| Index: webrtc/modules/audio_processing/aec/aec_core_sse2.c
|
| diff --git a/webrtc/modules/audio_processing/aec/aec_core_sse2.c b/webrtc/modules/audio_processing/aec/aec_core_sse2.c
|
| deleted file mode 100644
|
| index 1e86b92e34659323f9e54de4e422c4c4095fcf8e..0000000000000000000000000000000000000000
|
| --- a/webrtc/modules/audio_processing/aec/aec_core_sse2.c
|
| +++ /dev/null
|
| @@ -1,721 +0,0 @@
|
| -/*
|
| - * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -/*
|
| - * The core AEC algorithm, SSE2 version of speed-critical functions.
|
| - */
|
| -
|
| -#include <emmintrin.h>
|
| -#include <math.h>
|
| -#include <string.h> // memset
|
| -
|
| -#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
| -#include "webrtc/modules/audio_processing/aec/aec_common.h"
|
| -#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
|
| -#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
|
| -
|
| -__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
|
| - return aRe * bRe - aIm * bIm;
|
| -}
|
| -
|
| -__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
|
| - return aRe * bIm + aIm * bRe;
|
| -}
|
| -
|
| -static void FilterFarSSE2(int num_partitions,
|
| - int x_fft_buf_block_pos,
|
| - float x_fft_buf[2]
|
| - [kExtendedNumPartitions * PART_LEN1],
|
| - float h_fft_buf[2]
|
| - [kExtendedNumPartitions * PART_LEN1],
|
| - float y_fft[2][PART_LEN1]) {
|
| - int i;
|
| - for (i = 0; i < num_partitions; i++) {
|
| - int j;
|
| - int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
|
| - int pos = i * PART_LEN1;
|
| - // Check for wrap
|
| - if (i + x_fft_buf_block_pos >= num_partitions) {
|
| - xPos -= num_partitions * (PART_LEN1);
|
| - }
|
| -
|
| - // vectorized code (four at once)
|
| - for (j = 0; j + 3 < PART_LEN1; j += 4) {
|
| - const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]);
|
| - const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]);
|
| - const __m128 h_fft_buf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
|
| - const __m128 h_fft_buf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
|
| - const __m128 y_fft_re = _mm_loadu_ps(&y_fft[0][j]);
|
| - const __m128 y_fft_im = _mm_loadu_ps(&y_fft[1][j]);
|
| - const __m128 a = _mm_mul_ps(x_fft_buf_re, h_fft_buf_re);
|
| - const __m128 b = _mm_mul_ps(x_fft_buf_im, h_fft_buf_im);
|
| - const __m128 c = _mm_mul_ps(x_fft_buf_re, h_fft_buf_im);
|
| - const __m128 d = _mm_mul_ps(x_fft_buf_im, h_fft_buf_re);
|
| - const __m128 e = _mm_sub_ps(a, b);
|
| - const __m128 f = _mm_add_ps(c, d);
|
| - const __m128 g = _mm_add_ps(y_fft_re, e);
|
| - const __m128 h = _mm_add_ps(y_fft_im, f);
|
| - _mm_storeu_ps(&y_fft[0][j], g);
|
| - _mm_storeu_ps(&y_fft[1][j], h);
|
| - }
|
| - // scalar code for the remaining items.
|
| - for (; j < PART_LEN1; j++) {
|
| - y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
|
| - h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
|
| - y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
|
| - h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
|
| - }
|
| - }
|
| -}
|
| -
|
| -static void ScaleErrorSignalSSE2(int extended_filter_enabled,
|
| - float normal_mu,
|
| - float normal_error_threshold,
|
| - float x_pow[PART_LEN1],
|
| - float ef[2][PART_LEN1]) {
|
| - const __m128 k1e_10f = _mm_set1_ps(1e-10f);
|
| - const __m128 kMu = extended_filter_enabled ? _mm_set1_ps(kExtendedMu)
|
| - : _mm_set1_ps(normal_mu);
|
| - const __m128 kThresh = extended_filter_enabled
|
| - ? _mm_set1_ps(kExtendedErrorThreshold)
|
| - : _mm_set1_ps(normal_error_threshold);
|
| -
|
| - int i;
|
| - // vectorized code (four at once)
|
| - for (i = 0; i + 3 < PART_LEN1; i += 4) {
|
| - const __m128 x_pow_local = _mm_loadu_ps(&x_pow[i]);
|
| - const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]);
|
| - const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]);
|
| -
|
| - const __m128 xPowPlus = _mm_add_ps(x_pow_local, k1e_10f);
|
| - __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus);
|
| - __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus);
|
| - const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re);
|
| - const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im);
|
| - const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2);
|
| - const __m128 absEf = _mm_sqrt_ps(ef_sum2);
|
| - const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh);
|
| - __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f);
|
| - const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus);
|
| - __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv);
|
| - __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv);
|
| - ef_re_if = _mm_and_ps(bigger, ef_re_if);
|
| - ef_im_if = _mm_and_ps(bigger, ef_im_if);
|
| - ef_re = _mm_andnot_ps(bigger, ef_re);
|
| - ef_im = _mm_andnot_ps(bigger, ef_im);
|
| - ef_re = _mm_or_ps(ef_re, ef_re_if);
|
| - ef_im = _mm_or_ps(ef_im, ef_im_if);
|
| - ef_re = _mm_mul_ps(ef_re, kMu);
|
| - ef_im = _mm_mul_ps(ef_im, kMu);
|
| -
|
| - _mm_storeu_ps(&ef[0][i], ef_re);
|
| - _mm_storeu_ps(&ef[1][i], ef_im);
|
| - }
|
| - // scalar code for the remaining items.
|
| - {
|
| - const float mu = extended_filter_enabled ? kExtendedMu : normal_mu;
|
| - const float error_threshold = extended_filter_enabled
|
| - ? kExtendedErrorThreshold
|
| - : normal_error_threshold;
|
| - for (; i < (PART_LEN1); i++) {
|
| - float abs_ef;
|
| - ef[0][i] /= (x_pow[i] + 1e-10f);
|
| - ef[1][i] /= (x_pow[i] + 1e-10f);
|
| - abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
|
| -
|
| - if (abs_ef > error_threshold) {
|
| - abs_ef = error_threshold / (abs_ef + 1e-10f);
|
| - ef[0][i] *= abs_ef;
|
| - ef[1][i] *= abs_ef;
|
| - }
|
| -
|
| - // Stepsize factor
|
| - ef[0][i] *= mu;
|
| - ef[1][i] *= mu;
|
| - }
|
| - }
|
| -}
|
| -
|
| -static void FilterAdaptationSSE2(
|
| - int num_partitions,
|
| - int x_fft_buf_block_pos,
|
| - float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
|
| - float e_fft[2][PART_LEN1],
|
| - float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
|
| - float fft[PART_LEN2];
|
| - int i, j;
|
| - for (i = 0; i < num_partitions; i++) {
|
| - int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1);
|
| - int pos = i * PART_LEN1;
|
| - // Check for wrap
|
| - if (i + x_fft_buf_block_pos >= num_partitions) {
|
| - xPos -= num_partitions * PART_LEN1;
|
| - }
|
| -
|
| - // Process the whole array...
|
| - for (j = 0; j < PART_LEN; j += 4) {
|
| - // Load x_fft_buf and e_fft.
|
| - const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]);
|
| - const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]);
|
| - const __m128 e_fft_re = _mm_loadu_ps(&e_fft[0][j]);
|
| - const __m128 e_fft_im = _mm_loadu_ps(&e_fft[1][j]);
|
| - // Calculate the product of conjugate(x_fft_buf) by e_fft.
|
| - // re(conjugate(a) * b) = aRe * bRe + aIm * bIm
|
| - // im(conjugate(a) * b)= aRe * bIm - aIm * bRe
|
| - const __m128 a = _mm_mul_ps(x_fft_buf_re, e_fft_re);
|
| - const __m128 b = _mm_mul_ps(x_fft_buf_im, e_fft_im);
|
| - const __m128 c = _mm_mul_ps(x_fft_buf_re, e_fft_im);
|
| - const __m128 d = _mm_mul_ps(x_fft_buf_im, e_fft_re);
|
| - const __m128 e = _mm_add_ps(a, b);
|
| - const __m128 f = _mm_sub_ps(c, d);
|
| - // Interleave real and imaginary parts.
|
| - const __m128 g = _mm_unpacklo_ps(e, f);
|
| - const __m128 h = _mm_unpackhi_ps(e, f);
|
| - // Store
|
| - _mm_storeu_ps(&fft[2 * j + 0], g);
|
| - _mm_storeu_ps(&fft[2 * j + 4], h);
|
| - }
|
| - // ... and fixup the first imaginary entry.
|
| - fft[1] =
|
| - MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN],
|
| - e_fft[0][PART_LEN], e_fft[1][PART_LEN]);
|
| -
|
| - aec_rdft_inverse_128(fft);
|
| - memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
|
| -
|
| - // fft scaling
|
| - {
|
| - float scale = 2.0f / PART_LEN2;
|
| - const __m128 scale_ps = _mm_load_ps1(&scale);
|
| - for (j = 0; j < PART_LEN; j += 4) {
|
| - const __m128 fft_ps = _mm_loadu_ps(&fft[j]);
|
| - const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps);
|
| - _mm_storeu_ps(&fft[j], fft_scale);
|
| - }
|
| - }
|
| - aec_rdft_forward_128(fft);
|
| -
|
| - {
|
| - float wt1 = h_fft_buf[1][pos];
|
| - h_fft_buf[0][pos + PART_LEN] += fft[1];
|
| - for (j = 0; j < PART_LEN; j += 4) {
|
| - __m128 wtBuf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
|
| - __m128 wtBuf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
|
| - const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]);
|
| - const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]);
|
| - const __m128 fft_re =
|
| - _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0));
|
| - const __m128 fft_im =
|
| - _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1));
|
| - wtBuf_re = _mm_add_ps(wtBuf_re, fft_re);
|
| - wtBuf_im = _mm_add_ps(wtBuf_im, fft_im);
|
| - _mm_storeu_ps(&h_fft_buf[0][pos + j], wtBuf_re);
|
| - _mm_storeu_ps(&h_fft_buf[1][pos + j], wtBuf_im);
|
| - }
|
| - h_fft_buf[1][pos] = wt1;
|
| - }
|
| - }
|
| -}
|
| -
|
| -static __m128 mm_pow_ps(__m128 a, __m128 b) {
|
| - // a^b = exp2(b * log2(a))
|
| - // exp2(x) and log2(x) are calculated using polynomial approximations.
|
| - __m128 log2_a, b_log2_a, a_exp_b;
|
| -
|
| - // Calculate log2(x), x = a.
|
| - {
|
| - // To calculate log2(x), we decompose x like this:
|
| - // x = y * 2^n
|
| - // n is an integer
|
| - // y is in the [1.0, 2.0) range
|
| - //
|
| - // log2(x) = log2(y) + n
|
| - // n can be evaluated by playing with float representation.
|
| - // log2(y) in a small range can be approximated, this code uses an order
|
| - // five polynomial approximation. The coefficients have been
|
| - // estimated with the Remez algorithm and the resulting
|
| - // polynomial has a maximum relative error of 0.00086%.
|
| -
|
| - // Compute n.
|
| - // This is done by masking the exponent, shifting it into the top bit of
|
| - // the mantissa, putting eight into the biased exponent (to shift/
|
| - // compensate the fact that the exponent has been shifted in the top/
|
| - // fractional part and finally getting rid of the implicit leading one
|
| - // from the mantissa by substracting it out.
|
| - static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = {
|
| - 0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000};
|
| - static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = {
|
| - 0x43800000, 0x43800000, 0x43800000, 0x43800000};
|
| - static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = {
|
| - 0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000};
|
| - static const int shift_exponent_into_top_mantissa = 8;
|
| - const __m128 two_n = _mm_and_ps(a, *((__m128*)float_exponent_mask));
|
| - const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(
|
| - _mm_castps_si128(two_n), shift_exponent_into_top_mantissa));
|
| - const __m128 n_0 = _mm_or_ps(n_1, *((__m128*)eight_biased_exponent));
|
| - const __m128 n = _mm_sub_ps(n_0, *((__m128*)implicit_leading_one));
|
| -
|
| - // Compute y.
|
| - static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = {
|
| - 0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF};
|
| - static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = {
|
| - 0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000};
|
| - const __m128 mantissa = _mm_and_ps(a, *((__m128*)mantissa_mask));
|
| - const __m128 y =
|
| - _mm_or_ps(mantissa, *((__m128*)zero_biased_exponent_is_one));
|
| -
|
| - // Approximate log2(y) ~= (y - 1) * pol5(y).
|
| - // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
|
| - static const ALIGN16_BEG float ALIGN16_END C5[4] = {
|
| - -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f};
|
| - static const ALIGN16_BEG float ALIGN16_END C4[4] = {
|
| - 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f};
|
| - static const ALIGN16_BEG float ALIGN16_END C3[4] = {
|
| - -1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f};
|
| - static const ALIGN16_BEG float ALIGN16_END C2[4] = {2.5988452f, 2.5988452f,
|
| - 2.5988452f, 2.5988452f};
|
| - static const ALIGN16_BEG float ALIGN16_END C1[4] = {
|
| - -3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f};
|
| - static const ALIGN16_BEG float ALIGN16_END C0[4] = {3.1157899f, 3.1157899f,
|
| - 3.1157899f, 3.1157899f};
|
| - const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128*)C5));
|
| - const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128*)C4));
|
| - const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y);
|
| - const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128*)C3));
|
| - const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y);
|
| - const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128*)C2));
|
| - const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y);
|
| - const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128*)C1));
|
| - const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y);
|
| - const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128*)C0));
|
| - const __m128 y_minus_one =
|
| - _mm_sub_ps(y, *((__m128*)zero_biased_exponent_is_one));
|
| - const __m128 log2_y = _mm_mul_ps(y_minus_one, pol5_y);
|
| -
|
| - // Combine parts.
|
| - log2_a = _mm_add_ps(n, log2_y);
|
| - }
|
| -
|
| - // b * log2(a)
|
| - b_log2_a = _mm_mul_ps(b, log2_a);
|
| -
|
| - // Calculate exp2(x), x = b * log2(a).
|
| - {
|
| - // To calculate 2^x, we decompose x like this:
|
| - // x = n + y
|
| - // n is an integer, the value of x - 0.5 rounded down, therefore
|
| - // y is in the [0.5, 1.5) range
|
| - //
|
| - // 2^x = 2^n * 2^y
|
| - // 2^n can be evaluated by playing with float representation.
|
| - // 2^y in a small range can be approximated, this code uses an order two
|
| - // polynomial approximation. The coefficients have been estimated
|
| - // with the Remez algorithm and the resulting polynomial has a
|
| - // maximum relative error of 0.17%.
|
| -
|
| - // To avoid over/underflow, we reduce the range of input to ]-127, 129].
|
| - static const ALIGN16_BEG float max_input[4] ALIGN16_END = {129.f, 129.f,
|
| - 129.f, 129.f};
|
| - static const ALIGN16_BEG float min_input[4] ALIGN16_END = {
|
| - -126.99999f, -126.99999f, -126.99999f, -126.99999f};
|
| - const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128*)max_input));
|
| - const __m128 x_max = _mm_max_ps(x_min, *((__m128*)min_input));
|
| - // Compute n.
|
| - static const ALIGN16_BEG float half[4] ALIGN16_END = {0.5f, 0.5f, 0.5f,
|
| - 0.5f};
|
| - const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128*)half));
|
| - const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half);
|
| - // Compute 2^n.
|
| - static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = {
|
| - 127, 127, 127, 127};
|
| - static const int float_exponent_shift = 23;
|
| - const __m128i two_n_exponent =
|
| - _mm_add_epi32(x_minus_half_floor, *((__m128i*)float_exponent_bias));
|
| - const __m128 two_n =
|
| - _mm_castsi128_ps(_mm_slli_epi32(two_n_exponent, float_exponent_shift));
|
| - // Compute y.
|
| - const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor));
|
| - // Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
|
| - static const ALIGN16_BEG float C2[4] ALIGN16_END = {
|
| - 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f};
|
| - static const ALIGN16_BEG float C1[4] ALIGN16_END = {
|
| - 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f};
|
| - static const ALIGN16_BEG float C0[4] ALIGN16_END = {1.0017247f, 1.0017247f,
|
| - 1.0017247f, 1.0017247f};
|
| - const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128*)C2));
|
| - const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128*)C1));
|
| - const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y);
|
| - const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128*)C0));
|
| -
|
| - // Combine parts.
|
| - a_exp_b = _mm_mul_ps(exp2_y, two_n);
|
| - }
|
| - return a_exp_b;
|
| -}
|
| -
|
| -static void OverdriveAndSuppressSSE2(AecCore* aec,
|
| - float hNl[PART_LEN1],
|
| - const float hNlFb,
|
| - float efw[2][PART_LEN1]) {
|
| - int i;
|
| - const __m128 vec_hNlFb = _mm_set1_ps(hNlFb);
|
| - const __m128 vec_one = _mm_set1_ps(1.0f);
|
| - const __m128 vec_minus_one = _mm_set1_ps(-1.0f);
|
| - const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm);
|
| - // vectorized code (four at once)
|
| - for (i = 0; i + 3 < PART_LEN1; i += 4) {
|
| - // Weight subbands
|
| - __m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
|
| - const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]);
|
| - const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb);
|
| - const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(vec_weightCurve, vec_hNlFb);
|
| - const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve);
|
| - const __m128 vec_one_weightCurve_hNl =
|
| - _mm_mul_ps(vec_one_weightCurve, vec_hNl);
|
| - const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl);
|
| - const __m128 vec_if1 = _mm_and_ps(
|
| - bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl));
|
| - vec_hNl = _mm_or_ps(vec_if0, vec_if1);
|
| -
|
| - {
|
| - const __m128 vec_overDriveCurve =
|
| - _mm_loadu_ps(&WebRtcAec_overDriveCurve[i]);
|
| - const __m128 vec_overDriveSm_overDriveCurve =
|
| - _mm_mul_ps(vec_overDriveSm, vec_overDriveCurve);
|
| - vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve);
|
| - _mm_storeu_ps(&hNl[i], vec_hNl);
|
| - }
|
| -
|
| - // Suppress error signal
|
| - {
|
| - __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]);
|
| - __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]);
|
| - vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl);
|
| - vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl);
|
| -
|
| - // Ooura fft returns incorrect sign on imaginary component. It matters
|
| - // here because we are making an additive change with comfort noise.
|
| - vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one);
|
| - _mm_storeu_ps(&efw[0][i], vec_efw_re);
|
| - _mm_storeu_ps(&efw[1][i], vec_efw_im);
|
| - }
|
| - }
|
| - // scalar code for the remaining items.
|
| - for (; i < PART_LEN1; i++) {
|
| - // Weight subbands
|
| - if (hNl[i] > hNlFb) {
|
| - hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
|
| - (1 - WebRtcAec_weightCurve[i]) * hNl[i];
|
| - }
|
| - hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
|
| -
|
| - // Suppress error signal
|
| - efw[0][i] *= hNl[i];
|
| - efw[1][i] *= hNl[i];
|
| -
|
| - // Ooura fft returns incorrect sign on imaginary component. It matters
|
| - // here because we are making an additive change with comfort noise.
|
| - efw[1][i] *= -1;
|
| - }
|
| -}
|
| -
|
| -__inline static void _mm_add_ps_4x1(__m128 sum, float* dst) {
|
| - // A+B C+D
|
| - sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(0, 0, 3, 2)));
|
| - // A+B+C+D A+B+C+D
|
| - sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 1, 1, 1)));
|
| - _mm_store_ss(dst, sum);
|
| -}
|
| -
|
| -static int PartitionDelaySSE2(const AecCore* aec) {
|
| - // Measures the energy in each filter partition and returns the partition with
|
| - // highest energy.
|
| - // TODO(bjornv): Spread computational cost by computing one partition per
|
| - // block?
|
| - float wfEnMax = 0;
|
| - int i;
|
| - int delay = 0;
|
| -
|
| - for (i = 0; i < aec->num_partitions; i++) {
|
| - int j;
|
| - int pos = i * PART_LEN1;
|
| - float wfEn = 0;
|
| - __m128 vec_wfEn = _mm_set1_ps(0.0f);
|
| - // vectorized code (four at once)
|
| - for (j = 0; j + 3 < PART_LEN1; j += 4) {
|
| - const __m128 vec_wfBuf0 = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
|
| - const __m128 vec_wfBuf1 = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
|
| - vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf0, vec_wfBuf0));
|
| - vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf1, vec_wfBuf1));
|
| - }
|
| - _mm_add_ps_4x1(vec_wfEn, &wfEn);
|
| -
|
| - // scalar code for the remaining items.
|
| - for (; j < PART_LEN1; j++) {
|
| - wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
|
| - aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
|
| - }
|
| -
|
| - if (wfEn > wfEnMax) {
|
| - wfEnMax = wfEn;
|
| - delay = i;
|
| - }
|
| - }
|
| - return delay;
|
| -}
|
| -
|
| -// Updates the following smoothed Power Spectral Densities (PSD):
|
| -// - sd : near-end
|
| -// - se : residual echo
|
| -// - sx : far-end
|
| -// - sde : cross-PSD of near-end and residual echo
|
| -// - sxd : cross-PSD of near-end and far-end
|
| -//
|
| -// In addition to updating the PSDs, also the filter diverge state is determined
|
| -// upon actions are taken.
|
| -static void SmoothedPSD(AecCore* aec,
|
| - float efw[2][PART_LEN1],
|
| - float dfw[2][PART_LEN1],
|
| - float xfw[2][PART_LEN1],
|
| - int* extreme_filter_divergence) {
|
| - // Power estimate smoothing coefficients.
|
| - const float* ptrGCoh =
|
| - aec->extended_filter_enabled
|
| - ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1]
|
| - : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1];
|
| - int i;
|
| - float sdSum = 0, seSum = 0;
|
| - const __m128 vec_15 = _mm_set1_ps(WebRtcAec_kMinFarendPSD);
|
| - const __m128 vec_GCoh0 = _mm_set1_ps(ptrGCoh[0]);
|
| - const __m128 vec_GCoh1 = _mm_set1_ps(ptrGCoh[1]);
|
| - __m128 vec_sdSum = _mm_set1_ps(0.0f);
|
| - __m128 vec_seSum = _mm_set1_ps(0.0f);
|
| -
|
| - for (i = 0; i + 3 < PART_LEN1; i += 4) {
|
| - const __m128 vec_dfw0 = _mm_loadu_ps(&dfw[0][i]);
|
| - const __m128 vec_dfw1 = _mm_loadu_ps(&dfw[1][i]);
|
| - const __m128 vec_efw0 = _mm_loadu_ps(&efw[0][i]);
|
| - const __m128 vec_efw1 = _mm_loadu_ps(&efw[1][i]);
|
| - const __m128 vec_xfw0 = _mm_loadu_ps(&xfw[0][i]);
|
| - const __m128 vec_xfw1 = _mm_loadu_ps(&xfw[1][i]);
|
| - __m128 vec_sd = _mm_mul_ps(_mm_loadu_ps(&aec->sd[i]), vec_GCoh0);
|
| - __m128 vec_se = _mm_mul_ps(_mm_loadu_ps(&aec->se[i]), vec_GCoh0);
|
| - __m128 vec_sx = _mm_mul_ps(_mm_loadu_ps(&aec->sx[i]), vec_GCoh0);
|
| - __m128 vec_dfw_sumsq = _mm_mul_ps(vec_dfw0, vec_dfw0);
|
| - __m128 vec_efw_sumsq = _mm_mul_ps(vec_efw0, vec_efw0);
|
| - __m128 vec_xfw_sumsq = _mm_mul_ps(vec_xfw0, vec_xfw0);
|
| - vec_dfw_sumsq = _mm_add_ps(vec_dfw_sumsq, _mm_mul_ps(vec_dfw1, vec_dfw1));
|
| - vec_efw_sumsq = _mm_add_ps(vec_efw_sumsq, _mm_mul_ps(vec_efw1, vec_efw1));
|
| - vec_xfw_sumsq = _mm_add_ps(vec_xfw_sumsq, _mm_mul_ps(vec_xfw1, vec_xfw1));
|
| - vec_xfw_sumsq = _mm_max_ps(vec_xfw_sumsq, vec_15);
|
| - vec_sd = _mm_add_ps(vec_sd, _mm_mul_ps(vec_dfw_sumsq, vec_GCoh1));
|
| - vec_se = _mm_add_ps(vec_se, _mm_mul_ps(vec_efw_sumsq, vec_GCoh1));
|
| - vec_sx = _mm_add_ps(vec_sx, _mm_mul_ps(vec_xfw_sumsq, vec_GCoh1));
|
| - _mm_storeu_ps(&aec->sd[i], vec_sd);
|
| - _mm_storeu_ps(&aec->se[i], vec_se);
|
| - _mm_storeu_ps(&aec->sx[i], vec_sx);
|
| -
|
| - {
|
| - const __m128 vec_3210 = _mm_loadu_ps(&aec->sde[i][0]);
|
| - const __m128 vec_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]);
|
| - __m128 vec_a =
|
| - _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(2, 0, 2, 0));
|
| - __m128 vec_b =
|
| - _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(3, 1, 3, 1));
|
| - __m128 vec_dfwefw0011 = _mm_mul_ps(vec_dfw0, vec_efw0);
|
| - __m128 vec_dfwefw0110 = _mm_mul_ps(vec_dfw0, vec_efw1);
|
| - vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
|
| - vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
|
| - vec_dfwefw0011 =
|
| - _mm_add_ps(vec_dfwefw0011, _mm_mul_ps(vec_dfw1, vec_efw1));
|
| - vec_dfwefw0110 =
|
| - _mm_sub_ps(vec_dfwefw0110, _mm_mul_ps(vec_dfw1, vec_efw0));
|
| - vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwefw0011, vec_GCoh1));
|
| - vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwefw0110, vec_GCoh1));
|
| - _mm_storeu_ps(&aec->sde[i][0], _mm_unpacklo_ps(vec_a, vec_b));
|
| - _mm_storeu_ps(&aec->sde[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b));
|
| - }
|
| -
|
| - {
|
| - const __m128 vec_3210 = _mm_loadu_ps(&aec->sxd[i][0]);
|
| - const __m128 vec_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]);
|
| - __m128 vec_a =
|
| - _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(2, 0, 2, 0));
|
| - __m128 vec_b =
|
| - _mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(3, 1, 3, 1));
|
| - __m128 vec_dfwxfw0011 = _mm_mul_ps(vec_dfw0, vec_xfw0);
|
| - __m128 vec_dfwxfw0110 = _mm_mul_ps(vec_dfw0, vec_xfw1);
|
| - vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
|
| - vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
|
| - vec_dfwxfw0011 =
|
| - _mm_add_ps(vec_dfwxfw0011, _mm_mul_ps(vec_dfw1, vec_xfw1));
|
| - vec_dfwxfw0110 =
|
| - _mm_sub_ps(vec_dfwxfw0110, _mm_mul_ps(vec_dfw1, vec_xfw0));
|
| - vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwxfw0011, vec_GCoh1));
|
| - vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwxfw0110, vec_GCoh1));
|
| - _mm_storeu_ps(&aec->sxd[i][0], _mm_unpacklo_ps(vec_a, vec_b));
|
| - _mm_storeu_ps(&aec->sxd[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b));
|
| - }
|
| -
|
| - vec_sdSum = _mm_add_ps(vec_sdSum, vec_sd);
|
| - vec_seSum = _mm_add_ps(vec_seSum, vec_se);
|
| - }
|
| -
|
| - _mm_add_ps_4x1(vec_sdSum, &sdSum);
|
| - _mm_add_ps_4x1(vec_seSum, &seSum);
|
| -
|
| - for (; i < PART_LEN1; i++) {
|
| - aec->sd[i] = ptrGCoh[0] * aec->sd[i] +
|
| - ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
|
| - aec->se[i] = ptrGCoh[0] * aec->se[i] +
|
| - ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
|
| - // We threshold here to protect against the ill-effects of a zero farend.
|
| - // The threshold is not arbitrarily chosen, but balances protection and
|
| - // adverse interaction with the algorithm's tuning.
|
| - // TODO(bjornv): investigate further why this is so sensitive.
|
| - aec->sx[i] = ptrGCoh[0] * aec->sx[i] +
|
| - ptrGCoh[1] * WEBRTC_SPL_MAX(
|
| - xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
|
| - WebRtcAec_kMinFarendPSD);
|
| -
|
| - aec->sde[i][0] =
|
| - ptrGCoh[0] * aec->sde[i][0] +
|
| - ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
|
| - aec->sde[i][1] =
|
| - ptrGCoh[0] * aec->sde[i][1] +
|
| - ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
|
| -
|
| - aec->sxd[i][0] =
|
| - ptrGCoh[0] * aec->sxd[i][0] +
|
| - ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
|
| - aec->sxd[i][1] =
|
| - ptrGCoh[0] * aec->sxd[i][1] +
|
| - ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
|
| -
|
| - sdSum += aec->sd[i];
|
| - seSum += aec->se[i];
|
| - }
|
| -
|
| - // Divergent filter safeguard update.
|
| - aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum;
|
| -
|
| - // Signal extreme filter divergence if the error is significantly larger
|
| - // than the nearend (13 dB).
|
| - *extreme_filter_divergence = (seSum > (19.95f * sdSum));
|
| -}
|
| -
|
| -// Window time domain data to be used by the fft.
|
| -static void WindowDataSSE2(float* x_windowed, const float* x) {
|
| - int i;
|
| - for (i = 0; i < PART_LEN; i += 4) {
|
| - const __m128 vec_Buf1 = _mm_loadu_ps(&x[i]);
|
| - const __m128 vec_Buf2 = _mm_loadu_ps(&x[PART_LEN + i]);
|
| - const __m128 vec_sqrtHanning = _mm_load_ps(&WebRtcAec_sqrtHanning[i]);
|
| - // A B C D
|
| - __m128 vec_sqrtHanning_rev =
|
| - _mm_loadu_ps(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
|
| - // D C B A
|
| - vec_sqrtHanning_rev = _mm_shuffle_ps(
|
| - vec_sqrtHanning_rev, vec_sqrtHanning_rev, _MM_SHUFFLE(0, 1, 2, 3));
|
| - _mm_storeu_ps(&x_windowed[i], _mm_mul_ps(vec_Buf1, vec_sqrtHanning));
|
| - _mm_storeu_ps(&x_windowed[PART_LEN + i],
|
| - _mm_mul_ps(vec_Buf2, vec_sqrtHanning_rev));
|
| - }
|
| -}
|
| -
|
| -// Puts fft output data into a complex valued array.
|
| -static void StoreAsComplexSSE2(const float* data,
|
| - float data_complex[2][PART_LEN1]) {
|
| - int i;
|
| - for (i = 0; i < PART_LEN; i += 4) {
|
| - const __m128 vec_fft0 = _mm_loadu_ps(&data[2 * i]);
|
| - const __m128 vec_fft4 = _mm_loadu_ps(&data[2 * i + 4]);
|
| - const __m128 vec_a =
|
| - _mm_shuffle_ps(vec_fft0, vec_fft4, _MM_SHUFFLE(2, 0, 2, 0));
|
| - const __m128 vec_b =
|
| - _mm_shuffle_ps(vec_fft0, vec_fft4, _MM_SHUFFLE(3, 1, 3, 1));
|
| - _mm_storeu_ps(&data_complex[0][i], vec_a);
|
| - _mm_storeu_ps(&data_complex[1][i], vec_b);
|
| - }
|
| - // fix beginning/end values
|
| - data_complex[1][0] = 0;
|
| - data_complex[1][PART_LEN] = 0;
|
| - data_complex[0][0] = data[0];
|
| - data_complex[0][PART_LEN] = data[1];
|
| -}
|
| -
|
| -static void SubbandCoherenceSSE2(AecCore* aec,
|
| - float efw[2][PART_LEN1],
|
| - float dfw[2][PART_LEN1],
|
| - float xfw[2][PART_LEN1],
|
| - float* fft,
|
| - float* cohde,
|
| - float* cohxd,
|
| - int* extreme_filter_divergence) {
|
| - int i;
|
| -
|
| - SmoothedPSD(aec, efw, dfw, xfw, extreme_filter_divergence);
|
| -
|
| - {
|
| - const __m128 vec_1eminus10 = _mm_set1_ps(1e-10f);
|
| -
|
| - // Subband coherence
|
| - for (i = 0; i + 3 < PART_LEN1; i += 4) {
|
| - const __m128 vec_sd = _mm_loadu_ps(&aec->sd[i]);
|
| - const __m128 vec_se = _mm_loadu_ps(&aec->se[i]);
|
| - const __m128 vec_sx = _mm_loadu_ps(&aec->sx[i]);
|
| - const __m128 vec_sdse =
|
| - _mm_add_ps(vec_1eminus10, _mm_mul_ps(vec_sd, vec_se));
|
| - const __m128 vec_sdsx =
|
| - _mm_add_ps(vec_1eminus10, _mm_mul_ps(vec_sd, vec_sx));
|
| - const __m128 vec_sde_3210 = _mm_loadu_ps(&aec->sde[i][0]);
|
| - const __m128 vec_sde_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]);
|
| - const __m128 vec_sxd_3210 = _mm_loadu_ps(&aec->sxd[i][0]);
|
| - const __m128 vec_sxd_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]);
|
| - const __m128 vec_sde_0 =
|
| - _mm_shuffle_ps(vec_sde_3210, vec_sde_7654, _MM_SHUFFLE(2, 0, 2, 0));
|
| - const __m128 vec_sde_1 =
|
| - _mm_shuffle_ps(vec_sde_3210, vec_sde_7654, _MM_SHUFFLE(3, 1, 3, 1));
|
| - const __m128 vec_sxd_0 =
|
| - _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, _MM_SHUFFLE(2, 0, 2, 0));
|
| - const __m128 vec_sxd_1 =
|
| - _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, _MM_SHUFFLE(3, 1, 3, 1));
|
| - __m128 vec_cohde = _mm_mul_ps(vec_sde_0, vec_sde_0);
|
| - __m128 vec_cohxd = _mm_mul_ps(vec_sxd_0, vec_sxd_0);
|
| - vec_cohde = _mm_add_ps(vec_cohde, _mm_mul_ps(vec_sde_1, vec_sde_1));
|
| - vec_cohde = _mm_div_ps(vec_cohde, vec_sdse);
|
| - vec_cohxd = _mm_add_ps(vec_cohxd, _mm_mul_ps(vec_sxd_1, vec_sxd_1));
|
| - vec_cohxd = _mm_div_ps(vec_cohxd, vec_sdsx);
|
| - _mm_storeu_ps(&cohde[i], vec_cohde);
|
| - _mm_storeu_ps(&cohxd[i], vec_cohxd);
|
| - }
|
| -
|
| - // scalar code for the remaining items.
|
| - for (; i < PART_LEN1; i++) {
|
| - cohde[i] =
|
| - (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
|
| - (aec->sd[i] * aec->se[i] + 1e-10f);
|
| - cohxd[i] =
|
| - (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
|
| - (aec->sx[i] * aec->sd[i] + 1e-10f);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void WebRtcAec_InitAec_SSE2(void) {
|
| - WebRtcAec_FilterFar = FilterFarSSE2;
|
| - WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
|
| - WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
|
| - WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2;
|
| - WebRtcAec_SubbandCoherence = SubbandCoherenceSSE2;
|
| - WebRtcAec_StoreAsComplex = StoreAsComplexSSE2;
|
| - WebRtcAec_PartitionDelay = PartitionDelaySSE2;
|
| - WebRtcAec_WindowData = WindowDataSSE2;
|
| -}
|
|
|