Index: webrtc/modules/audio_processing/aec/aec_core_sse2.c |
diff --git a/webrtc/modules/audio_processing/aec/aec_core_sse2.c b/webrtc/modules/audio_processing/aec/aec_core_sse2.c |
deleted file mode 100644 |
index 1e86b92e34659323f9e54de4e422c4c4095fcf8e..0000000000000000000000000000000000000000 |
--- a/webrtc/modules/audio_processing/aec/aec_core_sse2.c |
+++ /dev/null |
@@ -1,721 +0,0 @@ |
-/* |
- * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-/* |
- * The core AEC algorithm, SSE2 version of speed-critical functions. |
- */ |
- |
-#include <emmintrin.h> |
-#include <math.h> |
-#include <string.h> // memset |
- |
-#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" |
-#include "webrtc/modules/audio_processing/aec/aec_common.h" |
-#include "webrtc/modules/audio_processing/aec/aec_core_internal.h" |
-#include "webrtc/modules/audio_processing/aec/aec_rdft.h" |
- |
-__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { |
- return aRe * bRe - aIm * bIm; |
-} |
- |
-__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { |
- return aRe * bIm + aIm * bRe; |
-} |
- |
-static void FilterFarSSE2(int num_partitions, |
- int x_fft_buf_block_pos, |
- float x_fft_buf[2] |
- [kExtendedNumPartitions * PART_LEN1], |
- float h_fft_buf[2] |
- [kExtendedNumPartitions * PART_LEN1], |
- float y_fft[2][PART_LEN1]) { |
- int i; |
- for (i = 0; i < num_partitions; i++) { |
- int j; |
- int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; |
- int pos = i * PART_LEN1; |
- // Check for wrap |
- if (i + x_fft_buf_block_pos >= num_partitions) { |
- xPos -= num_partitions * (PART_LEN1); |
- } |
- |
- // vectorized code (four at once) |
- for (j = 0; j + 3 < PART_LEN1; j += 4) { |
- const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]); |
- const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]); |
- const __m128 h_fft_buf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]); |
- const __m128 h_fft_buf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]); |
- const __m128 y_fft_re = _mm_loadu_ps(&y_fft[0][j]); |
- const __m128 y_fft_im = _mm_loadu_ps(&y_fft[1][j]); |
- const __m128 a = _mm_mul_ps(x_fft_buf_re, h_fft_buf_re); |
- const __m128 b = _mm_mul_ps(x_fft_buf_im, h_fft_buf_im); |
- const __m128 c = _mm_mul_ps(x_fft_buf_re, h_fft_buf_im); |
- const __m128 d = _mm_mul_ps(x_fft_buf_im, h_fft_buf_re); |
- const __m128 e = _mm_sub_ps(a, b); |
- const __m128 f = _mm_add_ps(c, d); |
- const __m128 g = _mm_add_ps(y_fft_re, e); |
- const __m128 h = _mm_add_ps(y_fft_im, f); |
- _mm_storeu_ps(&y_fft[0][j], g); |
- _mm_storeu_ps(&y_fft[1][j], h); |
- } |
- // scalar code for the remaining items. |
- for (; j < PART_LEN1; j++) { |
- y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], |
- h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); |
- y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], |
- h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); |
- } |
- } |
-} |
- |
-static void ScaleErrorSignalSSE2(int extended_filter_enabled, |
- float normal_mu, |
- float normal_error_threshold, |
- float x_pow[PART_LEN1], |
- float ef[2][PART_LEN1]) { |
- const __m128 k1e_10f = _mm_set1_ps(1e-10f); |
- const __m128 kMu = extended_filter_enabled ? _mm_set1_ps(kExtendedMu) |
- : _mm_set1_ps(normal_mu); |
- const __m128 kThresh = extended_filter_enabled |
- ? _mm_set1_ps(kExtendedErrorThreshold) |
- : _mm_set1_ps(normal_error_threshold); |
- |
- int i; |
- // vectorized code (four at once) |
- for (i = 0; i + 3 < PART_LEN1; i += 4) { |
- const __m128 x_pow_local = _mm_loadu_ps(&x_pow[i]); |
- const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]); |
- const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]); |
- |
- const __m128 xPowPlus = _mm_add_ps(x_pow_local, k1e_10f); |
- __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus); |
- __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus); |
- const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re); |
- const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im); |
- const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2); |
- const __m128 absEf = _mm_sqrt_ps(ef_sum2); |
- const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh); |
- __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f); |
- const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus); |
- __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv); |
- __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv); |
- ef_re_if = _mm_and_ps(bigger, ef_re_if); |
- ef_im_if = _mm_and_ps(bigger, ef_im_if); |
- ef_re = _mm_andnot_ps(bigger, ef_re); |
- ef_im = _mm_andnot_ps(bigger, ef_im); |
- ef_re = _mm_or_ps(ef_re, ef_re_if); |
- ef_im = _mm_or_ps(ef_im, ef_im_if); |
- ef_re = _mm_mul_ps(ef_re, kMu); |
- ef_im = _mm_mul_ps(ef_im, kMu); |
- |
- _mm_storeu_ps(&ef[0][i], ef_re); |
- _mm_storeu_ps(&ef[1][i], ef_im); |
- } |
- // scalar code for the remaining items. |
- { |
- const float mu = extended_filter_enabled ? kExtendedMu : normal_mu; |
- const float error_threshold = extended_filter_enabled |
- ? kExtendedErrorThreshold |
- : normal_error_threshold; |
- for (; i < (PART_LEN1); i++) { |
- float abs_ef; |
- ef[0][i] /= (x_pow[i] + 1e-10f); |
- ef[1][i] /= (x_pow[i] + 1e-10f); |
- abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); |
- |
- if (abs_ef > error_threshold) { |
- abs_ef = error_threshold / (abs_ef + 1e-10f); |
- ef[0][i] *= abs_ef; |
- ef[1][i] *= abs_ef; |
- } |
- |
- // Stepsize factor |
- ef[0][i] *= mu; |
- ef[1][i] *= mu; |
- } |
- } |
-} |
- |
-static void FilterAdaptationSSE2( |
- int num_partitions, |
- int x_fft_buf_block_pos, |
- float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
- float e_fft[2][PART_LEN1], |
- float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { |
- float fft[PART_LEN2]; |
- int i, j; |
- for (i = 0; i < num_partitions; i++) { |
- int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1); |
- int pos = i * PART_LEN1; |
- // Check for wrap |
- if (i + x_fft_buf_block_pos >= num_partitions) { |
- xPos -= num_partitions * PART_LEN1; |
- } |
- |
- // Process the whole array... |
- for (j = 0; j < PART_LEN; j += 4) { |
- // Load x_fft_buf and e_fft. |
- const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]); |
- const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]); |
- const __m128 e_fft_re = _mm_loadu_ps(&e_fft[0][j]); |
- const __m128 e_fft_im = _mm_loadu_ps(&e_fft[1][j]); |
- // Calculate the product of conjugate(x_fft_buf) by e_fft. |
- // re(conjugate(a) * b) = aRe * bRe + aIm * bIm |
- // im(conjugate(a) * b)= aRe * bIm - aIm * bRe |
- const __m128 a = _mm_mul_ps(x_fft_buf_re, e_fft_re); |
- const __m128 b = _mm_mul_ps(x_fft_buf_im, e_fft_im); |
- const __m128 c = _mm_mul_ps(x_fft_buf_re, e_fft_im); |
- const __m128 d = _mm_mul_ps(x_fft_buf_im, e_fft_re); |
- const __m128 e = _mm_add_ps(a, b); |
- const __m128 f = _mm_sub_ps(c, d); |
- // Interleave real and imaginary parts. |
- const __m128 g = _mm_unpacklo_ps(e, f); |
- const __m128 h = _mm_unpackhi_ps(e, f); |
- // Store |
- _mm_storeu_ps(&fft[2 * j + 0], g); |
- _mm_storeu_ps(&fft[2 * j + 4], h); |
- } |
- // ... and fixup the first imaginary entry. |
- fft[1] = |
- MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN], |
- e_fft[0][PART_LEN], e_fft[1][PART_LEN]); |
- |
- aec_rdft_inverse_128(fft); |
- memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); |
- |
- // fft scaling |
- { |
- float scale = 2.0f / PART_LEN2; |
- const __m128 scale_ps = _mm_load_ps1(&scale); |
- for (j = 0; j < PART_LEN; j += 4) { |
- const __m128 fft_ps = _mm_loadu_ps(&fft[j]); |
- const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps); |
- _mm_storeu_ps(&fft[j], fft_scale); |
- } |
- } |
- aec_rdft_forward_128(fft); |
- |
- { |
- float wt1 = h_fft_buf[1][pos]; |
- h_fft_buf[0][pos + PART_LEN] += fft[1]; |
- for (j = 0; j < PART_LEN; j += 4) { |
- __m128 wtBuf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]); |
- __m128 wtBuf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]); |
- const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]); |
- const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]); |
- const __m128 fft_re = |
- _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0)); |
- const __m128 fft_im = |
- _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1)); |
- wtBuf_re = _mm_add_ps(wtBuf_re, fft_re); |
- wtBuf_im = _mm_add_ps(wtBuf_im, fft_im); |
- _mm_storeu_ps(&h_fft_buf[0][pos + j], wtBuf_re); |
- _mm_storeu_ps(&h_fft_buf[1][pos + j], wtBuf_im); |
- } |
- h_fft_buf[1][pos] = wt1; |
- } |
- } |
-} |
- |
-static __m128 mm_pow_ps(__m128 a, __m128 b) { |
- // a^b = exp2(b * log2(a)) |
- // exp2(x) and log2(x) are calculated using polynomial approximations. |
- __m128 log2_a, b_log2_a, a_exp_b; |
- |
- // Calculate log2(x), x = a. |
- { |
- // To calculate log2(x), we decompose x like this: |
- // x = y * 2^n |
- // n is an integer |
- // y is in the [1.0, 2.0) range |
- // |
- // log2(x) = log2(y) + n |
- // n can be evaluated by playing with float representation. |
- // log2(y) in a small range can be approximated, this code uses an order |
- // five polynomial approximation. The coefficients have been |
- // estimated with the Remez algorithm and the resulting |
- // polynomial has a maximum relative error of 0.00086%. |
- |
- // Compute n. |
- // This is done by masking the exponent, shifting it into the top bit of |
- // the mantissa, putting eight into the biased exponent (to shift/ |
- // compensate the fact that the exponent has been shifted in the top/ |
- // fractional part and finally getting rid of the implicit leading one |
- // from the mantissa by substracting it out. |
- static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = { |
- 0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000}; |
- static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = { |
- 0x43800000, 0x43800000, 0x43800000, 0x43800000}; |
- static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = { |
- 0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000}; |
- static const int shift_exponent_into_top_mantissa = 8; |
- const __m128 two_n = _mm_and_ps(a, *((__m128*)float_exponent_mask)); |
- const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32( |
- _mm_castps_si128(two_n), shift_exponent_into_top_mantissa)); |
- const __m128 n_0 = _mm_or_ps(n_1, *((__m128*)eight_biased_exponent)); |
- const __m128 n = _mm_sub_ps(n_0, *((__m128*)implicit_leading_one)); |
- |
- // Compute y. |
- static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = { |
- 0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF}; |
- static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = { |
- 0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000}; |
- const __m128 mantissa = _mm_and_ps(a, *((__m128*)mantissa_mask)); |
- const __m128 y = |
- _mm_or_ps(mantissa, *((__m128*)zero_biased_exponent_is_one)); |
- |
- // Approximate log2(y) ~= (y - 1) * pol5(y). |
- // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0 |
- static const ALIGN16_BEG float ALIGN16_END C5[4] = { |
- -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f}; |
- static const ALIGN16_BEG float ALIGN16_END C4[4] = { |
- 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f}; |
- static const ALIGN16_BEG float ALIGN16_END C3[4] = { |
- -1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f}; |
- static const ALIGN16_BEG float ALIGN16_END C2[4] = {2.5988452f, 2.5988452f, |
- 2.5988452f, 2.5988452f}; |
- static const ALIGN16_BEG float ALIGN16_END C1[4] = { |
- -3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f}; |
- static const ALIGN16_BEG float ALIGN16_END C0[4] = {3.1157899f, 3.1157899f, |
- 3.1157899f, 3.1157899f}; |
- const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128*)C5)); |
- const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128*)C4)); |
- const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y); |
- const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128*)C3)); |
- const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y); |
- const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128*)C2)); |
- const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y); |
- const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128*)C1)); |
- const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y); |
- const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128*)C0)); |
- const __m128 y_minus_one = |
- _mm_sub_ps(y, *((__m128*)zero_biased_exponent_is_one)); |
- const __m128 log2_y = _mm_mul_ps(y_minus_one, pol5_y); |
- |
- // Combine parts. |
- log2_a = _mm_add_ps(n, log2_y); |
- } |
- |
- // b * log2(a) |
- b_log2_a = _mm_mul_ps(b, log2_a); |
- |
- // Calculate exp2(x), x = b * log2(a). |
- { |
- // To calculate 2^x, we decompose x like this: |
- // x = n + y |
- // n is an integer, the value of x - 0.5 rounded down, therefore |
- // y is in the [0.5, 1.5) range |
- // |
- // 2^x = 2^n * 2^y |
- // 2^n can be evaluated by playing with float representation. |
- // 2^y in a small range can be approximated, this code uses an order two |
- // polynomial approximation. The coefficients have been estimated |
- // with the Remez algorithm and the resulting polynomial has a |
- // maximum relative error of 0.17%. |
- |
- // To avoid over/underflow, we reduce the range of input to ]-127, 129]. |
- static const ALIGN16_BEG float max_input[4] ALIGN16_END = {129.f, 129.f, |
- 129.f, 129.f}; |
- static const ALIGN16_BEG float min_input[4] ALIGN16_END = { |
- -126.99999f, -126.99999f, -126.99999f, -126.99999f}; |
- const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128*)max_input)); |
- const __m128 x_max = _mm_max_ps(x_min, *((__m128*)min_input)); |
- // Compute n. |
- static const ALIGN16_BEG float half[4] ALIGN16_END = {0.5f, 0.5f, 0.5f, |
- 0.5f}; |
- const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128*)half)); |
- const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half); |
- // Compute 2^n. |
- static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = { |
- 127, 127, 127, 127}; |
- static const int float_exponent_shift = 23; |
- const __m128i two_n_exponent = |
- _mm_add_epi32(x_minus_half_floor, *((__m128i*)float_exponent_bias)); |
- const __m128 two_n = |
- _mm_castsi128_ps(_mm_slli_epi32(two_n_exponent, float_exponent_shift)); |
- // Compute y. |
- const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor)); |
- // Approximate 2^y ~= C2 * y^2 + C1 * y + C0. |
- static const ALIGN16_BEG float C2[4] ALIGN16_END = { |
- 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f}; |
- static const ALIGN16_BEG float C1[4] ALIGN16_END = { |
- 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f}; |
- static const ALIGN16_BEG float C0[4] ALIGN16_END = {1.0017247f, 1.0017247f, |
- 1.0017247f, 1.0017247f}; |
- const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128*)C2)); |
- const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128*)C1)); |
- const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y); |
- const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128*)C0)); |
- |
- // Combine parts. |
- a_exp_b = _mm_mul_ps(exp2_y, two_n); |
- } |
- return a_exp_b; |
-} |
- |
-static void OverdriveAndSuppressSSE2(AecCore* aec, |
- float hNl[PART_LEN1], |
- const float hNlFb, |
- float efw[2][PART_LEN1]) { |
- int i; |
- const __m128 vec_hNlFb = _mm_set1_ps(hNlFb); |
- const __m128 vec_one = _mm_set1_ps(1.0f); |
- const __m128 vec_minus_one = _mm_set1_ps(-1.0f); |
- const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm); |
- // vectorized code (four at once) |
- for (i = 0; i + 3 < PART_LEN1; i += 4) { |
- // Weight subbands |
- __m128 vec_hNl = _mm_loadu_ps(&hNl[i]); |
- const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]); |
- const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb); |
- const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(vec_weightCurve, vec_hNlFb); |
- const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve); |
- const __m128 vec_one_weightCurve_hNl = |
- _mm_mul_ps(vec_one_weightCurve, vec_hNl); |
- const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl); |
- const __m128 vec_if1 = _mm_and_ps( |
- bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl)); |
- vec_hNl = _mm_or_ps(vec_if0, vec_if1); |
- |
- { |
- const __m128 vec_overDriveCurve = |
- _mm_loadu_ps(&WebRtcAec_overDriveCurve[i]); |
- const __m128 vec_overDriveSm_overDriveCurve = |
- _mm_mul_ps(vec_overDriveSm, vec_overDriveCurve); |
- vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve); |
- _mm_storeu_ps(&hNl[i], vec_hNl); |
- } |
- |
- // Suppress error signal |
- { |
- __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]); |
- __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]); |
- vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl); |
- vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl); |
- |
- // Ooura fft returns incorrect sign on imaginary component. It matters |
- // here because we are making an additive change with comfort noise. |
- vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one); |
- _mm_storeu_ps(&efw[0][i], vec_efw_re); |
- _mm_storeu_ps(&efw[1][i], vec_efw_im); |
- } |
- } |
- // scalar code for the remaining items. |
- for (; i < PART_LEN1; i++) { |
- // Weight subbands |
- if (hNl[i] > hNlFb) { |
- hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + |
- (1 - WebRtcAec_weightCurve[i]) * hNl[i]; |
- } |
- hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]); |
- |
- // Suppress error signal |
- efw[0][i] *= hNl[i]; |
- efw[1][i] *= hNl[i]; |
- |
- // Ooura fft returns incorrect sign on imaginary component. It matters |
- // here because we are making an additive change with comfort noise. |
- efw[1][i] *= -1; |
- } |
-} |
- |
-__inline static void _mm_add_ps_4x1(__m128 sum, float* dst) { |
- // A+B C+D |
- sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(0, 0, 3, 2))); |
- // A+B+C+D A+B+C+D |
- sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 1, 1, 1))); |
- _mm_store_ss(dst, sum); |
-} |
- |
-static int PartitionDelaySSE2(const AecCore* aec) { |
- // Measures the energy in each filter partition and returns the partition with |
- // highest energy. |
- // TODO(bjornv): Spread computational cost by computing one partition per |
- // block? |
- float wfEnMax = 0; |
- int i; |
- int delay = 0; |
- |
- for (i = 0; i < aec->num_partitions; i++) { |
- int j; |
- int pos = i * PART_LEN1; |
- float wfEn = 0; |
- __m128 vec_wfEn = _mm_set1_ps(0.0f); |
- // vectorized code (four at once) |
- for (j = 0; j + 3 < PART_LEN1; j += 4) { |
- const __m128 vec_wfBuf0 = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); |
- const __m128 vec_wfBuf1 = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); |
- vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf0, vec_wfBuf0)); |
- vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf1, vec_wfBuf1)); |
- } |
- _mm_add_ps_4x1(vec_wfEn, &wfEn); |
- |
- // scalar code for the remaining items. |
- for (; j < PART_LEN1; j++) { |
- wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] + |
- aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j]; |
- } |
- |
- if (wfEn > wfEnMax) { |
- wfEnMax = wfEn; |
- delay = i; |
- } |
- } |
- return delay; |
-} |
- |
-// Updates the following smoothed Power Spectral Densities (PSD): |
-// - sd : near-end |
-// - se : residual echo |
-// - sx : far-end |
-// - sde : cross-PSD of near-end and residual echo |
-// - sxd : cross-PSD of near-end and far-end |
-// |
-// In addition to updating the PSDs, also the filter diverge state is determined |
-// upon actions are taken. |
-static void SmoothedPSD(AecCore* aec, |
- float efw[2][PART_LEN1], |
- float dfw[2][PART_LEN1], |
- float xfw[2][PART_LEN1], |
- int* extreme_filter_divergence) { |
- // Power estimate smoothing coefficients. |
- const float* ptrGCoh = |
- aec->extended_filter_enabled |
- ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1] |
- : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1]; |
- int i; |
- float sdSum = 0, seSum = 0; |
- const __m128 vec_15 = _mm_set1_ps(WebRtcAec_kMinFarendPSD); |
- const __m128 vec_GCoh0 = _mm_set1_ps(ptrGCoh[0]); |
- const __m128 vec_GCoh1 = _mm_set1_ps(ptrGCoh[1]); |
- __m128 vec_sdSum = _mm_set1_ps(0.0f); |
- __m128 vec_seSum = _mm_set1_ps(0.0f); |
- |
- for (i = 0; i + 3 < PART_LEN1; i += 4) { |
- const __m128 vec_dfw0 = _mm_loadu_ps(&dfw[0][i]); |
- const __m128 vec_dfw1 = _mm_loadu_ps(&dfw[1][i]); |
- const __m128 vec_efw0 = _mm_loadu_ps(&efw[0][i]); |
- const __m128 vec_efw1 = _mm_loadu_ps(&efw[1][i]); |
- const __m128 vec_xfw0 = _mm_loadu_ps(&xfw[0][i]); |
- const __m128 vec_xfw1 = _mm_loadu_ps(&xfw[1][i]); |
- __m128 vec_sd = _mm_mul_ps(_mm_loadu_ps(&aec->sd[i]), vec_GCoh0); |
- __m128 vec_se = _mm_mul_ps(_mm_loadu_ps(&aec->se[i]), vec_GCoh0); |
- __m128 vec_sx = _mm_mul_ps(_mm_loadu_ps(&aec->sx[i]), vec_GCoh0); |
- __m128 vec_dfw_sumsq = _mm_mul_ps(vec_dfw0, vec_dfw0); |
- __m128 vec_efw_sumsq = _mm_mul_ps(vec_efw0, vec_efw0); |
- __m128 vec_xfw_sumsq = _mm_mul_ps(vec_xfw0, vec_xfw0); |
- vec_dfw_sumsq = _mm_add_ps(vec_dfw_sumsq, _mm_mul_ps(vec_dfw1, vec_dfw1)); |
- vec_efw_sumsq = _mm_add_ps(vec_efw_sumsq, _mm_mul_ps(vec_efw1, vec_efw1)); |
- vec_xfw_sumsq = _mm_add_ps(vec_xfw_sumsq, _mm_mul_ps(vec_xfw1, vec_xfw1)); |
- vec_xfw_sumsq = _mm_max_ps(vec_xfw_sumsq, vec_15); |
- vec_sd = _mm_add_ps(vec_sd, _mm_mul_ps(vec_dfw_sumsq, vec_GCoh1)); |
- vec_se = _mm_add_ps(vec_se, _mm_mul_ps(vec_efw_sumsq, vec_GCoh1)); |
- vec_sx = _mm_add_ps(vec_sx, _mm_mul_ps(vec_xfw_sumsq, vec_GCoh1)); |
- _mm_storeu_ps(&aec->sd[i], vec_sd); |
- _mm_storeu_ps(&aec->se[i], vec_se); |
- _mm_storeu_ps(&aec->sx[i], vec_sx); |
- |
- { |
- const __m128 vec_3210 = _mm_loadu_ps(&aec->sde[i][0]); |
- const __m128 vec_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]); |
- __m128 vec_a = |
- _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(2, 0, 2, 0)); |
- __m128 vec_b = |
- _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(3, 1, 3, 1)); |
- __m128 vec_dfwefw0011 = _mm_mul_ps(vec_dfw0, vec_efw0); |
- __m128 vec_dfwefw0110 = _mm_mul_ps(vec_dfw0, vec_efw1); |
- vec_a = _mm_mul_ps(vec_a, vec_GCoh0); |
- vec_b = _mm_mul_ps(vec_b, vec_GCoh0); |
- vec_dfwefw0011 = |
- _mm_add_ps(vec_dfwefw0011, _mm_mul_ps(vec_dfw1, vec_efw1)); |
- vec_dfwefw0110 = |
- _mm_sub_ps(vec_dfwefw0110, _mm_mul_ps(vec_dfw1, vec_efw0)); |
- vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwefw0011, vec_GCoh1)); |
- vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwefw0110, vec_GCoh1)); |
- _mm_storeu_ps(&aec->sde[i][0], _mm_unpacklo_ps(vec_a, vec_b)); |
- _mm_storeu_ps(&aec->sde[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b)); |
- } |
- |
- { |
- const __m128 vec_3210 = _mm_loadu_ps(&aec->sxd[i][0]); |
- const __m128 vec_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]); |
- __m128 vec_a = |
- _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(2, 0, 2, 0)); |
- __m128 vec_b = |
- _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(3, 1, 3, 1)); |
- __m128 vec_dfwxfw0011 = _mm_mul_ps(vec_dfw0, vec_xfw0); |
- __m128 vec_dfwxfw0110 = _mm_mul_ps(vec_dfw0, vec_xfw1); |
- vec_a = _mm_mul_ps(vec_a, vec_GCoh0); |
- vec_b = _mm_mul_ps(vec_b, vec_GCoh0); |
- vec_dfwxfw0011 = |
- _mm_add_ps(vec_dfwxfw0011, _mm_mul_ps(vec_dfw1, vec_xfw1)); |
- vec_dfwxfw0110 = |
- _mm_sub_ps(vec_dfwxfw0110, _mm_mul_ps(vec_dfw1, vec_xfw0)); |
- vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwxfw0011, vec_GCoh1)); |
- vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwxfw0110, vec_GCoh1)); |
- _mm_storeu_ps(&aec->sxd[i][0], _mm_unpacklo_ps(vec_a, vec_b)); |
- _mm_storeu_ps(&aec->sxd[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b)); |
- } |
- |
- vec_sdSum = _mm_add_ps(vec_sdSum, vec_sd); |
- vec_seSum = _mm_add_ps(vec_seSum, vec_se); |
- } |
- |
- _mm_add_ps_4x1(vec_sdSum, &sdSum); |
- _mm_add_ps_4x1(vec_seSum, &seSum); |
- |
- for (; i < PART_LEN1; i++) { |
- aec->sd[i] = ptrGCoh[0] * aec->sd[i] + |
- ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]); |
- aec->se[i] = ptrGCoh[0] * aec->se[i] + |
- ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]); |
- // We threshold here to protect against the ill-effects of a zero farend. |
- // The threshold is not arbitrarily chosen, but balances protection and |
- // adverse interaction with the algorithm's tuning. |
- // TODO(bjornv): investigate further why this is so sensitive. |
- aec->sx[i] = ptrGCoh[0] * aec->sx[i] + |
- ptrGCoh[1] * WEBRTC_SPL_MAX( |
- xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], |
- WebRtcAec_kMinFarendPSD); |
- |
- aec->sde[i][0] = |
- ptrGCoh[0] * aec->sde[i][0] + |
- ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]); |
- aec->sde[i][1] = |
- ptrGCoh[0] * aec->sde[i][1] + |
- ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]); |
- |
- aec->sxd[i][0] = |
- ptrGCoh[0] * aec->sxd[i][0] + |
- ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]); |
- aec->sxd[i][1] = |
- ptrGCoh[0] * aec->sxd[i][1] + |
- ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]); |
- |
- sdSum += aec->sd[i]; |
- seSum += aec->se[i]; |
- } |
- |
- // Divergent filter safeguard update. |
- aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum; |
- |
- // Signal extreme filter divergence if the error is significantly larger |
- // than the nearend (13 dB). |
- *extreme_filter_divergence = (seSum > (19.95f * sdSum)); |
-} |
- |
-// Window time domain data to be used by the fft. |
-static void WindowDataSSE2(float* x_windowed, const float* x) { |
- int i; |
- for (i = 0; i < PART_LEN; i += 4) { |
- const __m128 vec_Buf1 = _mm_loadu_ps(&x[i]); |
- const __m128 vec_Buf2 = _mm_loadu_ps(&x[PART_LEN + i]); |
- const __m128 vec_sqrtHanning = _mm_load_ps(&WebRtcAec_sqrtHanning[i]); |
- // A B C D |
- __m128 vec_sqrtHanning_rev = |
- _mm_loadu_ps(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]); |
- // D C B A |
- vec_sqrtHanning_rev = _mm_shuffle_ps( |
- vec_sqrtHanning_rev, vec_sqrtHanning_rev, _MM_SHUFFLE(0, 1, 2, 3)); |
- _mm_storeu_ps(&x_windowed[i], _mm_mul_ps(vec_Buf1, vec_sqrtHanning)); |
- _mm_storeu_ps(&x_windowed[PART_LEN + i], |
- _mm_mul_ps(vec_Buf2, vec_sqrtHanning_rev)); |
- } |
-} |
- |
-// Puts fft output data into a complex valued array. |
-static void StoreAsComplexSSE2(const float* data, |
- float data_complex[2][PART_LEN1]) { |
- int i; |
- for (i = 0; i < PART_LEN; i += 4) { |
- const __m128 vec_fft0 = _mm_loadu_ps(&data[2 * i]); |
- const __m128 vec_fft4 = _mm_loadu_ps(&data[2 * i + 4]); |
- const __m128 vec_a = |
- _mm_shuffle_ps(vec_fft0, vec_fft4, _MM_SHUFFLE(2, 0, 2, 0)); |
- const __m128 vec_b = |
- _mm_shuffle_ps(vec_fft0, vec_fft4, _MM_SHUFFLE(3, 1, 3, 1)); |
- _mm_storeu_ps(&data_complex[0][i], vec_a); |
- _mm_storeu_ps(&data_complex[1][i], vec_b); |
- } |
- // fix beginning/end values |
- data_complex[1][0] = 0; |
- data_complex[1][PART_LEN] = 0; |
- data_complex[0][0] = data[0]; |
- data_complex[0][PART_LEN] = data[1]; |
-} |
- |
-static void SubbandCoherenceSSE2(AecCore* aec, |
- float efw[2][PART_LEN1], |
- float dfw[2][PART_LEN1], |
- float xfw[2][PART_LEN1], |
- float* fft, |
- float* cohde, |
- float* cohxd, |
- int* extreme_filter_divergence) { |
- int i; |
- |
- SmoothedPSD(aec, efw, dfw, xfw, extreme_filter_divergence); |
- |
- { |
- const __m128 vec_1eminus10 = _mm_set1_ps(1e-10f); |
- |
- // Subband coherence |
- for (i = 0; i + 3 < PART_LEN1; i += 4) { |
- const __m128 vec_sd = _mm_loadu_ps(&aec->sd[i]); |
- const __m128 vec_se = _mm_loadu_ps(&aec->se[i]); |
- const __m128 vec_sx = _mm_loadu_ps(&aec->sx[i]); |
- const __m128 vec_sdse = |
- _mm_add_ps(vec_1eminus10, _mm_mul_ps(vec_sd, vec_se)); |
- const __m128 vec_sdsx = |
- _mm_add_ps(vec_1eminus10, _mm_mul_ps(vec_sd, vec_sx)); |
- const __m128 vec_sde_3210 = _mm_loadu_ps(&aec->sde[i][0]); |
- const __m128 vec_sde_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]); |
- const __m128 vec_sxd_3210 = _mm_loadu_ps(&aec->sxd[i][0]); |
- const __m128 vec_sxd_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]); |
- const __m128 vec_sde_0 = |
- _mm_shuffle_ps(vec_sde_3210, vec_sde_7654, _MM_SHUFFLE(2, 0, 2, 0)); |
- const __m128 vec_sde_1 = |
- _mm_shuffle_ps(vec_sde_3210, vec_sde_7654, _MM_SHUFFLE(3, 1, 3, 1)); |
- const __m128 vec_sxd_0 = |
- _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, _MM_SHUFFLE(2, 0, 2, 0)); |
- const __m128 vec_sxd_1 = |
- _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, _MM_SHUFFLE(3, 1, 3, 1)); |
- __m128 vec_cohde = _mm_mul_ps(vec_sde_0, vec_sde_0); |
- __m128 vec_cohxd = _mm_mul_ps(vec_sxd_0, vec_sxd_0); |
- vec_cohde = _mm_add_ps(vec_cohde, _mm_mul_ps(vec_sde_1, vec_sde_1)); |
- vec_cohde = _mm_div_ps(vec_cohde, vec_sdse); |
- vec_cohxd = _mm_add_ps(vec_cohxd, _mm_mul_ps(vec_sxd_1, vec_sxd_1)); |
- vec_cohxd = _mm_div_ps(vec_cohxd, vec_sdsx); |
- _mm_storeu_ps(&cohde[i], vec_cohde); |
- _mm_storeu_ps(&cohxd[i], vec_cohxd); |
- } |
- |
- // scalar code for the remaining items. |
- for (; i < PART_LEN1; i++) { |
- cohde[i] = |
- (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) / |
- (aec->sd[i] * aec->se[i] + 1e-10f); |
- cohxd[i] = |
- (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) / |
- (aec->sx[i] * aec->sd[i] + 1e-10f); |
- } |
- } |
-} |
- |
-void WebRtcAec_InitAec_SSE2(void) { |
- WebRtcAec_FilterFar = FilterFarSSE2; |
- WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2; |
- WebRtcAec_FilterAdaptation = FilterAdaptationSSE2; |
- WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2; |
- WebRtcAec_SubbandCoherence = SubbandCoherenceSSE2; |
- WebRtcAec_StoreAsComplex = StoreAsComplexSSE2; |
- WebRtcAec_PartitionDelay = PartitionDelaySSE2; |
- WebRtcAec_WindowData = WindowDataSSE2; |
-} |