Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1994)

Unified Diff: webrtc/modules/audio_processing/aec/aec_core_sse2.c

Issue 1713923002: Moved the AEC C code to be built using C++ (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Format changes to comply with lint Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/audio_processing/aec/aec_core_sse2.c
diff --git a/webrtc/modules/audio_processing/aec/aec_core_sse2.c b/webrtc/modules/audio_processing/aec/aec_core_sse2.c
deleted file mode 100644
index 1e86b92e34659323f9e54de4e422c4c4095fcf8e..0000000000000000000000000000000000000000
--- a/webrtc/modules/audio_processing/aec/aec_core_sse2.c
+++ /dev/null
@@ -1,721 +0,0 @@
-/*
- * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-/*
- * The core AEC algorithm, SSE2 version of speed-critical functions.
- */
-
-#include <emmintrin.h>
-#include <math.h>
-#include <string.h> // memset
-
-#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
-#include "webrtc/modules/audio_processing/aec/aec_common.h"
-#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
-#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
-
-__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
- return aRe * bRe - aIm * bIm;
-}
-
-__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
- return aRe * bIm + aIm * bRe;
-}
-
-static void FilterFarSSE2(int num_partitions,
- int x_fft_buf_block_pos,
- float x_fft_buf[2]
- [kExtendedNumPartitions * PART_LEN1],
- float h_fft_buf[2]
- [kExtendedNumPartitions * PART_LEN1],
- float y_fft[2][PART_LEN1]) {
- int i;
- for (i = 0; i < num_partitions; i++) {
- int j;
- int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
- int pos = i * PART_LEN1;
- // Check for wrap
- if (i + x_fft_buf_block_pos >= num_partitions) {
- xPos -= num_partitions * (PART_LEN1);
- }
-
- // vectorized code (four at once)
- for (j = 0; j + 3 < PART_LEN1; j += 4) {
- const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]);
- const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]);
- const __m128 h_fft_buf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
- const __m128 h_fft_buf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
- const __m128 y_fft_re = _mm_loadu_ps(&y_fft[0][j]);
- const __m128 y_fft_im = _mm_loadu_ps(&y_fft[1][j]);
- const __m128 a = _mm_mul_ps(x_fft_buf_re, h_fft_buf_re);
- const __m128 b = _mm_mul_ps(x_fft_buf_im, h_fft_buf_im);
- const __m128 c = _mm_mul_ps(x_fft_buf_re, h_fft_buf_im);
- const __m128 d = _mm_mul_ps(x_fft_buf_im, h_fft_buf_re);
- const __m128 e = _mm_sub_ps(a, b);
- const __m128 f = _mm_add_ps(c, d);
- const __m128 g = _mm_add_ps(y_fft_re, e);
- const __m128 h = _mm_add_ps(y_fft_im, f);
- _mm_storeu_ps(&y_fft[0][j], g);
- _mm_storeu_ps(&y_fft[1][j], h);
- }
- // scalar code for the remaining items.
- for (; j < PART_LEN1; j++) {
- y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
- h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
- y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
- h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
- }
- }
-}
-
-static void ScaleErrorSignalSSE2(int extended_filter_enabled,
- float normal_mu,
- float normal_error_threshold,
- float x_pow[PART_LEN1],
- float ef[2][PART_LEN1]) {
- const __m128 k1e_10f = _mm_set1_ps(1e-10f);
- const __m128 kMu = extended_filter_enabled ? _mm_set1_ps(kExtendedMu)
- : _mm_set1_ps(normal_mu);
- const __m128 kThresh = extended_filter_enabled
- ? _mm_set1_ps(kExtendedErrorThreshold)
- : _mm_set1_ps(normal_error_threshold);
-
- int i;
- // vectorized code (four at once)
- for (i = 0; i + 3 < PART_LEN1; i += 4) {
- const __m128 x_pow_local = _mm_loadu_ps(&x_pow[i]);
- const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]);
- const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]);
-
- const __m128 xPowPlus = _mm_add_ps(x_pow_local, k1e_10f);
- __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus);
- __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus);
- const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re);
- const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im);
- const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2);
- const __m128 absEf = _mm_sqrt_ps(ef_sum2);
- const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh);
- __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f);
- const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus);
- __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv);
- __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv);
- ef_re_if = _mm_and_ps(bigger, ef_re_if);
- ef_im_if = _mm_and_ps(bigger, ef_im_if);
- ef_re = _mm_andnot_ps(bigger, ef_re);
- ef_im = _mm_andnot_ps(bigger, ef_im);
- ef_re = _mm_or_ps(ef_re, ef_re_if);
- ef_im = _mm_or_ps(ef_im, ef_im_if);
- ef_re = _mm_mul_ps(ef_re, kMu);
- ef_im = _mm_mul_ps(ef_im, kMu);
-
- _mm_storeu_ps(&ef[0][i], ef_re);
- _mm_storeu_ps(&ef[1][i], ef_im);
- }
- // scalar code for the remaining items.
- {
- const float mu = extended_filter_enabled ? kExtendedMu : normal_mu;
- const float error_threshold = extended_filter_enabled
- ? kExtendedErrorThreshold
- : normal_error_threshold;
- for (; i < (PART_LEN1); i++) {
- float abs_ef;
- ef[0][i] /= (x_pow[i] + 1e-10f);
- ef[1][i] /= (x_pow[i] + 1e-10f);
- abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
-
- if (abs_ef > error_threshold) {
- abs_ef = error_threshold / (abs_ef + 1e-10f);
- ef[0][i] *= abs_ef;
- ef[1][i] *= abs_ef;
- }
-
- // Stepsize factor
- ef[0][i] *= mu;
- ef[1][i] *= mu;
- }
- }
-}
-
-static void FilterAdaptationSSE2(
- int num_partitions,
- int x_fft_buf_block_pos,
- float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
- float e_fft[2][PART_LEN1],
- float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
- float fft[PART_LEN2];
- int i, j;
- for (i = 0; i < num_partitions; i++) {
- int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1);
- int pos = i * PART_LEN1;
- // Check for wrap
- if (i + x_fft_buf_block_pos >= num_partitions) {
- xPos -= num_partitions * PART_LEN1;
- }
-
- // Process the whole array...
- for (j = 0; j < PART_LEN; j += 4) {
- // Load x_fft_buf and e_fft.
- const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]);
- const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]);
- const __m128 e_fft_re = _mm_loadu_ps(&e_fft[0][j]);
- const __m128 e_fft_im = _mm_loadu_ps(&e_fft[1][j]);
- // Calculate the product of conjugate(x_fft_buf) by e_fft.
- // re(conjugate(a) * b) = aRe * bRe + aIm * bIm
- // im(conjugate(a) * b)= aRe * bIm - aIm * bRe
- const __m128 a = _mm_mul_ps(x_fft_buf_re, e_fft_re);
- const __m128 b = _mm_mul_ps(x_fft_buf_im, e_fft_im);
- const __m128 c = _mm_mul_ps(x_fft_buf_re, e_fft_im);
- const __m128 d = _mm_mul_ps(x_fft_buf_im, e_fft_re);
- const __m128 e = _mm_add_ps(a, b);
- const __m128 f = _mm_sub_ps(c, d);
- // Interleave real and imaginary parts.
- const __m128 g = _mm_unpacklo_ps(e, f);
- const __m128 h = _mm_unpackhi_ps(e, f);
- // Store
- _mm_storeu_ps(&fft[2 * j + 0], g);
- _mm_storeu_ps(&fft[2 * j + 4], h);
- }
- // ... and fixup the first imaginary entry.
- fft[1] =
- MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN],
- e_fft[0][PART_LEN], e_fft[1][PART_LEN]);
-
- aec_rdft_inverse_128(fft);
- memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
-
- // fft scaling
- {
- float scale = 2.0f / PART_LEN2;
- const __m128 scale_ps = _mm_load_ps1(&scale);
- for (j = 0; j < PART_LEN; j += 4) {
- const __m128 fft_ps = _mm_loadu_ps(&fft[j]);
- const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps);
- _mm_storeu_ps(&fft[j], fft_scale);
- }
- }
- aec_rdft_forward_128(fft);
-
- {
- float wt1 = h_fft_buf[1][pos];
- h_fft_buf[0][pos + PART_LEN] += fft[1];
- for (j = 0; j < PART_LEN; j += 4) {
- __m128 wtBuf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
- __m128 wtBuf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
- const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]);
- const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]);
- const __m128 fft_re =
- _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0));
- const __m128 fft_im =
- _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1));
- wtBuf_re = _mm_add_ps(wtBuf_re, fft_re);
- wtBuf_im = _mm_add_ps(wtBuf_im, fft_im);
- _mm_storeu_ps(&h_fft_buf[0][pos + j], wtBuf_re);
- _mm_storeu_ps(&h_fft_buf[1][pos + j], wtBuf_im);
- }
- h_fft_buf[1][pos] = wt1;
- }
- }
-}
-
-static __m128 mm_pow_ps(__m128 a, __m128 b) {
- // a^b = exp2(b * log2(a))
- // exp2(x) and log2(x) are calculated using polynomial approximations.
- __m128 log2_a, b_log2_a, a_exp_b;
-
- // Calculate log2(x), x = a.
- {
- // To calculate log2(x), we decompose x like this:
- // x = y * 2^n
- // n is an integer
- // y is in the [1.0, 2.0) range
- //
- // log2(x) = log2(y) + n
- // n can be evaluated by playing with float representation.
- // log2(y) in a small range can be approximated, this code uses an order
- // five polynomial approximation. The coefficients have been
- // estimated with the Remez algorithm and the resulting
- // polynomial has a maximum relative error of 0.00086%.
-
- // Compute n.
- // This is done by masking the exponent, shifting it into the top bit of
- // the mantissa, putting eight into the biased exponent (to shift/
- // compensate the fact that the exponent has been shifted in the top/
- // fractional part and finally getting rid of the implicit leading one
- // from the mantissa by substracting it out.
- static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = {
- 0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000};
- static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = {
- 0x43800000, 0x43800000, 0x43800000, 0x43800000};
- static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = {
- 0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000};
- static const int shift_exponent_into_top_mantissa = 8;
- const __m128 two_n = _mm_and_ps(a, *((__m128*)float_exponent_mask));
- const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(
- _mm_castps_si128(two_n), shift_exponent_into_top_mantissa));
- const __m128 n_0 = _mm_or_ps(n_1, *((__m128*)eight_biased_exponent));
- const __m128 n = _mm_sub_ps(n_0, *((__m128*)implicit_leading_one));
-
- // Compute y.
- static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = {
- 0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF};
- static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = {
- 0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000};
- const __m128 mantissa = _mm_and_ps(a, *((__m128*)mantissa_mask));
- const __m128 y =
- _mm_or_ps(mantissa, *((__m128*)zero_biased_exponent_is_one));
-
- // Approximate log2(y) ~= (y - 1) * pol5(y).
- // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
- static const ALIGN16_BEG float ALIGN16_END C5[4] = {
- -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f};
- static const ALIGN16_BEG float ALIGN16_END C4[4] = {
- 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f};
- static const ALIGN16_BEG float ALIGN16_END C3[4] = {
- -1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f};
- static const ALIGN16_BEG float ALIGN16_END C2[4] = {2.5988452f, 2.5988452f,
- 2.5988452f, 2.5988452f};
- static const ALIGN16_BEG float ALIGN16_END C1[4] = {
- -3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f};
- static const ALIGN16_BEG float ALIGN16_END C0[4] = {3.1157899f, 3.1157899f,
- 3.1157899f, 3.1157899f};
- const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128*)C5));
- const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128*)C4));
- const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y);
- const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128*)C3));
- const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y);
- const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128*)C2));
- const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y);
- const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128*)C1));
- const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y);
- const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128*)C0));
- const __m128 y_minus_one =
- _mm_sub_ps(y, *((__m128*)zero_biased_exponent_is_one));
- const __m128 log2_y = _mm_mul_ps(y_minus_one, pol5_y);
-
- // Combine parts.
- log2_a = _mm_add_ps(n, log2_y);
- }
-
- // b * log2(a)
- b_log2_a = _mm_mul_ps(b, log2_a);
-
- // Calculate exp2(x), x = b * log2(a).
- {
- // To calculate 2^x, we decompose x like this:
- // x = n + y
- // n is an integer, the value of x - 0.5 rounded down, therefore
- // y is in the [0.5, 1.5) range
- //
- // 2^x = 2^n * 2^y
- // 2^n can be evaluated by playing with float representation.
- // 2^y in a small range can be approximated, this code uses an order two
- // polynomial approximation. The coefficients have been estimated
- // with the Remez algorithm and the resulting polynomial has a
- // maximum relative error of 0.17%.
-
- // To avoid over/underflow, we reduce the range of input to ]-127, 129].
- static const ALIGN16_BEG float max_input[4] ALIGN16_END = {129.f, 129.f,
- 129.f, 129.f};
- static const ALIGN16_BEG float min_input[4] ALIGN16_END = {
- -126.99999f, -126.99999f, -126.99999f, -126.99999f};
- const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128*)max_input));
- const __m128 x_max = _mm_max_ps(x_min, *((__m128*)min_input));
- // Compute n.
- static const ALIGN16_BEG float half[4] ALIGN16_END = {0.5f, 0.5f, 0.5f,
- 0.5f};
- const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128*)half));
- const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half);
- // Compute 2^n.
- static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = {
- 127, 127, 127, 127};
- static const int float_exponent_shift = 23;
- const __m128i two_n_exponent =
- _mm_add_epi32(x_minus_half_floor, *((__m128i*)float_exponent_bias));
- const __m128 two_n =
- _mm_castsi128_ps(_mm_slli_epi32(two_n_exponent, float_exponent_shift));
- // Compute y.
- const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor));
- // Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
- static const ALIGN16_BEG float C2[4] ALIGN16_END = {
- 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f};
- static const ALIGN16_BEG float C1[4] ALIGN16_END = {
- 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f};
- static const ALIGN16_BEG float C0[4] ALIGN16_END = {1.0017247f, 1.0017247f,
- 1.0017247f, 1.0017247f};
- const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128*)C2));
- const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128*)C1));
- const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y);
- const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128*)C0));
-
- // Combine parts.
- a_exp_b = _mm_mul_ps(exp2_y, two_n);
- }
- return a_exp_b;
-}
-
-static void OverdriveAndSuppressSSE2(AecCore* aec,
- float hNl[PART_LEN1],
- const float hNlFb,
- float efw[2][PART_LEN1]) {
- int i;
- const __m128 vec_hNlFb = _mm_set1_ps(hNlFb);
- const __m128 vec_one = _mm_set1_ps(1.0f);
- const __m128 vec_minus_one = _mm_set1_ps(-1.0f);
- const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm);
- // vectorized code (four at once)
- for (i = 0; i + 3 < PART_LEN1; i += 4) {
- // Weight subbands
- __m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
- const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]);
- const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb);
- const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(vec_weightCurve, vec_hNlFb);
- const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve);
- const __m128 vec_one_weightCurve_hNl =
- _mm_mul_ps(vec_one_weightCurve, vec_hNl);
- const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl);
- const __m128 vec_if1 = _mm_and_ps(
- bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl));
- vec_hNl = _mm_or_ps(vec_if0, vec_if1);
-
- {
- const __m128 vec_overDriveCurve =
- _mm_loadu_ps(&WebRtcAec_overDriveCurve[i]);
- const __m128 vec_overDriveSm_overDriveCurve =
- _mm_mul_ps(vec_overDriveSm, vec_overDriveCurve);
- vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve);
- _mm_storeu_ps(&hNl[i], vec_hNl);
- }
-
- // Suppress error signal
- {
- __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]);
- __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]);
- vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl);
- vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl);
-
- // Ooura fft returns incorrect sign on imaginary component. It matters
- // here because we are making an additive change with comfort noise.
- vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one);
- _mm_storeu_ps(&efw[0][i], vec_efw_re);
- _mm_storeu_ps(&efw[1][i], vec_efw_im);
- }
- }
- // scalar code for the remaining items.
- for (; i < PART_LEN1; i++) {
- // Weight subbands
- if (hNl[i] > hNlFb) {
- hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
- (1 - WebRtcAec_weightCurve[i]) * hNl[i];
- }
- hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
-
- // Suppress error signal
- efw[0][i] *= hNl[i];
- efw[1][i] *= hNl[i];
-
- // Ooura fft returns incorrect sign on imaginary component. It matters
- // here because we are making an additive change with comfort noise.
- efw[1][i] *= -1;
- }
-}
-
-__inline static void _mm_add_ps_4x1(__m128 sum, float* dst) {
- // A+B C+D
- sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(0, 0, 3, 2)));
- // A+B+C+D A+B+C+D
- sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 1, 1, 1)));
- _mm_store_ss(dst, sum);
-}
-
-static int PartitionDelaySSE2(const AecCore* aec) {
- // Measures the energy in each filter partition and returns the partition with
- // highest energy.
- // TODO(bjornv): Spread computational cost by computing one partition per
- // block?
- float wfEnMax = 0;
- int i;
- int delay = 0;
-
- for (i = 0; i < aec->num_partitions; i++) {
- int j;
- int pos = i * PART_LEN1;
- float wfEn = 0;
- __m128 vec_wfEn = _mm_set1_ps(0.0f);
- // vectorized code (four at once)
- for (j = 0; j + 3 < PART_LEN1; j += 4) {
- const __m128 vec_wfBuf0 = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
- const __m128 vec_wfBuf1 = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
- vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf0, vec_wfBuf0));
- vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf1, vec_wfBuf1));
- }
- _mm_add_ps_4x1(vec_wfEn, &wfEn);
-
- // scalar code for the remaining items.
- for (; j < PART_LEN1; j++) {
- wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
- aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
- }
-
- if (wfEn > wfEnMax) {
- wfEnMax = wfEn;
- delay = i;
- }
- }
- return delay;
-}
-
-// Updates the following smoothed Power Spectral Densities (PSD):
-// - sd : near-end
-// - se : residual echo
-// - sx : far-end
-// - sde : cross-PSD of near-end and residual echo
-// - sxd : cross-PSD of near-end and far-end
-//
-// In addition to updating the PSDs, also the filter diverge state is determined
-// upon actions are taken.
-static void SmoothedPSD(AecCore* aec,
- float efw[2][PART_LEN1],
- float dfw[2][PART_LEN1],
- float xfw[2][PART_LEN1],
- int* extreme_filter_divergence) {
- // Power estimate smoothing coefficients.
- const float* ptrGCoh =
- aec->extended_filter_enabled
- ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1]
- : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1];
- int i;
- float sdSum = 0, seSum = 0;
- const __m128 vec_15 = _mm_set1_ps(WebRtcAec_kMinFarendPSD);
- const __m128 vec_GCoh0 = _mm_set1_ps(ptrGCoh[0]);
- const __m128 vec_GCoh1 = _mm_set1_ps(ptrGCoh[1]);
- __m128 vec_sdSum = _mm_set1_ps(0.0f);
- __m128 vec_seSum = _mm_set1_ps(0.0f);
-
- for (i = 0; i + 3 < PART_LEN1; i += 4) {
- const __m128 vec_dfw0 = _mm_loadu_ps(&dfw[0][i]);
- const __m128 vec_dfw1 = _mm_loadu_ps(&dfw[1][i]);
- const __m128 vec_efw0 = _mm_loadu_ps(&efw[0][i]);
- const __m128 vec_efw1 = _mm_loadu_ps(&efw[1][i]);
- const __m128 vec_xfw0 = _mm_loadu_ps(&xfw[0][i]);
- const __m128 vec_xfw1 = _mm_loadu_ps(&xfw[1][i]);
- __m128 vec_sd = _mm_mul_ps(_mm_loadu_ps(&aec->sd[i]), vec_GCoh0);
- __m128 vec_se = _mm_mul_ps(_mm_loadu_ps(&aec->se[i]), vec_GCoh0);
- __m128 vec_sx = _mm_mul_ps(_mm_loadu_ps(&aec->sx[i]), vec_GCoh0);
- __m128 vec_dfw_sumsq = _mm_mul_ps(vec_dfw0, vec_dfw0);
- __m128 vec_efw_sumsq = _mm_mul_ps(vec_efw0, vec_efw0);
- __m128 vec_xfw_sumsq = _mm_mul_ps(vec_xfw0, vec_xfw0);
- vec_dfw_sumsq = _mm_add_ps(vec_dfw_sumsq, _mm_mul_ps(vec_dfw1, vec_dfw1));
- vec_efw_sumsq = _mm_add_ps(vec_efw_sumsq, _mm_mul_ps(vec_efw1, vec_efw1));
- vec_xfw_sumsq = _mm_add_ps(vec_xfw_sumsq, _mm_mul_ps(vec_xfw1, vec_xfw1));
- vec_xfw_sumsq = _mm_max_ps(vec_xfw_sumsq, vec_15);
- vec_sd = _mm_add_ps(vec_sd, _mm_mul_ps(vec_dfw_sumsq, vec_GCoh1));
- vec_se = _mm_add_ps(vec_se, _mm_mul_ps(vec_efw_sumsq, vec_GCoh1));
- vec_sx = _mm_add_ps(vec_sx, _mm_mul_ps(vec_xfw_sumsq, vec_GCoh1));
- _mm_storeu_ps(&aec->sd[i], vec_sd);
- _mm_storeu_ps(&aec->se[i], vec_se);
- _mm_storeu_ps(&aec->sx[i], vec_sx);
-
- {
- const __m128 vec_3210 = _mm_loadu_ps(&aec->sde[i][0]);
- const __m128 vec_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]);
- __m128 vec_a =
- _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(2, 0, 2, 0));
- __m128 vec_b =
- _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(3, 1, 3, 1));
- __m128 vec_dfwefw0011 = _mm_mul_ps(vec_dfw0, vec_efw0);
- __m128 vec_dfwefw0110 = _mm_mul_ps(vec_dfw0, vec_efw1);
- vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
- vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
- vec_dfwefw0011 =
- _mm_add_ps(vec_dfwefw0011, _mm_mul_ps(vec_dfw1, vec_efw1));
- vec_dfwefw0110 =
- _mm_sub_ps(vec_dfwefw0110, _mm_mul_ps(vec_dfw1, vec_efw0));
- vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwefw0011, vec_GCoh1));
- vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwefw0110, vec_GCoh1));
- _mm_storeu_ps(&aec->sde[i][0], _mm_unpacklo_ps(vec_a, vec_b));
- _mm_storeu_ps(&aec->sde[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b));
- }
-
- {
- const __m128 vec_3210 = _mm_loadu_ps(&aec->sxd[i][0]);
- const __m128 vec_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]);
- __m128 vec_a =
- _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(2, 0, 2, 0));
- __m128 vec_b =
- _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(3, 1, 3, 1));
- __m128 vec_dfwxfw0011 = _mm_mul_ps(vec_dfw0, vec_xfw0);
- __m128 vec_dfwxfw0110 = _mm_mul_ps(vec_dfw0, vec_xfw1);
- vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
- vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
- vec_dfwxfw0011 =
- _mm_add_ps(vec_dfwxfw0011, _mm_mul_ps(vec_dfw1, vec_xfw1));
- vec_dfwxfw0110 =
- _mm_sub_ps(vec_dfwxfw0110, _mm_mul_ps(vec_dfw1, vec_xfw0));
- vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwxfw0011, vec_GCoh1));
- vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwxfw0110, vec_GCoh1));
- _mm_storeu_ps(&aec->sxd[i][0], _mm_unpacklo_ps(vec_a, vec_b));
- _mm_storeu_ps(&aec->sxd[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b));
- }
-
- vec_sdSum = _mm_add_ps(vec_sdSum, vec_sd);
- vec_seSum = _mm_add_ps(vec_seSum, vec_se);
- }
-
- _mm_add_ps_4x1(vec_sdSum, &sdSum);
- _mm_add_ps_4x1(vec_seSum, &seSum);
-
- for (; i < PART_LEN1; i++) {
- aec->sd[i] = ptrGCoh[0] * aec->sd[i] +
- ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
- aec->se[i] = ptrGCoh[0] * aec->se[i] +
- ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
- // We threshold here to protect against the ill-effects of a zero farend.
- // The threshold is not arbitrarily chosen, but balances protection and
- // adverse interaction with the algorithm's tuning.
- // TODO(bjornv): investigate further why this is so sensitive.
- aec->sx[i] = ptrGCoh[0] * aec->sx[i] +
- ptrGCoh[1] * WEBRTC_SPL_MAX(
- xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
- WebRtcAec_kMinFarendPSD);
-
- aec->sde[i][0] =
- ptrGCoh[0] * aec->sde[i][0] +
- ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
- aec->sde[i][1] =
- ptrGCoh[0] * aec->sde[i][1] +
- ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
-
- aec->sxd[i][0] =
- ptrGCoh[0] * aec->sxd[i][0] +
- ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
- aec->sxd[i][1] =
- ptrGCoh[0] * aec->sxd[i][1] +
- ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
-
- sdSum += aec->sd[i];
- seSum += aec->se[i];
- }
-
- // Divergent filter safeguard update.
- aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum;
-
- // Signal extreme filter divergence if the error is significantly larger
- // than the nearend (13 dB).
- *extreme_filter_divergence = (seSum > (19.95f * sdSum));
-}
-
-// Window time domain data to be used by the fft.
-static void WindowDataSSE2(float* x_windowed, const float* x) {
- int i;
- for (i = 0; i < PART_LEN; i += 4) {
- const __m128 vec_Buf1 = _mm_loadu_ps(&x[i]);
- const __m128 vec_Buf2 = _mm_loadu_ps(&x[PART_LEN + i]);
- const __m128 vec_sqrtHanning = _mm_load_ps(&WebRtcAec_sqrtHanning[i]);
- // A B C D
- __m128 vec_sqrtHanning_rev =
- _mm_loadu_ps(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
- // D C B A
- vec_sqrtHanning_rev = _mm_shuffle_ps(
- vec_sqrtHanning_rev, vec_sqrtHanning_rev, _MM_SHUFFLE(0, 1, 2, 3));
- _mm_storeu_ps(&x_windowed[i], _mm_mul_ps(vec_Buf1, vec_sqrtHanning));
- _mm_storeu_ps(&x_windowed[PART_LEN + i],
- _mm_mul_ps(vec_Buf2, vec_sqrtHanning_rev));
- }
-}
-
-// Puts fft output data into a complex valued array.
-static void StoreAsComplexSSE2(const float* data,
- float data_complex[2][PART_LEN1]) {
- int i;
- for (i = 0; i < PART_LEN; i += 4) {
- const __m128 vec_fft0 = _mm_loadu_ps(&data[2 * i]);
- const __m128 vec_fft4 = _mm_loadu_ps(&data[2 * i + 4]);
- const __m128 vec_a =
- _mm_shuffle_ps(vec_fft0, vec_fft4, _MM_SHUFFLE(2, 0, 2, 0));
- const __m128 vec_b =
- _mm_shuffle_ps(vec_fft0, vec_fft4, _MM_SHUFFLE(3, 1, 3, 1));
- _mm_storeu_ps(&data_complex[0][i], vec_a);
- _mm_storeu_ps(&data_complex[1][i], vec_b);
- }
- // fix beginning/end values
- data_complex[1][0] = 0;
- data_complex[1][PART_LEN] = 0;
- data_complex[0][0] = data[0];
- data_complex[0][PART_LEN] = data[1];
-}
-
-static void SubbandCoherenceSSE2(AecCore* aec,
- float efw[2][PART_LEN1],
- float dfw[2][PART_LEN1],
- float xfw[2][PART_LEN1],
- float* fft,
- float* cohde,
- float* cohxd,
- int* extreme_filter_divergence) {
- int i;
-
- SmoothedPSD(aec, efw, dfw, xfw, extreme_filter_divergence);
-
- {
- const __m128 vec_1eminus10 = _mm_set1_ps(1e-10f);
-
- // Subband coherence
- for (i = 0; i + 3 < PART_LEN1; i += 4) {
- const __m128 vec_sd = _mm_loadu_ps(&aec->sd[i]);
- const __m128 vec_se = _mm_loadu_ps(&aec->se[i]);
- const __m128 vec_sx = _mm_loadu_ps(&aec->sx[i]);
- const __m128 vec_sdse =
- _mm_add_ps(vec_1eminus10, _mm_mul_ps(vec_sd, vec_se));
- const __m128 vec_sdsx =
- _mm_add_ps(vec_1eminus10, _mm_mul_ps(vec_sd, vec_sx));
- const __m128 vec_sde_3210 = _mm_loadu_ps(&aec->sde[i][0]);
- const __m128 vec_sde_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]);
- const __m128 vec_sxd_3210 = _mm_loadu_ps(&aec->sxd[i][0]);
- const __m128 vec_sxd_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]);
- const __m128 vec_sde_0 =
- _mm_shuffle_ps(vec_sde_3210, vec_sde_7654, _MM_SHUFFLE(2, 0, 2, 0));
- const __m128 vec_sde_1 =
- _mm_shuffle_ps(vec_sde_3210, vec_sde_7654, _MM_SHUFFLE(3, 1, 3, 1));
- const __m128 vec_sxd_0 =
- _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, _MM_SHUFFLE(2, 0, 2, 0));
- const __m128 vec_sxd_1 =
- _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, _MM_SHUFFLE(3, 1, 3, 1));
- __m128 vec_cohde = _mm_mul_ps(vec_sde_0, vec_sde_0);
- __m128 vec_cohxd = _mm_mul_ps(vec_sxd_0, vec_sxd_0);
- vec_cohde = _mm_add_ps(vec_cohde, _mm_mul_ps(vec_sde_1, vec_sde_1));
- vec_cohde = _mm_div_ps(vec_cohde, vec_sdse);
- vec_cohxd = _mm_add_ps(vec_cohxd, _mm_mul_ps(vec_sxd_1, vec_sxd_1));
- vec_cohxd = _mm_div_ps(vec_cohxd, vec_sdsx);
- _mm_storeu_ps(&cohde[i], vec_cohde);
- _mm_storeu_ps(&cohxd[i], vec_cohxd);
- }
-
- // scalar code for the remaining items.
- for (; i < PART_LEN1; i++) {
- cohde[i] =
- (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
- (aec->sd[i] * aec->se[i] + 1e-10f);
- cohxd[i] =
- (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
- (aec->sx[i] * aec->sd[i] + 1e-10f);
- }
- }
-}
-
-void WebRtcAec_InitAec_SSE2(void) {
- WebRtcAec_FilterFar = FilterFarSSE2;
- WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
- WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
- WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2;
- WebRtcAec_SubbandCoherence = SubbandCoherenceSSE2;
- WebRtcAec_StoreAsComplex = StoreAsComplexSSE2;
- WebRtcAec_PartitionDelay = PartitionDelaySSE2;
- WebRtcAec_WindowData = WindowDataSSE2;
-}
« no previous file with comments | « webrtc/modules/audio_processing/aec/aec_core_neon.cc ('k') | webrtc/modules/audio_processing/aec/aec_core_sse2.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698