Index: webrtc/base/scoped_ptr.h |
diff --git a/webrtc/base/scoped_ptr.h b/webrtc/base/scoped_ptr.h |
index b7e94989e57aa6f402282db72badfc578c74b5bc..db5ef9e696db65f9ac0f54d3f308e2bc7e73145f 100644 |
--- a/webrtc/base/scoped_ptr.h |
+++ b/webrtc/base/scoped_ptr.h |
@@ -8,85 +8,19 @@ |
* be found in the AUTHORS file in the root of the source tree. |
*/ |
-// Borrowed from Chromium's src/base/memory/scoped_ptr.h. |
- |
-// Scopers help you manage ownership of a pointer, helping you easily manage a |
-// pointer within a scope, and automatically destroying the pointer at the end |
-// of a scope. There are two main classes you will use, which correspond to the |
-// operators new/delete and new[]/delete[]. |
-// |
-// Example usage (scoped_ptr<T>): |
-// { |
-// scoped_ptr<Foo> foo(new Foo("wee")); |
-// } // foo goes out of scope, releasing the pointer with it. |
-// |
-// { |
-// scoped_ptr<Foo> foo; // No pointer managed. |
-// foo.reset(new Foo("wee")); // Now a pointer is managed. |
-// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. |
-// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. |
-// foo->Method(); // Foo::Method() called. |
-// foo.get()->Method(); // Foo::Method() called. |
-// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer |
-// // manages a pointer. |
-// foo.reset(new Foo("wee4")); // foo manages a pointer again. |
-// foo.reset(); // Foo("wee4") destroyed, foo no longer |
-// // manages a pointer. |
-// } // foo wasn't managing a pointer, so nothing was destroyed. |
-// |
-// Example usage (scoped_ptr<T[]>): |
-// { |
-// scoped_ptr<Foo[]> foo(new Foo[100]); |
-// foo.get()->Method(); // Foo::Method on the 0th element. |
-// foo[10].Method(); // Foo::Method on the 10th element. |
-// } |
-// |
-// These scopers also implement part of the functionality of C++11 unique_ptr |
-// in that they are "movable but not copyable." You can use the scopers in the |
-// parameter and return types of functions to signify ownership transfer in to |
-// and out of a function. When calling a function that has a scoper as the |
-// argument type, it must be called with the result of calling std::move on an |
-// analogous scoper, or another function that generates a temporary; passing by |
-// copy will NOT work. Here is an example using scoped_ptr: |
-// |
-// void TakesOwnership(scoped_ptr<Foo> arg) { |
-// // Do something with arg |
-// } |
-// scoped_ptr<Foo> CreateFoo() { |
-// // No need for calling std::move because we are constructing a temporary |
-// // for the return value. |
-// return scoped_ptr<Foo>(new Foo("new")); |
-// } |
-// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { |
-// return std::move(arg); |
-// } |
-// |
-// { |
-// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay"). |
-// TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay"). |
-// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. |
-// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. |
-// PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr. |
-// } |
-// |
-// Notice that if you do not call std::move when returning from PassThru(), or |
-// when invoking TakesOwnership(), the code will not compile because scopers |
-// are not copyable; they only implement move semantics which require calling |
-// std::move to signify a destructive transfer of state. CreateFoo() is |
-// different though because we are constructing a temporary on the return line |
-// and thus can avoid needing to call std::move. |
+// This entire file is deprecated, and will be removed in XXXX 2016. Use |
+// std::unique_ptr instead! |
#ifndef WEBRTC_BASE_SCOPED_PTR_H__ |
#define WEBRTC_BASE_SCOPED_PTR_H__ |
-// This is an implementation designed to match the anticipated future TR2 |
-// implementation of the scoped_ptr class. |
+// All these #includes are left to maximize backwards compatibility. |
#include <assert.h> |
#include <stddef.h> |
#include <stdlib.h> |
-#include <algorithm> // For std::swap(). |
+#include <algorithm> |
#include <cstddef> |
#include <memory> |
@@ -96,531 +30,20 @@ |
namespace rtc { |
-// Function object which deletes its parameter, which must be a pointer. |
-// If C is an array type, invokes 'delete[]' on the parameter; otherwise, |
-// invokes 'delete'. The default deleter for scoped_ptr<T>. |
-template <class T> |
-struct DefaultDeleter { |
- DefaultDeleter() {} |
- template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { |
- // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor |
- // if U* is implicitly convertible to T* and U is not an array type. |
- // |
- // Correct implementation should use SFINAE to disable this |
- // constructor. However, since there are no other 1-argument constructors, |
- // using a static_assert based on is_convertible<> and requiring |
- // complete types is simpler and will cause compile failures for equivalent |
- // misuses. |
- // |
- // Note, the is_convertible<U*, T*> check also ensures that U is not an |
- // array. T is guaranteed to be a non-array, so any U* where U is an array |
- // cannot convert to T*. |
- enum { T_must_be_complete = sizeof(T) }; |
- enum { U_must_be_complete = sizeof(U) }; |
- static_assert(rtc::is_convertible<U*, T*>::value, |
- "U* must implicitly convert to T*"); |
- } |
- inline void operator()(T* ptr) const { |
- enum { type_must_be_complete = sizeof(T) }; |
- delete ptr; |
- } |
-}; |
- |
-// Specialization of DefaultDeleter for array types. |
-template <class T> |
-struct DefaultDeleter<T[]> { |
- inline void operator()(T* ptr) const { |
- enum { type_must_be_complete = sizeof(T) }; |
- delete[] ptr; |
- } |
- |
- private: |
- // Disable this operator for any U != T because it is undefined to execute |
- // an array delete when the static type of the array mismatches the dynamic |
- // type. |
- // |
- // References: |
- // C++98 [expr.delete]p3 |
- // http://cplusplus.github.com/LWG/lwg-defects.html#938 |
- template <typename U> void operator()(U* array) const; |
-}; |
- |
-template <class T, int n> |
-struct DefaultDeleter<T[n]> { |
- // Never allow someone to declare something like scoped_ptr<int[10]>. |
- static_assert(sizeof(T) == -1, "do not use array with size as type"); |
-}; |
- |
-// Function object which invokes 'free' on its parameter, which must be |
-// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: |
-// |
-// scoped_ptr<int, rtc::FreeDeleter> foo_ptr( |
-// static_cast<int*>(malloc(sizeof(int)))); |
-struct FreeDeleter { |
- inline void operator()(void* ptr) const { |
- free(ptr); |
- } |
-}; |
- |
-namespace internal { |
- |
-template <typename T> |
-struct ShouldAbortOnSelfReset { |
- template <typename U> |
- static rtc::internal::NoType Test(const typename U::AllowSelfReset*); |
- |
- template <typename U> |
- static rtc::internal::YesType Test(...); |
- |
- static const bool value = |
- sizeof(Test<T>(0)) == sizeof(rtc::internal::YesType); |
-}; |
- |
-// Minimal implementation of the core logic of scoped_ptr, suitable for |
-// reuse in both scoped_ptr and its specializations. |
-template <class T, class D> |
-class scoped_ptr_impl { |
- public: |
- explicit scoped_ptr_impl(T* p) : data_(p) {} |
- |
- // Initializer for deleters that have data parameters. |
- scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} |
- |
- // Templated constructor that destructively takes the value from another |
- // scoped_ptr_impl. |
- template <typename U, typename V> |
- scoped_ptr_impl(scoped_ptr_impl<U, V>* other) |
- : data_(other->release(), other->get_deleter()) { |
- // We do not support move-only deleters. We could modify our move |
- // emulation to have rtc::subtle::move() and rtc::subtle::forward() |
- // functions that are imperfect emulations of their C++11 equivalents, |
- // but until there's a requirement, just assume deleters are copyable. |
- } |
- |
- template <typename U, typename V> |
- void TakeState(scoped_ptr_impl<U, V>* other) { |
- // See comment in templated constructor above regarding lack of support |
- // for move-only deleters. |
- reset(other->release()); |
- get_deleter() = other->get_deleter(); |
- } |
- |
- ~scoped_ptr_impl() { |
- if (data_.ptr != nullptr) { |
- // Not using get_deleter() saves one function call in non-optimized |
- // builds. |
- static_cast<D&>(data_)(data_.ptr); |
- } |
- } |
- |
- void reset(T* p) { |
- // This is a self-reset, which is no longer allowed for default deleters: |
- // https://crbug.com/162971 |
- assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr); |
- |
- // Note that running data_.ptr = p can lead to undefined behavior if |
- // get_deleter()(get()) deletes this. In order to prevent this, reset() |
- // should update the stored pointer before deleting its old value. |
- // |
- // However, changing reset() to use that behavior may cause current code to |
- // break in unexpected ways. If the destruction of the owned object |
- // dereferences the scoped_ptr when it is destroyed by a call to reset(), |
- // then it will incorrectly dispatch calls to |p| rather than the original |
- // value of |data_.ptr|. |
- // |
- // During the transition period, set the stored pointer to nullptr while |
- // deleting the object. Eventually, this safety check will be removed to |
- // prevent the scenario initially described from occurring and |
- // http://crbug.com/176091 can be closed. |
- T* old = data_.ptr; |
- data_.ptr = nullptr; |
- if (old != nullptr) |
- static_cast<D&>(data_)(old); |
- data_.ptr = p; |
- } |
- |
- T* get() const { return data_.ptr; } |
- |
- D& get_deleter() { return data_; } |
- const D& get_deleter() const { return data_; } |
- |
- void swap(scoped_ptr_impl& p2) { |
- // Standard swap idiom: 'using std::swap' ensures that std::swap is |
- // present in the overload set, but we call swap unqualified so that |
- // any more-specific overloads can be used, if available. |
- using std::swap; |
- swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); |
- swap(data_.ptr, p2.data_.ptr); |
- } |
- |
- T* release() { |
- T* old_ptr = data_.ptr; |
- data_.ptr = nullptr; |
- return old_ptr; |
- } |
- |
- T** accept() { |
- reset(nullptr); |
- return &(data_.ptr); |
- } |
- |
- T** use() { |
- return &(data_.ptr); |
- } |
- |
- private: |
- // Needed to allow type-converting constructor. |
- template <typename U, typename V> friend class scoped_ptr_impl; |
- |
- // Use the empty base class optimization to allow us to have a D |
- // member, while avoiding any space overhead for it when D is an |
- // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good |
- // discussion of this technique. |
- struct Data : public D { |
- explicit Data(T* ptr_in) : ptr(ptr_in) {} |
- Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} |
- T* ptr; |
- }; |
- |
- Data data_; |
- |
- RTC_DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); |
-}; |
- |
-} // namespace internal |
- |
-// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
-// automatically deletes the pointer it holds (if any). |
-// That is, scoped_ptr<T> owns the T object that it points to. |
-// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T |
-// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you |
-// dereference it, you get the thread safety guarantees of T. |
-// |
-// The size of scoped_ptr is small. On most compilers, when using the |
-// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will |
-// increase the size proportional to whatever state they need to have. See |
-// comments inside scoped_ptr_impl<> for details. |
-// |
-// Current implementation targets having a strict subset of C++11's |
-// unique_ptr<> features. Known deficiencies include not supporting move-only |
-// deleters, function pointers as deleters, and deleters with reference |
-// types. |
-template <class T, class D = rtc::DefaultDeleter<T> > |
-class scoped_ptr { |
- |
- // TODO(ajm): If we ever import RefCountedBase, this check needs to be |
- // enabled. |
- //static_assert(rtc::internal::IsNotRefCounted<T>::value, |
- // "T is refcounted type and needs scoped refptr"); |
- |
- public: |
- // The element and deleter types. |
- typedef T element_type; |
- typedef D deleter_type; |
- |
- // Constructor. Defaults to initializing with nullptr. |
- scoped_ptr() : impl_(nullptr) {} |
- |
- // Constructor. Takes ownership of p. |
- explicit scoped_ptr(element_type* p) : impl_(p) {} |
- |
- // Constructor. Allows initialization of a stateful deleter. |
- scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} |
- |
- // Constructor. Allows construction from a nullptr. |
- scoped_ptr(std::nullptr_t) : impl_(nullptr) {} |
- |
- // Constructor. Allows construction from a scoped_ptr rvalue for a |
- // convertible type and deleter. |
- // |
- // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct |
- // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor |
- // has different post-conditions if D is a reference type. Since this |
- // implementation does not support deleters with reference type, |
- // we do not need a separate move constructor allowing us to avoid one |
- // use of SFINAE. You only need to care about this if you modify the |
- // implementation of scoped_ptr. |
- template <typename U, typename V> |
- scoped_ptr(scoped_ptr<U, V>&& other) |
- : impl_(&other.impl_) { |
- static_assert(!rtc::is_array<U>::value, "U cannot be an array"); |
- } |
- |
- // operator=. Allows assignment from a scoped_ptr rvalue for a convertible |
- // type and deleter. |
- // |
- // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from |
- // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated |
- // form has different requirements on for move-only Deleters. Since this |
- // implementation does not support move-only Deleters, we do not need a |
- // separate move assignment operator allowing us to avoid one use of SFINAE. |
- // You only need to care about this if you modify the implementation of |
- // scoped_ptr. |
- template <typename U, typename V> |
- scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) { |
- static_assert(!rtc::is_array<U>::value, "U cannot be an array"); |
- impl_.TakeState(&rhs.impl_); |
- return *this; |
- } |
- |
- // operator=. Allows assignment from a nullptr. Deletes the currently owned |
- // object, if any. |
- scoped_ptr& operator=(std::nullptr_t) { |
- reset(); |
- return *this; |
- } |
- |
- // Deleted copy constructor and copy assignment, to make the type move-only. |
- scoped_ptr(const scoped_ptr& other) = delete; |
- scoped_ptr& operator=(const scoped_ptr& other) = delete; |
- |
- // Reset. Deletes the currently owned object, if any. |
- // Then takes ownership of a new object, if given. |
- void reset(element_type* p = nullptr) { impl_.reset(p); } |
- |
- // Accessors to get the owned object. |
- // operator* and operator-> will assert() if there is no current object. |
- element_type& operator*() const { |
- assert(impl_.get() != nullptr); |
- return *impl_.get(); |
- } |
- element_type* operator->() const { |
- assert(impl_.get() != nullptr); |
- return impl_.get(); |
- } |
- element_type* get() const { return impl_.get(); } |
- |
- // Access to the deleter. |
- deleter_type& get_deleter() { return impl_.get_deleter(); } |
- const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
+template <typename T, typename Deleter = std::default_delete<T>> |
+using scoped_ptr = std::unique_ptr<T, Deleter>; |
- // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
- // implicitly convertible to a real bool (which is dangerous). |
- // |
- // Note that this trick is only safe when the == and != operators |
- // are declared explicitly, as otherwise "scoped_ptr1 == |
- // scoped_ptr2" will compile but do the wrong thing (i.e., convert |
- // to Testable and then do the comparison). |
- private: |
- typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type> |
- scoped_ptr::*Testable; |
- |
- public: |
- operator Testable() const { |
- return impl_.get() ? &scoped_ptr::impl_ : nullptr; |
- } |
- |
- // Comparison operators. |
- // These return whether two scoped_ptr refer to the same object, not just to |
- // two different but equal objects. |
- bool operator==(const element_type* p) const { return impl_.get() == p; } |
- bool operator!=(const element_type* p) const { return impl_.get() != p; } |
- |
- // Swap two scoped pointers. |
- void swap(scoped_ptr& p2) { |
- impl_.swap(p2.impl_); |
- } |
- |
- // Release a pointer. |
- // The return value is the current pointer held by this object. If this object |
- // holds a nullptr, the return value is nullptr. After this operation, this |
- // object will hold a nullptr, and will not own the object any more. |
- element_type* release() WARN_UNUSED_RESULT { |
- return impl_.release(); |
- } |
- |
- // Delete the currently held pointer and return a pointer |
- // to allow overwriting of the current pointer address. |
- element_type** accept() WARN_UNUSED_RESULT { |
- return impl_.accept(); |
- } |
- |
- // Return a pointer to the current pointer address. |
- element_type** use() WARN_UNUSED_RESULT { |
- return impl_.use(); |
- } |
- |
- private: |
- // Needed to reach into |impl_| in the constructor. |
- template <typename U, typename V> friend class scoped_ptr; |
- rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
- |
- // Forbidden for API compatibility with std::unique_ptr. |
- explicit scoped_ptr(int disallow_construction_from_null); |
- |
- // Forbid comparison of scoped_ptr types. If U != T, it totally |
- // doesn't make sense, and if U == T, it still doesn't make sense |
- // because you should never have the same object owned by two different |
- // scoped_ptrs. |
- template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
- template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
-}; |
- |
-template <class T, class D> |
-class scoped_ptr<T[], D> { |
- public: |
- // The element and deleter types. |
- typedef T element_type; |
- typedef D deleter_type; |
- |
- // Constructor. Defaults to initializing with nullptr. |
- scoped_ptr() : impl_(nullptr) {} |
- |
- // Constructor. Stores the given array. Note that the argument's type |
- // must exactly match T*. In particular: |
- // - it cannot be a pointer to a type derived from T, because it is |
- // inherently unsafe in the general case to access an array through a |
- // pointer whose dynamic type does not match its static type (eg., if |
- // T and the derived types had different sizes access would be |
- // incorrectly calculated). Deletion is also always undefined |
- // (C++98 [expr.delete]p3). If you're doing this, fix your code. |
- // - it cannot be const-qualified differently from T per unique_ptr spec |
- // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting |
- // to work around this may use implicit_cast<const T*>(). |
- // However, because of the first bullet in this comment, users MUST |
- // NOT use implicit_cast<Base*>() to upcast the static type of the array. |
- explicit scoped_ptr(element_type* array) : impl_(array) {} |
- |
- // Constructor. Allows construction from a nullptr. |
- scoped_ptr(std::nullptr_t) : impl_(nullptr) {} |
- |
- // Constructor. Allows construction from a scoped_ptr rvalue. |
- scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} |
- |
- // operator=. Allows assignment from a scoped_ptr rvalue. |
- scoped_ptr& operator=(scoped_ptr&& rhs) { |
- impl_.TakeState(&rhs.impl_); |
- return *this; |
- } |
- |
- // operator=. Allows assignment from a nullptr. Deletes the currently owned |
- // array, if any. |
- scoped_ptr& operator=(std::nullptr_t) { |
- reset(); |
- return *this; |
- } |
- |
- // Deleted copy constructor and copy assignment, to make the type move-only. |
- scoped_ptr(const scoped_ptr& other) = delete; |
- scoped_ptr& operator=(const scoped_ptr& other) = delete; |
- |
- // Reset. Deletes the currently owned array, if any. |
- // Then takes ownership of a new object, if given. |
- void reset(element_type* array = nullptr) { impl_.reset(array); } |
- |
- // Accessors to get the owned array. |
- element_type& operator[](size_t i) const { |
- assert(impl_.get() != nullptr); |
- return impl_.get()[i]; |
- } |
- element_type* get() const { return impl_.get(); } |
- |
- // Access to the deleter. |
- deleter_type& get_deleter() { return impl_.get_deleter(); } |
- const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
- |
- // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
- // implicitly convertible to a real bool (which is dangerous). |
- private: |
- typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type> |
- scoped_ptr::*Testable; |
- |
- public: |
- operator Testable() const { |
- return impl_.get() ? &scoped_ptr::impl_ : nullptr; |
- } |
- |
- // Comparison operators. |
- // These return whether two scoped_ptr refer to the same object, not just to |
- // two different but equal objects. |
- bool operator==(element_type* array) const { return impl_.get() == array; } |
- bool operator!=(element_type* array) const { return impl_.get() != array; } |
- |
- // Swap two scoped pointers. |
- void swap(scoped_ptr& p2) { |
- impl_.swap(p2.impl_); |
- } |
- |
- // Release a pointer. |
- // The return value is the current pointer held by this object. If this object |
- // holds a nullptr, the return value is nullptr. After this operation, this |
- // object will hold a nullptr, and will not own the object any more. |
- element_type* release() WARN_UNUSED_RESULT { |
- return impl_.release(); |
- } |
- |
- // Delete the currently held pointer and return a pointer |
- // to allow overwriting of the current pointer address. |
- element_type** accept() WARN_UNUSED_RESULT { |
- return impl_.accept(); |
- } |
- |
- // Return a pointer to the current pointer address. |
- element_type** use() WARN_UNUSED_RESULT { |
- return impl_.use(); |
- } |
- |
- private: |
- // Force element_type to be a complete type. |
- enum { type_must_be_complete = sizeof(element_type) }; |
- |
- // Actually hold the data. |
- rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
- |
- // Disable initialization from any type other than element_type*, by |
- // providing a constructor that matches such an initialization, but is |
- // private and has no definition. This is disabled because it is not safe to |
- // call delete[] on an array whose static type does not match its dynamic |
- // type. |
- template <typename U> explicit scoped_ptr(U* array); |
- explicit scoped_ptr(int disallow_construction_from_null); |
- |
- // Disable reset() from any type other than element_type*, for the same |
- // reasons as the constructor above. |
- template <typename U> void reset(U* array); |
- void reset(int disallow_reset_from_null); |
- |
- // Forbid comparison of scoped_ptr types. If U != T, it totally |
- // doesn't make sense, and if U == T, it still doesn't make sense |
- // because you should never have the same object owned by two different |
- // scoped_ptrs. |
- template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
- template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
-}; |
- |
-template <class T, class D> |
-void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) { |
- p1.swap(p2); |
-} |
- |
-// Convert between the most common kinds of scoped_ptr and unique_ptr. |
+// These used to convert between rtc::scoped_ptr and std::unique_ptr. Now they |
+// are no-ops. |
template <typename T> |
-std::unique_ptr<T> ScopedToUnique(scoped_ptr<T> sp) { |
- return std::unique_ptr<T>(sp.release()); |
+std::unique_ptr<T> ScopedToUnique(std::unique_ptr<T> up) { |
+ return up; |
} |
template <typename T> |
-scoped_ptr<T> UniqueToScoped(std::unique_ptr<T> up) { |
- return scoped_ptr<T>(up.release()); |
+std::unique_ptr<T> UniqueToScoped(std::unique_ptr<T> up) { |
+ return up; |
} |
} // namespace rtc |
-template <class T, class D> |
-bool operator==(T* p1, const rtc::scoped_ptr<T, D>& p2) { |
- return p1 == p2.get(); |
-} |
- |
-template <class T, class D> |
-bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) { |
- return p1 != p2.get(); |
-} |
- |
-// A function to convert T* into scoped_ptr<T> |
-// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation |
-// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) |
-template <typename T> |
-rtc::scoped_ptr<T> rtc_make_scoped_ptr(T* ptr) { |
- return rtc::scoped_ptr<T>(ptr); |
-} |
- |
#endif // #ifndef WEBRTC_BASE_SCOPED_PTR_H__ |