| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 * | |
| 10 */ | |
| 11 | |
| 12 // Borrowed from Chromium's src/base/numerics/safe_math_impl.h. | |
| 13 // - Modified to work in WebRTC (paths, namespace, use of webrtc/base). | |
| 14 // Based on 'chromium_revision': 'ee311243eae6aef9c907543663754ff38f1f4f40'. | |
| 15 | |
| 16 #ifndef WEBRTC_BASE_NUMERICS_SAFE_MATH_IMPL_H_ | |
| 17 #define WEBRTC_BASE_NUMERICS_SAFE_MATH_IMPL_H_ | |
| 18 | |
| 19 #include <stddef.h> | |
| 20 #include <stdint.h> | |
| 21 | |
| 22 #include <cmath> | |
| 23 #include <cstdlib> | |
| 24 #include <limits> | |
| 25 #include <type_traits> | |
| 26 | |
| 27 #include "webrtc/base/checks.h" | |
| 28 #include "webrtc/base/numerics/safe_conversions.h" | |
| 29 | |
| 30 namespace rtc { | |
| 31 namespace internal { | |
| 32 | |
| 33 // Everything from here up to the floating point operations is portable C++, | |
| 34 // but it may not be fast. This code could be split based on | |
| 35 // platform/architecture and replaced with potentially faster implementations. | |
| 36 | |
| 37 // Integer promotion templates used by the portable checked integer arithmetic. | |
| 38 template <size_t Size, bool IsSigned> | |
| 39 struct IntegerForSizeAndSign; | |
| 40 template <> | |
| 41 struct IntegerForSizeAndSign<1, true> { | |
| 42 typedef int8_t type; | |
| 43 }; | |
| 44 template <> | |
| 45 struct IntegerForSizeAndSign<1, false> { | |
| 46 typedef uint8_t type; | |
| 47 }; | |
| 48 template <> | |
| 49 struct IntegerForSizeAndSign<2, true> { | |
| 50 typedef int16_t type; | |
| 51 }; | |
| 52 template <> | |
| 53 struct IntegerForSizeAndSign<2, false> { | |
| 54 typedef uint16_t type; | |
| 55 }; | |
| 56 template <> | |
| 57 struct IntegerForSizeAndSign<4, true> { | |
| 58 typedef int32_t type; | |
| 59 }; | |
| 60 template <> | |
| 61 struct IntegerForSizeAndSign<4, false> { | |
| 62 typedef uint32_t type; | |
| 63 }; | |
| 64 template <> | |
| 65 struct IntegerForSizeAndSign<8, true> { | |
| 66 typedef int64_t type; | |
| 67 }; | |
| 68 template <> | |
| 69 struct IntegerForSizeAndSign<8, false> { | |
| 70 typedef uint64_t type; | |
| 71 }; | |
| 72 | |
| 73 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to | |
| 74 // support 128-bit math, then the ArithmeticPromotion template below will need | |
| 75 // to be updated (or more likely replaced with a decltype expression). | |
| 76 | |
| 77 template <typename Integer> | |
| 78 struct UnsignedIntegerForSize { | |
| 79 typedef typename std::enable_if< | |
| 80 std::numeric_limits<Integer>::is_integer, | |
| 81 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; | |
| 82 }; | |
| 83 | |
| 84 template <typename Integer> | |
| 85 struct SignedIntegerForSize { | |
| 86 typedef typename std::enable_if< | |
| 87 std::numeric_limits<Integer>::is_integer, | |
| 88 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; | |
| 89 }; | |
| 90 | |
| 91 template <typename Integer> | |
| 92 struct TwiceWiderInteger { | |
| 93 typedef typename std::enable_if< | |
| 94 std::numeric_limits<Integer>::is_integer, | |
| 95 typename IntegerForSizeAndSign< | |
| 96 sizeof(Integer) * 2, | |
| 97 std::numeric_limits<Integer>::is_signed>::type>::type type; | |
| 98 }; | |
| 99 | |
| 100 template <typename Integer> | |
| 101 struct PositionOfSignBit { | |
| 102 static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, | |
| 103 size_t>::type value = | |
| 104 8 * sizeof(Integer) - 1; | |
| 105 }; | |
| 106 | |
| 107 // This is used for UnsignedAbs, where we need to support floating-point | |
| 108 // template instantiations even though we don't actually support the operations. | |
| 109 // However, there is no corresponding implementation of e.g. CheckedUnsignedAbs, | |
| 110 // so the float versions will not compile. | |
| 111 template <typename Numeric, | |
| 112 bool IsInteger = std::numeric_limits<Numeric>::is_integer, | |
| 113 bool IsFloat = std::numeric_limits<Numeric>::is_iec559> | |
| 114 struct UnsignedOrFloatForSize; | |
| 115 | |
| 116 template <typename Numeric> | |
| 117 struct UnsignedOrFloatForSize<Numeric, true, false> { | |
| 118 typedef typename UnsignedIntegerForSize<Numeric>::type type; | |
| 119 }; | |
| 120 | |
| 121 template <typename Numeric> | |
| 122 struct UnsignedOrFloatForSize<Numeric, false, true> { | |
| 123 typedef Numeric type; | |
| 124 }; | |
| 125 | |
| 126 // Helper templates for integer manipulations. | |
| 127 | |
| 128 template <typename T> | |
| 129 bool HasSignBit(T x) { | |
| 130 // Cast to unsigned since right shift on signed is undefined. | |
| 131 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> | |
| 132 PositionOfSignBit<T>::value); | |
| 133 } | |
| 134 | |
| 135 // This wrapper undoes the standard integer promotions. | |
| 136 template <typename T> | |
| 137 T BinaryComplement(T x) { | |
| 138 return ~x; | |
| 139 } | |
| 140 | |
| 141 // Here are the actual portable checked integer math implementations. | |
| 142 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean | |
| 143 // way to coalesce things into the CheckedNumericState specializations below. | |
| 144 | |
| 145 template <typename T> | |
| 146 typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type | |
| 147 CheckedAdd(T x, T y, RangeConstraint* validity) { | |
| 148 // Since the value of x+y is undefined if we have a signed type, we compute | |
| 149 // it using the unsigned type of the same size. | |
| 150 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; | |
| 151 UnsignedDst ux = static_cast<UnsignedDst>(x); | |
| 152 UnsignedDst uy = static_cast<UnsignedDst>(y); | |
| 153 UnsignedDst uresult = ux + uy; | |
| 154 // Addition is valid if the sign of (x + y) is equal to either that of x or | |
| 155 // that of y. | |
| 156 if (std::numeric_limits<T>::is_signed) { | |
| 157 if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy)))) | |
| 158 *validity = RANGE_VALID; | |
| 159 else // Direction of wrap is inverse of result sign. | |
| 160 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; | |
| 161 | |
| 162 } else { // Unsigned is either valid or overflow. | |
| 163 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; | |
| 164 } | |
| 165 return static_cast<T>(uresult); | |
| 166 } | |
| 167 | |
| 168 template <typename T> | |
| 169 typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type | |
| 170 CheckedSub(T x, T y, RangeConstraint* validity) { | |
| 171 // Since the value of x+y is undefined if we have a signed type, we compute | |
| 172 // it using the unsigned type of the same size. | |
| 173 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; | |
| 174 UnsignedDst ux = static_cast<UnsignedDst>(x); | |
| 175 UnsignedDst uy = static_cast<UnsignedDst>(y); | |
| 176 UnsignedDst uresult = ux - uy; | |
| 177 // Subtraction is valid if either x and y have same sign, or (x-y) and x have | |
| 178 // the same sign. | |
| 179 if (std::numeric_limits<T>::is_signed) { | |
| 180 if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy)))) | |
| 181 *validity = RANGE_VALID; | |
| 182 else // Direction of wrap is inverse of result sign. | |
| 183 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; | |
| 184 | |
| 185 } else { // Unsigned is either valid or underflow. | |
| 186 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; | |
| 187 } | |
| 188 return static_cast<T>(uresult); | |
| 189 } | |
| 190 | |
| 191 // Integer multiplication is a bit complicated. In the fast case we just | |
| 192 // we just promote to a twice wider type, and range check the result. In the | |
| 193 // slow case we need to manually check that the result won't be truncated by | |
| 194 // checking with division against the appropriate bound. | |
| 195 template <typename T> | |
| 196 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 197 sizeof(T) * 2 <= sizeof(uintmax_t), | |
| 198 T>::type | |
| 199 CheckedMul(T x, T y, RangeConstraint* validity) { | |
| 200 typedef typename TwiceWiderInteger<T>::type IntermediateType; | |
| 201 IntermediateType tmp = | |
| 202 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); | |
| 203 *validity = DstRangeRelationToSrcRange<T>(tmp); | |
| 204 return static_cast<T>(tmp); | |
| 205 } | |
| 206 | |
| 207 template <typename T> | |
| 208 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 209 std::numeric_limits<T>::is_signed && | |
| 210 (sizeof(T) * 2 > sizeof(uintmax_t)), | |
| 211 T>::type | |
| 212 CheckedMul(T x, T y, RangeConstraint* validity) { | |
| 213 // If either side is zero then the result will be zero. | |
| 214 if (!x || !y) { | |
| 215 return RANGE_VALID; | |
| 216 | |
| 217 } else if (x > 0) { | |
| 218 if (y > 0) | |
| 219 *validity = | |
| 220 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; | |
| 221 else | |
| 222 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID | |
| 223 : RANGE_UNDERFLOW; | |
| 224 | |
| 225 } else { | |
| 226 if (y > 0) | |
| 227 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID | |
| 228 : RANGE_UNDERFLOW; | |
| 229 else | |
| 230 *validity = | |
| 231 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; | |
| 232 } | |
| 233 | |
| 234 return x * y; | |
| 235 } | |
| 236 | |
| 237 template <typename T> | |
| 238 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 239 !std::numeric_limits<T>::is_signed && | |
| 240 (sizeof(T) * 2 > sizeof(uintmax_t)), | |
| 241 T>::type | |
| 242 CheckedMul(T x, T y, RangeConstraint* validity) { | |
| 243 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) | |
| 244 ? RANGE_VALID | |
| 245 : RANGE_OVERFLOW; | |
| 246 return x * y; | |
| 247 } | |
| 248 | |
| 249 // Division just requires a check for an invalid negation on signed min/-1. | |
| 250 template <typename T> | |
| 251 T CheckedDiv(T x, | |
| 252 T y, | |
| 253 RangeConstraint* validity, | |
| 254 typename std::enable_if<std::numeric_limits<T>::is_integer, | |
| 255 int>::type = 0) { | |
| 256 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && | |
| 257 y == static_cast<T>(-1)) { | |
| 258 *validity = RANGE_OVERFLOW; | |
| 259 return std::numeric_limits<T>::min(); | |
| 260 } | |
| 261 | |
| 262 *validity = RANGE_VALID; | |
| 263 return x / y; | |
| 264 } | |
| 265 | |
| 266 template <typename T> | |
| 267 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 268 std::numeric_limits<T>::is_signed, | |
| 269 T>::type | |
| 270 CheckedMod(T x, T y, RangeConstraint* validity) { | |
| 271 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; | |
| 272 return x % y; | |
| 273 } | |
| 274 | |
| 275 template <typename T> | |
| 276 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 277 !std::numeric_limits<T>::is_signed, | |
| 278 T>::type | |
| 279 CheckedMod(T x, T y, RangeConstraint* validity) { | |
| 280 *validity = RANGE_VALID; | |
| 281 return x % y; | |
| 282 } | |
| 283 | |
| 284 template <typename T> | |
| 285 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 286 std::numeric_limits<T>::is_signed, | |
| 287 T>::type | |
| 288 CheckedNeg(T value, RangeConstraint* validity) { | |
| 289 *validity = | |
| 290 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; | |
| 291 // The negation of signed min is min, so catch that one. | |
| 292 return -value; | |
| 293 } | |
| 294 | |
| 295 template <typename T> | |
| 296 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 297 !std::numeric_limits<T>::is_signed, | |
| 298 T>::type | |
| 299 CheckedNeg(T value, RangeConstraint* validity) { | |
| 300 // The only legal unsigned negation is zero. | |
| 301 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; | |
| 302 return static_cast<T>( | |
| 303 -static_cast<typename SignedIntegerForSize<T>::type>(value)); | |
| 304 } | |
| 305 | |
| 306 template <typename T> | |
| 307 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 308 std::numeric_limits<T>::is_signed, | |
| 309 T>::type | |
| 310 CheckedAbs(T value, RangeConstraint* validity) { | |
| 311 *validity = | |
| 312 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; | |
| 313 return static_cast<T>(std::abs(value)); | |
| 314 } | |
| 315 | |
| 316 template <typename T> | |
| 317 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 318 !std::numeric_limits<T>::is_signed, | |
| 319 T>::type | |
| 320 CheckedAbs(T value, RangeConstraint* validity) { | |
| 321 // T is unsigned, so |value| must already be positive. | |
| 322 *validity = RANGE_VALID; | |
| 323 return value; | |
| 324 } | |
| 325 | |
| 326 template <typename T> | |
| 327 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 328 std::numeric_limits<T>::is_signed, | |
| 329 typename UnsignedIntegerForSize<T>::type>::type | |
| 330 CheckedUnsignedAbs(T value) { | |
| 331 typedef typename UnsignedIntegerForSize<T>::type UnsignedT; | |
| 332 return value == std::numeric_limits<T>::min() | |
| 333 ? static_cast<UnsignedT>(std::numeric_limits<T>::max()) + 1 | |
| 334 : static_cast<UnsignedT>(std::abs(value)); | |
| 335 } | |
| 336 | |
| 337 template <typename T> | |
| 338 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
| 339 !std::numeric_limits<T>::is_signed, | |
| 340 T>::type | |
| 341 CheckedUnsignedAbs(T value) { | |
| 342 // T is unsigned, so |value| must already be positive. | |
| 343 return value; | |
| 344 } | |
| 345 | |
| 346 // These are the floating point stubs that the compiler needs to see. Only the | |
| 347 // negation operation is ever called. | |
| 348 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ | |
| 349 template <typename T> \ | |
| 350 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type \ | |
| 351 Checked##NAME(T, T, RangeConstraint*) { \ | |
| 352 RTC_NOTREACHED(); \ | |
| 353 return 0; \ | |
| 354 } | |
| 355 | |
| 356 BASE_FLOAT_ARITHMETIC_STUBS(Add) | |
| 357 BASE_FLOAT_ARITHMETIC_STUBS(Sub) | |
| 358 BASE_FLOAT_ARITHMETIC_STUBS(Mul) | |
| 359 BASE_FLOAT_ARITHMETIC_STUBS(Div) | |
| 360 BASE_FLOAT_ARITHMETIC_STUBS(Mod) | |
| 361 | |
| 362 #undef BASE_FLOAT_ARITHMETIC_STUBS | |
| 363 | |
| 364 template <typename T> | |
| 365 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( | |
| 366 T value, | |
| 367 RangeConstraint*) { | |
| 368 return -value; | |
| 369 } | |
| 370 | |
| 371 template <typename T> | |
| 372 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( | |
| 373 T value, | |
| 374 RangeConstraint*) { | |
| 375 return std::abs(value); | |
| 376 } | |
| 377 | |
| 378 // Floats carry around their validity state with them, but integers do not. So, | |
| 379 // we wrap the underlying value in a specialization in order to hide that detail | |
| 380 // and expose an interface via accessors. | |
| 381 enum NumericRepresentation { | |
| 382 NUMERIC_INTEGER, | |
| 383 NUMERIC_FLOATING, | |
| 384 NUMERIC_UNKNOWN | |
| 385 }; | |
| 386 | |
| 387 template <typename NumericType> | |
| 388 struct GetNumericRepresentation { | |
| 389 static const NumericRepresentation value = | |
| 390 std::numeric_limits<NumericType>::is_integer | |
| 391 ? NUMERIC_INTEGER | |
| 392 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING | |
| 393 : NUMERIC_UNKNOWN); | |
| 394 }; | |
| 395 | |
| 396 template <typename T, NumericRepresentation type = | |
| 397 GetNumericRepresentation<T>::value> | |
| 398 class CheckedNumericState {}; | |
| 399 | |
| 400 // Integrals require quite a bit of additional housekeeping to manage state. | |
| 401 template <typename T> | |
| 402 class CheckedNumericState<T, NUMERIC_INTEGER> { | |
| 403 private: | |
| 404 T value_; | |
| 405 RangeConstraint validity_; | |
| 406 | |
| 407 public: | |
| 408 template <typename Src, NumericRepresentation type> | |
| 409 friend class CheckedNumericState; | |
| 410 | |
| 411 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} | |
| 412 | |
| 413 template <typename Src> | |
| 414 CheckedNumericState(Src value, RangeConstraint validity) | |
| 415 : value_(static_cast<T>(value)), | |
| 416 validity_(GetRangeConstraint(validity | | |
| 417 DstRangeRelationToSrcRange<T>(value))) { | |
| 418 static_assert(std::numeric_limits<Src>::is_specialized, | |
| 419 "Argument must be numeric."); | |
| 420 } | |
| 421 | |
| 422 // Copy constructor. | |
| 423 template <typename Src> | |
| 424 CheckedNumericState(const CheckedNumericState<Src>& rhs) | |
| 425 : value_(static_cast<T>(rhs.value())), | |
| 426 validity_(GetRangeConstraint( | |
| 427 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} | |
| 428 | |
| 429 template <typename Src> | |
| 430 explicit CheckedNumericState( | |
| 431 Src value, | |
| 432 typename std::enable_if<std::numeric_limits<Src>::is_specialized, | |
| 433 int>::type = 0) | |
| 434 : value_(static_cast<T>(value)), | |
| 435 validity_(DstRangeRelationToSrcRange<T>(value)) {} | |
| 436 | |
| 437 RangeConstraint validity() const { return validity_; } | |
| 438 T value() const { return value_; } | |
| 439 }; | |
| 440 | |
| 441 // Floating points maintain their own validity, but need translation wrappers. | |
| 442 template <typename T> | |
| 443 class CheckedNumericState<T, NUMERIC_FLOATING> { | |
| 444 private: | |
| 445 T value_; | |
| 446 | |
| 447 public: | |
| 448 template <typename Src, NumericRepresentation type> | |
| 449 friend class CheckedNumericState; | |
| 450 | |
| 451 CheckedNumericState() : value_(0.0) {} | |
| 452 | |
| 453 template <typename Src> | |
| 454 CheckedNumericState( | |
| 455 Src value, | |
| 456 RangeConstraint validity, | |
| 457 typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = | |
| 458 0) { | |
| 459 switch (DstRangeRelationToSrcRange<T>(value)) { | |
| 460 case RANGE_VALID: | |
| 461 value_ = static_cast<T>(value); | |
| 462 break; | |
| 463 | |
| 464 case RANGE_UNDERFLOW: | |
| 465 value_ = -std::numeric_limits<T>::infinity(); | |
| 466 break; | |
| 467 | |
| 468 case RANGE_OVERFLOW: | |
| 469 value_ = std::numeric_limits<T>::infinity(); | |
| 470 break; | |
| 471 | |
| 472 case RANGE_INVALID: | |
| 473 value_ = std::numeric_limits<T>::quiet_NaN(); | |
| 474 break; | |
| 475 | |
| 476 default: | |
| 477 RTC_NOTREACHED(); | |
| 478 } | |
| 479 } | |
| 480 | |
| 481 template <typename Src> | |
| 482 explicit CheckedNumericState( | |
| 483 Src value, | |
| 484 typename std::enable_if<std::numeric_limits<Src>::is_specialized, | |
| 485 int>::type = 0) | |
| 486 : value_(static_cast<T>(value)) {} | |
| 487 | |
| 488 // Copy constructor. | |
| 489 template <typename Src> | |
| 490 CheckedNumericState(const CheckedNumericState<Src>& rhs) | |
| 491 : value_(static_cast<T>(rhs.value())) {} | |
| 492 | |
| 493 RangeConstraint validity() const { | |
| 494 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), | |
| 495 value_ >= -std::numeric_limits<T>::max()); | |
| 496 } | |
| 497 T value() const { return value_; } | |
| 498 }; | |
| 499 | |
| 500 // For integers less than 128-bit and floats 32-bit or larger, we can distil | |
| 501 // C/C++ arithmetic promotions down to two simple rules: | |
| 502 // 1. The type with the larger maximum exponent always takes precedence. | |
| 503 // 2. The resulting type must be promoted to at least an int. | |
| 504 // The following template specializations implement that promotion logic. | |
| 505 enum ArithmeticPromotionCategory { | |
| 506 LEFT_PROMOTION, | |
| 507 RIGHT_PROMOTION, | |
| 508 DEFAULT_PROMOTION | |
| 509 }; | |
| 510 | |
| 511 template <typename Lhs, | |
| 512 typename Rhs = Lhs, | |
| 513 ArithmeticPromotionCategory Promotion = | |
| 514 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) | |
| 515 ? (MaxExponent<Lhs>::value > MaxExponent<int>::value | |
| 516 ? LEFT_PROMOTION | |
| 517 : DEFAULT_PROMOTION) | |
| 518 : (MaxExponent<Rhs>::value > MaxExponent<int>::value | |
| 519 ? RIGHT_PROMOTION | |
| 520 : DEFAULT_PROMOTION) > | |
| 521 struct ArithmeticPromotion; | |
| 522 | |
| 523 template <typename Lhs, typename Rhs> | |
| 524 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { | |
| 525 typedef Lhs type; | |
| 526 }; | |
| 527 | |
| 528 template <typename Lhs, typename Rhs> | |
| 529 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { | |
| 530 typedef Rhs type; | |
| 531 }; | |
| 532 | |
| 533 template <typename Lhs, typename Rhs> | |
| 534 struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> { | |
| 535 typedef int type; | |
| 536 }; | |
| 537 | |
| 538 // We can statically check if operations on the provided types can wrap, so we | |
| 539 // can skip the checked operations if they're not needed. So, for an integer we | |
| 540 // care if the destination type preserves the sign and is twice the width of | |
| 541 // the source. | |
| 542 template <typename T, typename Lhs, typename Rhs> | |
| 543 struct IsIntegerArithmeticSafe { | |
| 544 static const bool value = !std::numeric_limits<T>::is_iec559 && | |
| 545 StaticDstRangeRelationToSrcRange<T, Lhs>::value == | |
| 546 NUMERIC_RANGE_CONTAINED && | |
| 547 sizeof(T) >= (2 * sizeof(Lhs)) && | |
| 548 StaticDstRangeRelationToSrcRange<T, Rhs>::value != | |
| 549 NUMERIC_RANGE_CONTAINED && | |
| 550 sizeof(T) >= (2 * sizeof(Rhs)); | |
| 551 }; | |
| 552 | |
| 553 } // namespace internal | |
| 554 } // namespace rtc | |
| 555 | |
| 556 #endif // WEBRTC_BASE_NUMERICS_SAFE_MATH_IMPL_H_ | |
| OLD | NEW |