255[8 * 8];
|
| + memset(y_tmp_255, 200, 8 * 8);
|
| + // x_density_[mb_col] * y_density_[mb_row]
|
| + if (d_status[mb_index] == 1) {
|
| + // Paint to red.
|
| + filter->CopyMem8x8(mb_src_u, stride_u, mb_dst_u, stride_u);
|
| + filter->CopyMem8x8(y_tmp_255, 8, mb_dst_v, stride_v);
|
| +#if EXPERIMENTAL
|
| + } else if (d_status_tmp2[mb_row * mb_cols + mb_col] &&
|
| + x_density[mb_col] * y_density[mb_row]) {
|
| +#else
|
| + } else if (x_density[mb_col] * y_density[mb_row]) {
|
| +#endif
|
| + // Paint to blue.
|
| + filter->CopyMem8x8(y_tmp_255, 8, mb_dst_u, stride_u);
|
| + filter->CopyMem8x8(mb_src_v, stride_v, mb_dst_v, stride_v);
|
| + } else {
|
| + filter->CopyMem8x8(mb_src_u, stride_u, mb_dst_u, stride_u);
|
| + filter->CopyMem8x8(mb_src_v, stride_v, mb_dst_v, stride_v);
|
| }
|
| }
|
| }
|
| }
|
| +#endif
|
|
|
| void VideoDenoiser::DenoiseFrame(const VideoFrame& frame,
|
| - VideoFrame* denoised_frame) {
|
| + VideoFrame* denoised_frame,
|
| + VideoFrame* denoised_frame_prev,
|
| + int noise_level_prev) {
|
| int stride_y = frame.stride(kYPlane);
|
| int stride_u = frame.stride(kUPlane);
|
| int stride_v = frame.stride(kVPlane);
|
| @@ -71,9 +165,13 @@ void VideoDenoiser::DenoiseFrame(const VideoFrame& frame,
|
| denoised_frame->CreateFrame(frame.buffer(kYPlane), frame.buffer(kUPlane),
|
| frame.buffer(kVPlane), width_, height_,
|
| stride_y, stride_u, stride_v, kVideoRotation_0);
|
| + denoised_frame_prev->CreateFrame(
|
| + frame.buffer(kYPlane), frame.buffer(kUPlane), frame.buffer(kVPlane),
|
| + width_, height_, stride_y, stride_u, stride_v, kVideoRotation_0);
|
| // Setting time parameters to the output frame.
|
| denoised_frame->set_timestamp(frame.timestamp());
|
| denoised_frame->set_render_time_ms(frame.render_time_ms());
|
| + ne_->Init(width_, height_, cpu_type_);
|
| return;
|
| }
|
| // For 16x16 block.
|
| @@ -81,62 +179,128 @@ void VideoDenoiser::DenoiseFrame(const VideoFrame& frame,
|
| int mb_rows = height_ >> 4;
|
| if (metrics_.get() == nullptr)
|
| metrics_.reset(new DenoiseMetrics[mb_cols * mb_rows]());
|
| + if (d_status_.get() == nullptr) {
|
| + d_status_.reset(new uint8_t[mb_cols * mb_rows]());
|
| +#if EXPERIMENTAL
|
| + d_status_tmp1_.reset(new uint8_t[mb_cols * mb_rows]());
|
| + d_status_tmp2_.reset(new uint8_t[mb_cols * mb_rows]());
|
| +#endif
|
| + x_density_.reset(new uint8_t[mb_cols]());
|
| + y_density_.reset(new uint8_t[mb_rows]());
|
| + }
|
| +
|
| // Denoise on Y plane.
|
| uint8_t* y_dst = denoised_frame->buffer(kYPlane);
|
| uint8_t* u_dst = denoised_frame->buffer(kUPlane);
|
| uint8_t* v_dst = denoised_frame->buffer(kVPlane);
|
| + uint8_t* y_dst_prev = denoised_frame_prev->buffer(kYPlane);
|
| const uint8_t* y_src = frame.buffer(kYPlane);
|
| const uint8_t* u_src = frame.buffer(kUPlane);
|
| const uint8_t* v_src = frame.buffer(kVPlane);
|
| + uint8_t noise_level = noise_level_prev == -1 ? 0 : ne_->GetNoiseLevel();
|
| // Temporary buffer to store denoising result.
|
| uint8_t y_tmp[16 * 16] = {0};
|
| + memset(x_density_.get(), 0, mb_cols);
|
| + memset(y_density_.get(), 0, mb_rows);
|
| +
|
| + // Loop over blocks to accumulate/extract noise level and update x/y_density
|
| + // factors for moving object detection.
|
| for (int mb_row = 0; mb_row < mb_rows; ++mb_row) {
|
| for (int mb_col = 0; mb_col < mb_cols; ++mb_col) {
|
| const uint8_t* mb_src = y_src + (mb_row << 4) * stride_y + (mb_col << 4);
|
| - uint8_t* mb_dst = y_dst + (mb_row << 4) * stride_y + (mb_col << 4);
|
| + uint8_t* mb_dst_prev =
|
| + y_dst_prev + (mb_row << 4) * stride_y + (mb_col << 4);
|
| int mb_index = mb_row * mb_cols + mb_col;
|
| - // Denoise each MB at the very start and save the result to a temporary
|
| - // buffer.
|
| - if (filter_->MbDenoise(mb_dst, stride_y, y_tmp, 16, mb_src, stride_y, 0,
|
| - 1) == FILTER_BLOCK) {
|
| - uint32_t thr_var = 0;
|
| - // Save var and sad to the buffer.
|
| - metrics_[mb_index].var = filter_->Variance16x8(
|
| - mb_dst, stride_y, y_tmp, 16, &metrics_[mb_index].sad);
|
| - // Get skin map.
|
| - metrics_[mb_index].is_skin = MbHasSkinColor(
|
| - y_src, u_src, v_src, stride_y, stride_u, stride_v, mb_row, mb_col);
|
| - // Variance threshold for skin/non-skin MB is different.
|
| - // Skin MB use a small threshold to reduce blockiness.
|
| - thr_var = metrics_[mb_index].is_skin ? 128 : 12 * 128;
|
| - if (metrics_[mb_index].var > thr_var) {
|
| - metrics_[mb_index].denoise = 0;
|
| - // Use the source MB.
|
| - filter_->CopyMem16x16(mb_src, stride_y, mb_dst, stride_y);
|
| - } else {
|
| - metrics_[mb_index].denoise = 1;
|
| - // Use the denoised MB.
|
| - filter_->CopyMem16x16(y_tmp, 16, mb_dst, stride_y);
|
| +#if EXPERIMENTAL
|
| + int pos_factor = PositionCheck(mb_row, mb_col, mb_rows, mb_cols);
|
| + uint32_t thr_var_adp = 16 * 16 * 5 * (noise_level ? pos_factor : 1);
|
| +#else
|
| + uint32_t thr_var_adp = 16 * 16 * 5;
|
| +#endif
|
| + int brightness = 0;
|
| + for (int i = 0; i < 16; ++i) {
|
| + for (int j = 0; j < 16; ++j) {
|
| + brightness += mb_src[i * stride_y + j];
|
| }
|
| + }
|
| +
|
| + // Get the denoised block.
|
| + filter_->MbDenoise(mb_dst_prev, stride_y, y_tmp, 16, mb_src, stride_y, 0,
|
| + 1, true);
|
| + // The variance is based on the denoised blocks in time T and T-1.
|
| + metrics_[mb_index].var = filter_->Variance16x8(
|
| + mb_dst_prev, stride_y, y_tmp, 16, &metrics_[mb_index].sad);
|
| +
|
| + if (metrics_[mb_index].var > thr_var_adp) {
|
| + ne_->ResetConsecLowVar(mb_index);
|
| + d_status_[mb_index] = 1;
|
| +#if EXPERIMENTAL
|
| + if (noise_level == 0 || pos_factor < 3) {
|
| + x_density_[mb_col] += 1;
|
| + y_density_[mb_row] += 1;
|
| + }
|
| +#else
|
| + x_density_[mb_col] += 1;
|
| + y_density_[mb_row] += 1;
|
| +#endif
|
| } else {
|
| - metrics_[mb_index].denoise = 0;
|
| - filter_->CopyMem16x16(mb_src, stride_y, mb_dst, stride_y);
|
| + uint32_t sse_t = 0;
|
| + // The variance is based on the src blocks in time T and denoised block
|
| + // in time T-1.
|
| + uint32_t noise_var = filter_->Variance16x8(mb_dst_prev, stride_y,
|
| + mb_src, stride_y, &sse_t);
|
| + ne_->GetNoise(mb_index, noise_var, brightness);
|
| + d_status_[mb_index] = 0;
|
| }
|
| - // Copy source U/V plane.
|
| + // Track denoised frame.
|
| + filter_->CopyMem16x16(y_tmp, 16, mb_dst_prev, stride_y);
|
| + }
|
| + }
|
| +
|
| +#if EXPERIMENTAL
|
| + ReduceFalseDetection(d_status_, &d_status_tmp1_, &d_status_tmp2_, noise_level,
|
| + mb_rows, mb_cols);
|
| +#endif
|
| +
|
| + // Denoise each MB based on the results of moving objects detection.
|
| + for (int mb_row = 0; mb_row < mb_rows; ++mb_row) {
|
| + for (int mb_col = 0; mb_col < mb_cols; ++mb_col) {
|
| + const uint8_t* mb_src = y_src + (mb_row << 4) * stride_y + (mb_col << 4);
|
| + uint8_t* mb_dst = y_dst + (mb_row << 4) * stride_y + (mb_col << 4);
|
| const uint8_t* mb_src_u =
|
| u_src + (mb_row << 3) * stride_u + (mb_col << 3);
|
| const uint8_t* mb_src_v =
|
| v_src + (mb_row << 3) * stride_v + (mb_col << 3);
|
| uint8_t* mb_dst_u = u_dst + (mb_row << 3) * stride_u + (mb_col << 3);
|
| uint8_t* mb_dst_v = v_dst + (mb_row << 3) * stride_v + (mb_col << 3);
|
| +#if EXPERIMENTAL
|
| + if ((!d_status_tmp2_[mb_row * mb_cols + mb_col] ||
|
| + x_density_[mb_col] * y_density_[mb_row] == 0) &&
|
| + !TrailingBlock(d_status_, mb_row, mb_col, mb_rows, mb_cols)) {
|
| +#else
|
| + if (x_density_[mb_col] * y_density_[mb_row] == 0) {
|
| +#endif
|
| + if (filter_->MbDenoise(mb_dst, stride_y, y_tmp, 16, mb_src, stride_y, 0,
|
| + noise_level, false) == FILTER_BLOCK) {
|
| + filter_->CopyMem16x16(y_tmp, 16, mb_dst, stride_y);
|
| + } else {
|
| + // Copy y source.
|
| + filter_->CopyMem16x16(mb_src, stride_y, mb_dst, stride_y);
|
| + }
|
| + } else {
|
| + // Copy y source.
|
| + filter_->CopyMem16x16(mb_src, stride_y, mb_dst, stride_y);
|
| + }
|
| filter_->CopyMem8x8(mb_src_u, stride_u, mb_dst_u, stride_u);
|
| filter_->CopyMem8x8(mb_src_v, stride_v, mb_dst_v, stride_v);
|
| }
|
| }
|
| - // Second round.
|
| - // This is to reduce the trailing artifact and blockiness by referring
|
| - // neighbors' denoising status.
|
| - TrailingReduction(mb_rows, mb_cols, y_src, stride_y, y_dst);
|
| +
|
| +#if DISPLAY // Rectangle diagnostics
|
| + // Show rectangular region
|
| + ShowRect(filter_, d_status_, d_status_tmp2_, x_density_, y_density_, u_src,
|
| + v_src, u_dst, v_dst, mb_rows, mb_cols, stride_u, stride_v);
|
| +#endif
|
|
|
| // Setting time parameters to the output frame.
|
| denoised_frame->set_timestamp(frame.timestamp());
|
|
|