Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(7)

Unified Diff: webrtc/modules/audio_processing/aec/aec_core.c

Issue 1713923002: Moved the AEC C code to be built using C++ (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Format changes to comply with lint Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « webrtc/modules/audio_processing/BUILD.gn ('k') | webrtc/modules/audio_processing/aec/aec_core.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: webrtc/modules/audio_processing/aec/aec_core.c
diff --git a/webrtc/modules/audio_processing/aec/aec_core.c b/webrtc/modules/audio_processing/aec/aec_core.c
deleted file mode 100644
index 76a33cec165e373530641fd7085e80813481834d..0000000000000000000000000000000000000000
--- a/webrtc/modules/audio_processing/aec/aec_core.c
+++ /dev/null
@@ -1,1896 +0,0 @@
-/*
- * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-/*
- * The core AEC algorithm, which is presented with time-aligned signals.
- */
-
-#include "webrtc/modules/audio_processing/aec/aec_core.h"
-
-#ifdef WEBRTC_AEC_DEBUG_DUMP
-#include <stdio.h>
-#endif
-
-#include <assert.h>
-#include <math.h>
-#include <stddef.h> // size_t
-#include <stdlib.h>
-#include <string.h>
-
-#include "webrtc/common_audio/ring_buffer.h"
-#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
-#include "webrtc/modules/audio_processing/aec/aec_common.h"
-#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
-#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
-#include "webrtc/modules/audio_processing/logging/aec_logging.h"
-#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
-#include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
-#include "webrtc/typedefs.h"
-
-// Buffer size (samples)
-static const size_t kBufSizePartitions = 250; // 1 second of audio in 16 kHz.
-
-// Metrics
-static const int subCountLen = 4;
-static const int countLen = 50;
-static const int kDelayMetricsAggregationWindow = 1250; // 5 seconds at 16 kHz.
-
-// Quantities to control H band scaling for SWB input
-static const float cnScaleHband =
- (float)0.4; // scale for comfort noise in H band
-// Initial bin for averaging nlp gain in low band
-static const int freqAvgIc = PART_LEN / 2;
-
-// Matlab code to produce table:
-// win = sqrt(hanning(63)); win = [0 ; win(1:32)];
-// fprintf(1, '\t%.14f, %.14f, %.14f,\n', win);
-ALIGN16_BEG const float ALIGN16_END WebRtcAec_sqrtHanning[65] = {
- 0.00000000000000f, 0.02454122852291f, 0.04906767432742f, 0.07356456359967f,
- 0.09801714032956f, 0.12241067519922f, 0.14673047445536f, 0.17096188876030f,
- 0.19509032201613f, 0.21910124015687f, 0.24298017990326f, 0.26671275747490f,
- 0.29028467725446f, 0.31368174039889f, 0.33688985339222f, 0.35989503653499f,
- 0.38268343236509f, 0.40524131400499f, 0.42755509343028f, 0.44961132965461f,
- 0.47139673682600f, 0.49289819222978f, 0.51410274419322f, 0.53499761988710f,
- 0.55557023301960f, 0.57580819141785f, 0.59569930449243f, 0.61523159058063f,
- 0.63439328416365f, 0.65317284295378f, 0.67155895484702f, 0.68954054473707f,
- 0.70710678118655f, 0.72424708295147f, 0.74095112535496f, 0.75720884650648f,
- 0.77301045336274f, 0.78834642762661f, 0.80320753148064f, 0.81758481315158f,
- 0.83146961230255f, 0.84485356524971f, 0.85772861000027f, 0.87008699110871f,
- 0.88192126434835f, 0.89322430119552f, 0.90398929312344f, 0.91420975570353f,
- 0.92387953251129f, 0.93299279883474f, 0.94154406518302f, 0.94952818059304f,
- 0.95694033573221f, 0.96377606579544f, 0.97003125319454f, 0.97570213003853f,
- 0.98078528040323f, 0.98527764238894f, 0.98917650996478f, 0.99247953459871f,
- 0.99518472667220f, 0.99729045667869f, 0.99879545620517f, 0.99969881869620f,
- 1.00000000000000f};
-
-// Matlab code to produce table:
-// weightCurve = [0 ; 0.3 * sqrt(linspace(0,1,64))' + 0.1];
-// fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', weightCurve);
-ALIGN16_BEG const float ALIGN16_END WebRtcAec_weightCurve[65] = {
- 0.0000f, 0.1000f, 0.1378f, 0.1535f, 0.1655f, 0.1756f, 0.1845f, 0.1926f,
- 0.2000f, 0.2069f, 0.2134f, 0.2195f, 0.2254f, 0.2309f, 0.2363f, 0.2414f,
- 0.2464f, 0.2512f, 0.2558f, 0.2604f, 0.2648f, 0.2690f, 0.2732f, 0.2773f,
- 0.2813f, 0.2852f, 0.2890f, 0.2927f, 0.2964f, 0.3000f, 0.3035f, 0.3070f,
- 0.3104f, 0.3138f, 0.3171f, 0.3204f, 0.3236f, 0.3268f, 0.3299f, 0.3330f,
- 0.3360f, 0.3390f, 0.3420f, 0.3449f, 0.3478f, 0.3507f, 0.3535f, 0.3563f,
- 0.3591f, 0.3619f, 0.3646f, 0.3673f, 0.3699f, 0.3726f, 0.3752f, 0.3777f,
- 0.3803f, 0.3828f, 0.3854f, 0.3878f, 0.3903f, 0.3928f, 0.3952f, 0.3976f,
- 0.4000f};
-
-// Matlab code to produce table:
-// overDriveCurve = [sqrt(linspace(0,1,65))' + 1];
-// fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', overDriveCurve);
-ALIGN16_BEG const float ALIGN16_END WebRtcAec_overDriveCurve[65] = {
- 1.0000f, 1.1250f, 1.1768f, 1.2165f, 1.2500f, 1.2795f, 1.3062f, 1.3307f,
- 1.3536f, 1.3750f, 1.3953f, 1.4146f, 1.4330f, 1.4507f, 1.4677f, 1.4841f,
- 1.5000f, 1.5154f, 1.5303f, 1.5449f, 1.5590f, 1.5728f, 1.5863f, 1.5995f,
- 1.6124f, 1.6250f, 1.6374f, 1.6495f, 1.6614f, 1.6731f, 1.6847f, 1.6960f,
- 1.7071f, 1.7181f, 1.7289f, 1.7395f, 1.7500f, 1.7603f, 1.7706f, 1.7806f,
- 1.7906f, 1.8004f, 1.8101f, 1.8197f, 1.8292f, 1.8385f, 1.8478f, 1.8570f,
- 1.8660f, 1.8750f, 1.8839f, 1.8927f, 1.9014f, 1.9100f, 1.9186f, 1.9270f,
- 1.9354f, 1.9437f, 1.9520f, 1.9601f, 1.9682f, 1.9763f, 1.9843f, 1.9922f,
- 2.0000f};
-
-// Delay Agnostic AEC parameters, still under development and may change.
-static const float kDelayQualityThresholdMax = 0.07f;
-static const float kDelayQualityThresholdMin = 0.01f;
-static const int kInitialShiftOffset = 5;
-#if !defined(WEBRTC_ANDROID)
-static const int kDelayCorrectionStart = 1500; // 10 ms chunks
-#endif
-
-// Target suppression levels for nlp modes.
-// log{0.001, 0.00001, 0.00000001}
-static const float kTargetSupp[3] = {-6.9f, -11.5f, -18.4f};
-
-// Two sets of parameters, one for the extended filter mode.
-static const float kExtendedMinOverDrive[3] = {3.0f, 6.0f, 15.0f};
-static const float kNormalMinOverDrive[3] = {1.0f, 2.0f, 5.0f};
-const float WebRtcAec_kExtendedSmoothingCoefficients[2][2] = {{0.9f, 0.1f},
- {0.92f, 0.08f}};
-const float WebRtcAec_kNormalSmoothingCoefficients[2][2] = {{0.9f, 0.1f},
- {0.93f, 0.07f}};
-
-// Number of partitions forming the NLP's "preferred" bands.
-enum { kPrefBandSize = 24 };
-
-#ifdef WEBRTC_AEC_DEBUG_DUMP
-extern int webrtc_aec_instance_count;
-#endif
-
-WebRtcAecFilterFar WebRtcAec_FilterFar;
-WebRtcAecScaleErrorSignal WebRtcAec_ScaleErrorSignal;
-WebRtcAecFilterAdaptation WebRtcAec_FilterAdaptation;
-WebRtcAecOverdriveAndSuppress WebRtcAec_OverdriveAndSuppress;
-WebRtcAecComfortNoise WebRtcAec_ComfortNoise;
-WebRtcAecSubBandCoherence WebRtcAec_SubbandCoherence;
-WebRtcAecStoreAsComplex WebRtcAec_StoreAsComplex;
-WebRtcAecPartitionDelay WebRtcAec_PartitionDelay;
-WebRtcAecWindowData WebRtcAec_WindowData;
-
-__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
- return aRe * bRe - aIm * bIm;
-}
-
-__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
- return aRe * bIm + aIm * bRe;
-}
-
-static int CmpFloat(const void* a, const void* b) {
- const float* da = (const float*)a;
- const float* db = (const float*)b;
-
- return (*da > *db) - (*da < *db);
-}
-
-static void FilterFar(int num_partitions,
- int x_fft_buf_block_pos,
- float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
- float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
- float y_fft[2][PART_LEN1]) {
- int i;
- for (i = 0; i < num_partitions; i++) {
- int j;
- int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
- int pos = i * PART_LEN1;
- // Check for wrap
- if (i + x_fft_buf_block_pos >= num_partitions) {
- xPos -= num_partitions * (PART_LEN1);
- }
-
- for (j = 0; j < PART_LEN1; j++) {
- y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
- h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
- y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
- h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
- }
- }
-}
-
-static void ScaleErrorSignal(int extended_filter_enabled,
- float normal_mu,
- float normal_error_threshold,
- float x_pow[PART_LEN1],
- float ef[2][PART_LEN1]) {
- const float mu = extended_filter_enabled ? kExtendedMu : normal_mu;
- const float error_threshold = extended_filter_enabled
- ? kExtendedErrorThreshold
- : normal_error_threshold;
- int i;
- float abs_ef;
- for (i = 0; i < (PART_LEN1); i++) {
- ef[0][i] /= (x_pow[i] + 1e-10f);
- ef[1][i] /= (x_pow[i] + 1e-10f);
- abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
-
- if (abs_ef > error_threshold) {
- abs_ef = error_threshold / (abs_ef + 1e-10f);
- ef[0][i] *= abs_ef;
- ef[1][i] *= abs_ef;
- }
-
- // Stepsize factor
- ef[0][i] *= mu;
- ef[1][i] *= mu;
- }
-}
-
-static void FilterAdaptation(
- int num_partitions,
- int x_fft_buf_block_pos,
- float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
- float e_fft[2][PART_LEN1],
- float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
- int i, j;
- float fft[PART_LEN2];
- for (i = 0; i < num_partitions; i++) {
- int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1);
- int pos;
- // Check for wrap
- if (i + x_fft_buf_block_pos >= num_partitions) {
- xPos -= num_partitions * PART_LEN1;
- }
-
- pos = i * PART_LEN1;
-
- for (j = 0; j < PART_LEN; j++) {
- fft[2 * j] = MulRe(x_fft_buf[0][xPos + j], -x_fft_buf[1][xPos + j],
- e_fft[0][j], e_fft[1][j]);
- fft[2 * j + 1] = MulIm(x_fft_buf[0][xPos + j], -x_fft_buf[1][xPos + j],
- e_fft[0][j], e_fft[1][j]);
- }
- fft[1] =
- MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN],
- e_fft[0][PART_LEN], e_fft[1][PART_LEN]);
-
- aec_rdft_inverse_128(fft);
- memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
-
- // fft scaling
- {
- float scale = 2.0f / PART_LEN2;
- for (j = 0; j < PART_LEN; j++) {
- fft[j] *= scale;
- }
- }
- aec_rdft_forward_128(fft);
-
- h_fft_buf[0][pos] += fft[0];
- h_fft_buf[0][pos + PART_LEN] += fft[1];
-
- for (j = 1; j < PART_LEN; j++) {
- h_fft_buf[0][pos + j] += fft[2 * j];
- h_fft_buf[1][pos + j] += fft[2 * j + 1];
- }
- }
-}
-
-static void OverdriveAndSuppress(AecCore* aec,
- float hNl[PART_LEN1],
- const float hNlFb,
- float efw[2][PART_LEN1]) {
- int i;
- for (i = 0; i < PART_LEN1; i++) {
- // Weight subbands
- if (hNl[i] > hNlFb) {
- hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
- (1 - WebRtcAec_weightCurve[i]) * hNl[i];
- }
- hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
-
- // Suppress error signal
- efw[0][i] *= hNl[i];
- efw[1][i] *= hNl[i];
-
- // Ooura fft returns incorrect sign on imaginary component. It matters here
- // because we are making an additive change with comfort noise.
- efw[1][i] *= -1;
- }
-}
-
-static int PartitionDelay(const AecCore* aec) {
- // Measures the energy in each filter partition and returns the partition with
- // highest energy.
- // TODO(bjornv): Spread computational cost by computing one partition per
- // block?
- float wfEnMax = 0;
- int i;
- int delay = 0;
-
- for (i = 0; i < aec->num_partitions; i++) {
- int j;
- int pos = i * PART_LEN1;
- float wfEn = 0;
- for (j = 0; j < PART_LEN1; j++) {
- wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
- aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
- }
-
- if (wfEn > wfEnMax) {
- wfEnMax = wfEn;
- delay = i;
- }
- }
- return delay;
-}
-
-// Threshold to protect against the ill-effects of a zero far-end.
-const float WebRtcAec_kMinFarendPSD = 15;
-
-// Updates the following smoothed Power Spectral Densities (PSD):
-// - sd : near-end
-// - se : residual echo
-// - sx : far-end
-// - sde : cross-PSD of near-end and residual echo
-// - sxd : cross-PSD of near-end and far-end
-//
-// In addition to updating the PSDs, also the filter diverge state is
-// determined.
-static void SmoothedPSD(AecCore* aec,
- float efw[2][PART_LEN1],
- float dfw[2][PART_LEN1],
- float xfw[2][PART_LEN1],
- int* extreme_filter_divergence) {
- // Power estimate smoothing coefficients.
- const float* ptrGCoh =
- aec->extended_filter_enabled
- ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1]
- : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1];
- int i;
- float sdSum = 0, seSum = 0;
-
- for (i = 0; i < PART_LEN1; i++) {
- aec->sd[i] = ptrGCoh[0] * aec->sd[i] +
- ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
- aec->se[i] = ptrGCoh[0] * aec->se[i] +
- ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
- // We threshold here to protect against the ill-effects of a zero farend.
- // The threshold is not arbitrarily chosen, but balances protection and
- // adverse interaction with the algorithm's tuning.
- // TODO(bjornv): investigate further why this is so sensitive.
- aec->sx[i] = ptrGCoh[0] * aec->sx[i] +
- ptrGCoh[1] * WEBRTC_SPL_MAX(
- xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
- WebRtcAec_kMinFarendPSD);
-
- aec->sde[i][0] =
- ptrGCoh[0] * aec->sde[i][0] +
- ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
- aec->sde[i][1] =
- ptrGCoh[0] * aec->sde[i][1] +
- ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
-
- aec->sxd[i][0] =
- ptrGCoh[0] * aec->sxd[i][0] +
- ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
- aec->sxd[i][1] =
- ptrGCoh[0] * aec->sxd[i][1] +
- ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
-
- sdSum += aec->sd[i];
- seSum += aec->se[i];
- }
-
- // Divergent filter safeguard update.
- aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum;
-
- // Signal extreme filter divergence if the error is significantly larger
- // than the nearend (13 dB).
- *extreme_filter_divergence = (seSum > (19.95f * sdSum));
-}
-
-// Window time domain data to be used by the fft.
-__inline static void WindowData(float* x_windowed, const float* x) {
- int i;
- for (i = 0; i < PART_LEN; i++) {
- x_windowed[i] = x[i] * WebRtcAec_sqrtHanning[i];
- x_windowed[PART_LEN + i] =
- x[PART_LEN + i] * WebRtcAec_sqrtHanning[PART_LEN - i];
- }
-}
-
-// Puts fft output data into a complex valued array.
-__inline static void StoreAsComplex(const float* data,
- float data_complex[2][PART_LEN1]) {
- int i;
- data_complex[0][0] = data[0];
- data_complex[1][0] = 0;
- for (i = 1; i < PART_LEN; i++) {
- data_complex[0][i] = data[2 * i];
- data_complex[1][i] = data[2 * i + 1];
- }
- data_complex[0][PART_LEN] = data[1];
- data_complex[1][PART_LEN] = 0;
-}
-
-static void SubbandCoherence(AecCore* aec,
- float efw[2][PART_LEN1],
- float dfw[2][PART_LEN1],
- float xfw[2][PART_LEN1],
- float* fft,
- float* cohde,
- float* cohxd,
- int* extreme_filter_divergence) {
- int i;
-
- SmoothedPSD(aec, efw, dfw, xfw, extreme_filter_divergence);
-
- // Subband coherence
- for (i = 0; i < PART_LEN1; i++) {
- cohde[i] =
- (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
- (aec->sd[i] * aec->se[i] + 1e-10f);
- cohxd[i] =
- (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
- (aec->sx[i] * aec->sd[i] + 1e-10f);
- }
-}
-
-static void GetHighbandGain(const float* lambda, float* nlpGainHband) {
- int i;
-
- *nlpGainHband = (float)0.0;
- for (i = freqAvgIc; i < PART_LEN1 - 1; i++) {
- *nlpGainHband += lambda[i];
- }
- *nlpGainHband /= (float)(PART_LEN1 - 1 - freqAvgIc);
-}
-
-static void ComfortNoise(AecCore* aec,
- float efw[2][PART_LEN1],
- float comfortNoiseHband[2][PART_LEN1],
- const float* noisePow,
- const float* lambda) {
- int i, num;
- float rand[PART_LEN];
- float noise, noiseAvg, tmp, tmpAvg;
- int16_t randW16[PART_LEN];
- float u[2][PART_LEN1];
-
- const float pi2 = 6.28318530717959f;
-
- // Generate a uniform random array on [0 1]
- WebRtcSpl_RandUArray(randW16, PART_LEN, &aec->seed);
- for (i = 0; i < PART_LEN; i++) {
- rand[i] = ((float)randW16[i]) / 32768;
- }
-
- // Reject LF noise
- u[0][0] = 0;
- u[1][0] = 0;
- for (i = 1; i < PART_LEN1; i++) {
- tmp = pi2 * rand[i - 1];
-
- noise = sqrtf(noisePow[i]);
- u[0][i] = noise * cosf(tmp);
- u[1][i] = -noise * sinf(tmp);
- }
- u[1][PART_LEN] = 0;
-
- for (i = 0; i < PART_LEN1; i++) {
- // This is the proper weighting to match the background noise power
- tmp = sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0));
- // tmp = 1 - lambda[i];
- efw[0][i] += tmp * u[0][i];
- efw[1][i] += tmp * u[1][i];
- }
-
- // For H band comfort noise
- // TODO: don't compute noise and "tmp" twice. Use the previous results.
- noiseAvg = 0.0;
- tmpAvg = 0.0;
- num = 0;
- if (aec->num_bands > 1) {
- // average noise scale
- // average over second half of freq spectrum (i.e., 4->8khz)
- // TODO: we shouldn't need num. We know how many elements we're summing.
- for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) {
- num++;
- noiseAvg += sqrtf(noisePow[i]);
- }
- noiseAvg /= (float)num;
-
- // average nlp scale
- // average over second half of freq spectrum (i.e., 4->8khz)
- // TODO: we shouldn't need num. We know how many elements we're summing.
- num = 0;
- for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) {
- num++;
- tmpAvg += sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0));
- }
- tmpAvg /= (float)num;
-
- // Use average noise for H band
- // TODO: we should probably have a new random vector here.
- // Reject LF noise
- u[0][0] = 0;
- u[1][0] = 0;
- for (i = 1; i < PART_LEN1; i++) {
- tmp = pi2 * rand[i - 1];
-
- // Use average noise for H band
- u[0][i] = noiseAvg * (float)cos(tmp);
- u[1][i] = -noiseAvg * (float)sin(tmp);
- }
- u[1][PART_LEN] = 0;
-
- for (i = 0; i < PART_LEN1; i++) {
- // Use average NLP weight for H band
- comfortNoiseHband[0][i] = tmpAvg * u[0][i];
- comfortNoiseHband[1][i] = tmpAvg * u[1][i];
- }
- } else {
- memset(comfortNoiseHband, 0,
- 2 * PART_LEN1 * sizeof(comfortNoiseHband[0][0]));
- }
-}
-
-static void InitLevel(PowerLevel* level) {
- const float kBigFloat = 1E17f;
-
- level->averagelevel = 0;
- level->framelevel = 0;
- level->minlevel = kBigFloat;
- level->frsum = 0;
- level->sfrsum = 0;
- level->frcounter = 0;
- level->sfrcounter = 0;
-}
-
-static void InitStats(Stats* stats) {
- stats->instant = kOffsetLevel;
- stats->average = kOffsetLevel;
- stats->max = kOffsetLevel;
- stats->min = kOffsetLevel * (-1);
- stats->sum = 0;
- stats->hisum = 0;
- stats->himean = kOffsetLevel;
- stats->counter = 0;
- stats->hicounter = 0;
-}
-
-static void InitMetrics(AecCore* self) {
- self->stateCounter = 0;
- InitLevel(&self->farlevel);
- InitLevel(&self->nearlevel);
- InitLevel(&self->linoutlevel);
- InitLevel(&self->nlpoutlevel);
-
- InitStats(&self->erl);
- InitStats(&self->erle);
- InitStats(&self->aNlp);
- InitStats(&self->rerl);
-}
-
-static float CalculatePower(const float* in, size_t num_samples) {
- size_t k;
- float energy = 0.0f;
-
- for (k = 0; k < num_samples; ++k) {
- energy += in[k] * in[k];
- }
- return energy / num_samples;
-}
-
-static void UpdateLevel(PowerLevel* level, float energy) {
- level->sfrsum += energy;
- level->sfrcounter++;
-
- if (level->sfrcounter > subCountLen) {
- level->framelevel = level->sfrsum / (subCountLen * PART_LEN);
- level->sfrsum = 0;
- level->sfrcounter = 0;
- if (level->framelevel > 0) {
- if (level->framelevel < level->minlevel) {
- level->minlevel = level->framelevel; // New minimum.
- } else {
- level->minlevel *= (1 + 0.001f); // Small increase.
- }
- }
- level->frcounter++;
- level->frsum += level->framelevel;
- if (level->frcounter > countLen) {
- level->averagelevel = level->frsum / countLen;
- level->frsum = 0;
- level->frcounter = 0;
- }
- }
-}
-
-static void UpdateMetrics(AecCore* aec) {
- float dtmp, dtmp2;
-
- const float actThresholdNoisy = 8.0f;
- const float actThresholdClean = 40.0f;
- const float safety = 0.99995f;
-
- // To make noisePower consistent with the legacy code, a factor of
- // 2.0f / PART_LEN2 is applied to noisyPower, since the legacy code uses
- // the energy of a frame as the audio levels, while the new code uses a
- // a per-sample energy (i.e., power).
- const float noisyPower = 300000.0f * 2.0f / PART_LEN2;
-
- float actThreshold;
- float echo, suppressedEcho;
-
- if (aec->echoState) { // Check if echo is likely present
- aec->stateCounter++;
- }
-
- if (aec->farlevel.frcounter == 0) {
- if (aec->farlevel.minlevel < noisyPower) {
- actThreshold = actThresholdClean;
- } else {
- actThreshold = actThresholdNoisy;
- }
-
- if ((aec->stateCounter > (0.5f * countLen * subCountLen)) &&
- (aec->farlevel.sfrcounter == 0)
-
- // Estimate in active far-end segments only
- && (aec->farlevel.averagelevel >
- (actThreshold * aec->farlevel.minlevel))) {
- // Subtract noise power
- echo = aec->nearlevel.averagelevel - safety * aec->nearlevel.minlevel;
-
- // ERL
- dtmp = 10 * (float)log10(aec->farlevel.averagelevel /
- aec->nearlevel.averagelevel +
- 1e-10f);
- dtmp2 = 10 * (float)log10(aec->farlevel.averagelevel / echo + 1e-10f);
-
- aec->erl.instant = dtmp;
- if (dtmp > aec->erl.max) {
- aec->erl.max = dtmp;
- }
-
- if (dtmp < aec->erl.min) {
- aec->erl.min = dtmp;
- }
-
- aec->erl.counter++;
- aec->erl.sum += dtmp;
- aec->erl.average = aec->erl.sum / aec->erl.counter;
-
- // Upper mean
- if (dtmp > aec->erl.average) {
- aec->erl.hicounter++;
- aec->erl.hisum += dtmp;
- aec->erl.himean = aec->erl.hisum / aec->erl.hicounter;
- }
-
- // A_NLP
- dtmp = 10 * (float)log10(aec->nearlevel.averagelevel /
- aec->linoutlevel.averagelevel + 1e-10f);
-
- // subtract noise power
- suppressedEcho = aec->linoutlevel.averagelevel -
- safety * aec->linoutlevel.minlevel;
-
- dtmp2 = 10 * (float)log10(echo / suppressedEcho + 1e-10f);
-
- aec->aNlp.instant = dtmp2;
- if (dtmp > aec->aNlp.max) {
- aec->aNlp.max = dtmp;
- }
-
- if (dtmp < aec->aNlp.min) {
- aec->aNlp.min = dtmp;
- }
-
- aec->aNlp.counter++;
- aec->aNlp.sum += dtmp;
- aec->aNlp.average = aec->aNlp.sum / aec->aNlp.counter;
-
- // Upper mean
- if (dtmp > aec->aNlp.average) {
- aec->aNlp.hicounter++;
- aec->aNlp.hisum += dtmp;
- aec->aNlp.himean = aec->aNlp.hisum / aec->aNlp.hicounter;
- }
-
- // ERLE
-
- // subtract noise power
- suppressedEcho = 2 * (aec->nlpoutlevel.averagelevel -
- safety * aec->nlpoutlevel.minlevel);
-
- dtmp = 10 * (float)log10(aec->nearlevel.averagelevel /
- (2 * aec->nlpoutlevel.averagelevel) +
- 1e-10f);
- dtmp2 = 10 * (float)log10(echo / suppressedEcho + 1e-10f);
-
- dtmp = dtmp2;
- aec->erle.instant = dtmp;
- if (dtmp > aec->erle.max) {
- aec->erle.max = dtmp;
- }
-
- if (dtmp < aec->erle.min) {
- aec->erle.min = dtmp;
- }
-
- aec->erle.counter++;
- aec->erle.sum += dtmp;
- aec->erle.average = aec->erle.sum / aec->erle.counter;
-
- // Upper mean
- if (dtmp > aec->erle.average) {
- aec->erle.hicounter++;
- aec->erle.hisum += dtmp;
- aec->erle.himean = aec->erle.hisum / aec->erle.hicounter;
- }
- }
-
- aec->stateCounter = 0;
- }
-}
-
-static void UpdateDelayMetrics(AecCore* self) {
- int i = 0;
- int delay_values = 0;
- int median = 0;
- int lookahead = WebRtc_lookahead(self->delay_estimator);
- const int kMsPerBlock = PART_LEN / (self->mult * 8);
- int64_t l1_norm = 0;
-
- if (self->num_delay_values == 0) {
- // We have no new delay value data. Even though -1 is a valid |median| in
- // the sense that we allow negative values, it will practically never be
- // used since multiples of |kMsPerBlock| will always be returned.
- // We therefore use -1 to indicate in the logs that the delay estimator was
- // not able to estimate the delay.
- self->delay_median = -1;
- self->delay_std = -1;
- self->fraction_poor_delays = -1;
- return;
- }
-
- // Start value for median count down.
- delay_values = self->num_delay_values >> 1;
- // Get median of delay values since last update.
- for (i = 0; i < kHistorySizeBlocks; i++) {
- delay_values -= self->delay_histogram[i];
- if (delay_values < 0) {
- median = i;
- break;
- }
- }
- // Account for lookahead.
- self->delay_median = (median - lookahead) * kMsPerBlock;
-
- // Calculate the L1 norm, with median value as central moment.
- for (i = 0; i < kHistorySizeBlocks; i++) {
- l1_norm += abs(i - median) * self->delay_histogram[i];
- }
- self->delay_std =
- (int)((l1_norm + self->num_delay_values / 2) / self->num_delay_values) *
- kMsPerBlock;
-
- // Determine fraction of delays that are out of bounds, that is, either
- // negative (anti-causal system) or larger than the AEC filter length.
- {
- int num_delays_out_of_bounds = self->num_delay_values;
- const int histogram_length =
- sizeof(self->delay_histogram) / sizeof(self->delay_histogram[0]);
- for (i = lookahead; i < lookahead + self->num_partitions; ++i) {
- if (i < histogram_length)
- num_delays_out_of_bounds -= self->delay_histogram[i];
- }
- self->fraction_poor_delays =
- (float)num_delays_out_of_bounds / self->num_delay_values;
- }
-
- // Reset histogram.
- memset(self->delay_histogram, 0, sizeof(self->delay_histogram));
- self->num_delay_values = 0;
-
- return;
-}
-
-static void ScaledInverseFft(float freq_data[2][PART_LEN1],
- float time_data[PART_LEN2],
- float scale,
- int conjugate) {
- int i;
- const float normalization = scale / ((float)PART_LEN2);
- const float sign = (conjugate ? -1 : 1);
- time_data[0] = freq_data[0][0] * normalization;
- time_data[1] = freq_data[0][PART_LEN] * normalization;
- for (i = 1; i < PART_LEN; i++) {
- time_data[2 * i] = freq_data[0][i] * normalization;
- time_data[2 * i + 1] = sign * freq_data[1][i] * normalization;
- }
- aec_rdft_inverse_128(time_data);
-}
-
-static void Fft(float time_data[PART_LEN2], float freq_data[2][PART_LEN1]) {
- int i;
- aec_rdft_forward_128(time_data);
-
- // Reorder fft output data.
- freq_data[1][0] = 0;
- freq_data[1][PART_LEN] = 0;
- freq_data[0][0] = time_data[0];
- freq_data[0][PART_LEN] = time_data[1];
- for (i = 1; i < PART_LEN; i++) {
- freq_data[0][i] = time_data[2 * i];
- freq_data[1][i] = time_data[2 * i + 1];
- }
-}
-
-static int SignalBasedDelayCorrection(AecCore* self) {
- int delay_correction = 0;
- int last_delay = -2;
- assert(self != NULL);
-#if !defined(WEBRTC_ANDROID)
- // On desktops, turn on correction after |kDelayCorrectionStart| frames. This
- // is to let the delay estimation get a chance to converge. Also, if the
- // playout audio volume is low (or even muted) the delay estimation can return
- // a very large delay, which will break the AEC if it is applied.
- if (self->frame_count < kDelayCorrectionStart) {
- return 0;
- }
-#endif
-
- // 1. Check for non-negative delay estimate. Note that the estimates we get
- // from the delay estimation are not compensated for lookahead. Hence, a
- // negative |last_delay| is an invalid one.
- // 2. Verify that there is a delay change. In addition, only allow a change
- // if the delay is outside a certain region taking the AEC filter length
- // into account.
- // TODO(bjornv): Investigate if we can remove the non-zero delay change check.
- // 3. Only allow delay correction if the delay estimation quality exceeds
- // |delay_quality_threshold|.
- // 4. Finally, verify that the proposed |delay_correction| is feasible by
- // comparing with the size of the far-end buffer.
- last_delay = WebRtc_last_delay(self->delay_estimator);
- if ((last_delay >= 0) && (last_delay != self->previous_delay) &&
- (WebRtc_last_delay_quality(self->delay_estimator) >
- self->delay_quality_threshold)) {
- int delay = last_delay - WebRtc_lookahead(self->delay_estimator);
- // Allow for a slack in the actual delay, defined by a |lower_bound| and an
- // |upper_bound|. The adaptive echo cancellation filter is currently
- // |num_partitions| (of 64 samples) long. If the delay estimate is negative
- // or at least 3/4 of the filter length we open up for correction.
- const int lower_bound = 0;
- const int upper_bound = self->num_partitions * 3 / 4;
- const int do_correction = delay <= lower_bound || delay > upper_bound;
- if (do_correction == 1) {
- int available_read = (int)WebRtc_available_read(self->far_time_buf);
- // With |shift_offset| we gradually rely on the delay estimates. For
- // positive delays we reduce the correction by |shift_offset| to lower the
- // risk of pushing the AEC into a non causal state. For negative delays
- // we rely on the values up to a rounding error, hence compensate by 1
- // element to make sure to push the delay into the causal region.
- delay_correction = -delay;
- delay_correction += delay > self->shift_offset ? self->shift_offset : 1;
- self->shift_offset--;
- self->shift_offset = (self->shift_offset <= 1 ? 1 : self->shift_offset);
- if (delay_correction > available_read - self->mult - 1) {
- // There is not enough data in the buffer to perform this shift. Hence,
- // we do not rely on the delay estimate and do nothing.
- delay_correction = 0;
- } else {
- self->previous_delay = last_delay;
- ++self->delay_correction_count;
- }
- }
- }
- // Update the |delay_quality_threshold| once we have our first delay
- // correction.
- if (self->delay_correction_count > 0) {
- float delay_quality = WebRtc_last_delay_quality(self->delay_estimator);
- delay_quality =
- (delay_quality > kDelayQualityThresholdMax ? kDelayQualityThresholdMax
- : delay_quality);
- self->delay_quality_threshold =
- (delay_quality > self->delay_quality_threshold
- ? delay_quality
- : self->delay_quality_threshold);
- }
- return delay_correction;
-}
-
-static void EchoSubtraction(AecCore* aec,
- int num_partitions,
- int extended_filter_enabled,
- float normal_mu,
- float normal_error_threshold,
- float* x_fft,
- int* x_fft_buf_block_pos,
- float x_fft_buf[2]
- [kExtendedNumPartitions * PART_LEN1],
- float* const y,
- float x_pow[PART_LEN1],
- float h_fft_buf[2]
- [kExtendedNumPartitions * PART_LEN1],
- float echo_subtractor_output[PART_LEN]) {
- float s_fft[2][PART_LEN1];
- float e_extended[PART_LEN2];
- float s_extended[PART_LEN2];
- float* s;
- float e[PART_LEN];
- float e_fft[2][PART_LEN1];
- int i;
-
- // Update the x_fft_buf block position.
- (*x_fft_buf_block_pos)--;
- if ((*x_fft_buf_block_pos) == -1) {
- *x_fft_buf_block_pos = num_partitions - 1;
- }
-
- // Buffer x_fft.
- memcpy(x_fft_buf[0] + (*x_fft_buf_block_pos) * PART_LEN1, x_fft,
- sizeof(float) * PART_LEN1);
- memcpy(x_fft_buf[1] + (*x_fft_buf_block_pos) * PART_LEN1, &x_fft[PART_LEN1],
- sizeof(float) * PART_LEN1);
-
- memset(s_fft, 0, sizeof(s_fft));
-
- // Conditionally reset the echo subtraction filter if the filter has diverged
- // significantly.
- if (!aec->extended_filter_enabled && aec->extreme_filter_divergence) {
- memset(aec->wfBuf, 0, sizeof(aec->wfBuf));
- aec->extreme_filter_divergence = 0;
- }
-
- // Produce echo estimate s_fft.
- WebRtcAec_FilterFar(num_partitions, *x_fft_buf_block_pos, x_fft_buf,
- h_fft_buf, s_fft);
-
- // Compute the time-domain echo estimate s.
- ScaledInverseFft(s_fft, s_extended, 2.0f, 0);
- s = &s_extended[PART_LEN];
-
- // Compute the time-domain echo prediction error.
- for (i = 0; i < PART_LEN; ++i) {
- e[i] = y[i] - s[i];
- }
-
- // Compute the frequency domain echo prediction error.
- memset(e_extended, 0, sizeof(float) * PART_LEN);
- memcpy(e_extended + PART_LEN, e, sizeof(float) * PART_LEN);
- Fft(e_extended, e_fft);
-
- RTC_AEC_DEBUG_RAW_WRITE(aec->e_fft_file, &e_fft[0][0],
- sizeof(e_fft[0][0]) * PART_LEN1 * 2);
-
- // Scale error signal inversely with far power.
- WebRtcAec_ScaleErrorSignal(extended_filter_enabled, normal_mu,
- normal_error_threshold, x_pow, e_fft);
- WebRtcAec_FilterAdaptation(num_partitions, *x_fft_buf_block_pos, x_fft_buf,
- e_fft, h_fft_buf);
- memcpy(echo_subtractor_output, e, sizeof(float) * PART_LEN);
-}
-
-static void EchoSuppression(AecCore* aec,
- float farend[PART_LEN2],
- float* echo_subtractor_output,
- float* output,
- float* const* outputH) {
- float efw[2][PART_LEN1];
- float xfw[2][PART_LEN1];
- float dfw[2][PART_LEN1];
- float comfortNoiseHband[2][PART_LEN1];
- float fft[PART_LEN2];
- float nlpGainHband;
- int i;
- size_t j;
-
- // Coherence and non-linear filter
- float cohde[PART_LEN1], cohxd[PART_LEN1];
- float hNlDeAvg, hNlXdAvg;
- float hNl[PART_LEN1];
- float hNlPref[kPrefBandSize];
- float hNlFb = 0, hNlFbLow = 0;
- const float prefBandQuant = 0.75f, prefBandQuantLow = 0.5f;
- const int prefBandSize = kPrefBandSize / aec->mult;
- const int minPrefBand = 4 / aec->mult;
- // Power estimate smoothing coefficients.
- const float* min_overdrive = aec->extended_filter_enabled
- ? kExtendedMinOverDrive
- : kNormalMinOverDrive;
-
- // Filter energy
- const int delayEstInterval = 10 * aec->mult;
-
- float* xfw_ptr = NULL;
-
- // Update eBuf with echo subtractor output.
- memcpy(aec->eBuf + PART_LEN, echo_subtractor_output,
- sizeof(float) * PART_LEN);
-
- // Analysis filter banks for the echo suppressor.
- // Windowed near-end ffts.
- WindowData(fft, aec->dBuf);
- aec_rdft_forward_128(fft);
- StoreAsComplex(fft, dfw);
-
- // Windowed echo suppressor output ffts.
- WindowData(fft, aec->eBuf);
- aec_rdft_forward_128(fft);
- StoreAsComplex(fft, efw);
-
- // NLP
-
- // Convert far-end partition to the frequency domain with windowing.
- WindowData(fft, farend);
- Fft(fft, xfw);
- xfw_ptr = &xfw[0][0];
-
- // Buffer far.
- memcpy(aec->xfwBuf, xfw_ptr, sizeof(float) * 2 * PART_LEN1);
-
- aec->delayEstCtr++;
- if (aec->delayEstCtr == delayEstInterval) {
- aec->delayEstCtr = 0;
- aec->delayIdx = WebRtcAec_PartitionDelay(aec);
- }
-
- // Use delayed far.
- memcpy(xfw, aec->xfwBuf + aec->delayIdx * PART_LEN1,
- sizeof(xfw[0][0]) * 2 * PART_LEN1);
-
- WebRtcAec_SubbandCoherence(aec, efw, dfw, xfw, fft, cohde, cohxd,
- &aec->extreme_filter_divergence);
-
- // Select the microphone signal as output if the filter is deemed to have
- // diverged.
- if (aec->divergeState) {
- memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1);
- }
-
- hNlXdAvg = 0;
- for (i = minPrefBand; i < prefBandSize + minPrefBand; i++) {
- hNlXdAvg += cohxd[i];
- }
- hNlXdAvg /= prefBandSize;
- hNlXdAvg = 1 - hNlXdAvg;
-
- hNlDeAvg = 0;
- for (i = minPrefBand; i < prefBandSize + minPrefBand; i++) {
- hNlDeAvg += cohde[i];
- }
- hNlDeAvg /= prefBandSize;
-
- if (hNlXdAvg < 0.75f && hNlXdAvg < aec->hNlXdAvgMin) {
- aec->hNlXdAvgMin = hNlXdAvg;
- }
-
- if (hNlDeAvg > 0.98f && hNlXdAvg > 0.9f) {
- aec->stNearState = 1;
- } else if (hNlDeAvg < 0.95f || hNlXdAvg < 0.8f) {
- aec->stNearState = 0;
- }
-
- if (aec->hNlXdAvgMin == 1) {
- aec->echoState = 0;
- aec->overDrive = min_overdrive[aec->nlp_mode];
-
- if (aec->stNearState == 1) {
- memcpy(hNl, cohde, sizeof(hNl));
- hNlFb = hNlDeAvg;
- hNlFbLow = hNlDeAvg;
- } else {
- for (i = 0; i < PART_LEN1; i++) {
- hNl[i] = 1 - cohxd[i];
- }
- hNlFb = hNlXdAvg;
- hNlFbLow = hNlXdAvg;
- }
- } else {
- if (aec->stNearState == 1) {
- aec->echoState = 0;
- memcpy(hNl, cohde, sizeof(hNl));
- hNlFb = hNlDeAvg;
- hNlFbLow = hNlDeAvg;
- } else {
- aec->echoState = 1;
- for (i = 0; i < PART_LEN1; i++) {
- hNl[i] = WEBRTC_SPL_MIN(cohde[i], 1 - cohxd[i]);
- }
-
- // Select an order statistic from the preferred bands.
- // TODO: Using quicksort now, but a selection algorithm may be preferred.
- memcpy(hNlPref, &hNl[minPrefBand], sizeof(float) * prefBandSize);
- qsort(hNlPref, prefBandSize, sizeof(float), CmpFloat);
- hNlFb = hNlPref[(int)floor(prefBandQuant * (prefBandSize - 1))];
- hNlFbLow = hNlPref[(int)floor(prefBandQuantLow * (prefBandSize - 1))];
- }
- }
-
- // Track the local filter minimum to determine suppression overdrive.
- if (hNlFbLow < 0.6f && hNlFbLow < aec->hNlFbLocalMin) {
- aec->hNlFbLocalMin = hNlFbLow;
- aec->hNlFbMin = hNlFbLow;
- aec->hNlNewMin = 1;
- aec->hNlMinCtr = 0;
- }
- aec->hNlFbLocalMin =
- WEBRTC_SPL_MIN(aec->hNlFbLocalMin + 0.0008f / aec->mult, 1);
- aec->hNlXdAvgMin = WEBRTC_SPL_MIN(aec->hNlXdAvgMin + 0.0006f / aec->mult, 1);
-
- if (aec->hNlNewMin == 1) {
- aec->hNlMinCtr++;
- }
- if (aec->hNlMinCtr == 2) {
- aec->hNlNewMin = 0;
- aec->hNlMinCtr = 0;
- aec->overDrive =
- WEBRTC_SPL_MAX(kTargetSupp[aec->nlp_mode] /
- ((float)log(aec->hNlFbMin + 1e-10f) + 1e-10f),
- min_overdrive[aec->nlp_mode]);
- }
-
- // Smooth the overdrive.
- if (aec->overDrive < aec->overDriveSm) {
- aec->overDriveSm = 0.99f * aec->overDriveSm + 0.01f * aec->overDrive;
- } else {
- aec->overDriveSm = 0.9f * aec->overDriveSm + 0.1f * aec->overDrive;
- }
-
- WebRtcAec_OverdriveAndSuppress(aec, hNl, hNlFb, efw);
-
- // Add comfort noise.
- WebRtcAec_ComfortNoise(aec, efw, comfortNoiseHband, aec->noisePow, hNl);
-
- // Inverse error fft.
- ScaledInverseFft(efw, fft, 2.0f, 1);
-
- // TODO(bjornv): Investigate how to take the windowing below into account if
- // needed.
- if (aec->metricsMode == 1) {
- // Note that we have a scaling by two in the time domain |eBuf|.
- // In addition the time domain signal is windowed before transformation,
- // losing half the energy on the average. We take care of the first
- // scaling only in UpdateMetrics().
- UpdateLevel(&aec->nlpoutlevel, CalculatePower(fft, PART_LEN2));
- }
-
- // Overlap and add to obtain output.
- for (i = 0; i < PART_LEN; i++) {
- output[i] = (fft[i] * WebRtcAec_sqrtHanning[i] +
- aec->outBuf[i] * WebRtcAec_sqrtHanning[PART_LEN - i]);
-
- // Saturate output to keep it in the allowed range.
- output[i] =
- WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, output[i], WEBRTC_SPL_WORD16_MIN);
- }
- memcpy(aec->outBuf, &fft[PART_LEN], PART_LEN * sizeof(aec->outBuf[0]));
-
- // For H band
- if (aec->num_bands > 1) {
- // H band gain
- // average nlp over low band: average over second half of freq spectrum
- // (4->8khz)
- GetHighbandGain(hNl, &nlpGainHband);
-
- // Inverse comfort_noise
- ScaledInverseFft(comfortNoiseHband, fft, 2.0f, 0);
-
- // compute gain factor
- for (j = 0; j < aec->num_bands - 1; ++j) {
- for (i = 0; i < PART_LEN; i++) {
- outputH[j][i] = aec->dBufH[j][i] * nlpGainHband;
- }
- }
-
- // Add some comfort noise where Hband is attenuated.
- for (i = 0; i < PART_LEN; i++) {
- outputH[0][i] += cnScaleHband * fft[i];
- }
-
- // Saturate output to keep it in the allowed range.
- for (j = 0; j < aec->num_bands - 1; ++j) {
- for (i = 0; i < PART_LEN; i++) {
- outputH[j][i] = WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, outputH[j][i],
- WEBRTC_SPL_WORD16_MIN);
- }
- }
- }
-
- // Copy the current block to the old position.
- memcpy(aec->dBuf, aec->dBuf + PART_LEN, sizeof(float) * PART_LEN);
- memcpy(aec->eBuf, aec->eBuf + PART_LEN, sizeof(float) * PART_LEN);
-
- // Copy the current block to the old position for H band
- for (j = 0; j < aec->num_bands - 1; ++j) {
- memcpy(aec->dBufH[j], aec->dBufH[j] + PART_LEN, sizeof(float) * PART_LEN);
- }
-
- memmove(aec->xfwBuf + PART_LEN1, aec->xfwBuf,
- sizeof(aec->xfwBuf) - sizeof(complex_t) * PART_LEN1);
-}
-
-static void ProcessBlock(AecCore* aec) {
- size_t i;
-
- float fft[PART_LEN2];
- float x_fft[2][PART_LEN1];
- float df[2][PART_LEN1];
- float far_spectrum = 0.0f;
- float near_spectrum = 0.0f;
- float abs_far_spectrum[PART_LEN1];
- float abs_near_spectrum[PART_LEN1];
-
- const float gPow[2] = {0.9f, 0.1f};
-
- // Noise estimate constants.
- const int noiseInitBlocks = 500 * aec->mult;
- const float step = 0.1f;
- const float ramp = 1.0002f;
- const float gInitNoise[2] = {0.999f, 0.001f};
-
- float nearend[PART_LEN];
- float* nearend_ptr = NULL;
- float farend[PART_LEN2];
- float* farend_ptr = NULL;
- float echo_subtractor_output[PART_LEN];
- float output[PART_LEN];
- float outputH[NUM_HIGH_BANDS_MAX][PART_LEN];
- float* outputH_ptr[NUM_HIGH_BANDS_MAX];
- float* x_fft_ptr = NULL;
-
- for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) {
- outputH_ptr[i] = outputH[i];
- }
-
- // Concatenate old and new nearend blocks.
- for (i = 0; i < aec->num_bands - 1; ++i) {
- WebRtc_ReadBuffer(aec->nearFrBufH[i], (void**)&nearend_ptr, nearend,
- PART_LEN);
- memcpy(aec->dBufH[i] + PART_LEN, nearend_ptr, sizeof(nearend));
- }
- WebRtc_ReadBuffer(aec->nearFrBuf, (void**)&nearend_ptr, nearend, PART_LEN);
- memcpy(aec->dBuf + PART_LEN, nearend_ptr, sizeof(nearend));
-
- // We should always have at least one element stored in |far_buf|.
- assert(WebRtc_available_read(aec->far_time_buf) > 0);
- WebRtc_ReadBuffer(aec->far_time_buf, (void**)&farend_ptr, farend, 1);
-
-#ifdef WEBRTC_AEC_DEBUG_DUMP
- {
- // TODO(minyue): |farend_ptr| starts from buffered samples. This will be
- // modified when |aec->far_time_buf| is revised.
- RTC_AEC_DEBUG_WAV_WRITE(aec->farFile, &farend_ptr[PART_LEN], PART_LEN);
-
- RTC_AEC_DEBUG_WAV_WRITE(aec->nearFile, nearend_ptr, PART_LEN);
- }
-#endif
-
- if (aec->metricsMode == 1) {
- // Update power levels
- UpdateLevel(&aec->farlevel,
- CalculatePower(&farend_ptr[PART_LEN], PART_LEN));
- UpdateLevel(&aec->nearlevel, CalculatePower(nearend_ptr, PART_LEN));
- }
-
- // Convert far-end signal to the frequency domain.
- memcpy(fft, farend_ptr, sizeof(float) * PART_LEN2);
- Fft(fft, x_fft);
- x_fft_ptr = &x_fft[0][0];
-
- // Near fft
- memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2);
- Fft(fft, df);
-
- // Power smoothing
- for (i = 0; i < PART_LEN1; i++) {
- far_spectrum = (x_fft_ptr[i] * x_fft_ptr[i]) +
- (x_fft_ptr[PART_LEN1 + i] * x_fft_ptr[PART_LEN1 + i]);
- aec->xPow[i] =
- gPow[0] * aec->xPow[i] + gPow[1] * aec->num_partitions * far_spectrum;
- // Calculate absolute spectra
- abs_far_spectrum[i] = sqrtf(far_spectrum);
-
- near_spectrum = df[0][i] * df[0][i] + df[1][i] * df[1][i];
- aec->dPow[i] = gPow[0] * aec->dPow[i] + gPow[1] * near_spectrum;
- // Calculate absolute spectra
- abs_near_spectrum[i] = sqrtf(near_spectrum);
- }
-
- // Estimate noise power. Wait until dPow is more stable.
- if (aec->noiseEstCtr > 50) {
- for (i = 0; i < PART_LEN1; i++) {
- if (aec->dPow[i] < aec->dMinPow[i]) {
- aec->dMinPow[i] =
- (aec->dPow[i] + step * (aec->dMinPow[i] - aec->dPow[i])) * ramp;
- } else {
- aec->dMinPow[i] *= ramp;
- }
- }
- }
-
- // Smooth increasing noise power from zero at the start,
- // to avoid a sudden burst of comfort noise.
- if (aec->noiseEstCtr < noiseInitBlocks) {
- aec->noiseEstCtr++;
- for (i = 0; i < PART_LEN1; i++) {
- if (aec->dMinPow[i] > aec->dInitMinPow[i]) {
- aec->dInitMinPow[i] = gInitNoise[0] * aec->dInitMinPow[i] +
- gInitNoise[1] * aec->dMinPow[i];
- } else {
- aec->dInitMinPow[i] = aec->dMinPow[i];
- }
- }
- aec->noisePow = aec->dInitMinPow;
- } else {
- aec->noisePow = aec->dMinPow;
- }
-
- // Block wise delay estimation used for logging
- if (aec->delay_logging_enabled) {
- if (WebRtc_AddFarSpectrumFloat(aec->delay_estimator_farend,
- abs_far_spectrum, PART_LEN1) == 0) {
- int delay_estimate = WebRtc_DelayEstimatorProcessFloat(
- aec->delay_estimator, abs_near_spectrum, PART_LEN1);
- if (delay_estimate >= 0) {
- // Update delay estimate buffer.
- aec->delay_histogram[delay_estimate]++;
- aec->num_delay_values++;
- }
- if (aec->delay_metrics_delivered == 1 &&
- aec->num_delay_values >= kDelayMetricsAggregationWindow) {
- UpdateDelayMetrics(aec);
- }
- }
- }
-
- // Perform echo subtraction.
- EchoSubtraction(aec, aec->num_partitions, aec->extended_filter_enabled,
- aec->normal_mu, aec->normal_error_threshold, &x_fft[0][0],
- &aec->xfBufBlockPos, aec->xfBuf, nearend_ptr, aec->xPow,
- aec->wfBuf, echo_subtractor_output);
-
- RTC_AEC_DEBUG_WAV_WRITE(aec->outLinearFile, echo_subtractor_output, PART_LEN);
-
- if (aec->metricsMode == 1) {
- UpdateLevel(&aec->linoutlevel,
- CalculatePower(echo_subtractor_output, PART_LEN));
- }
-
- // Perform echo suppression.
- EchoSuppression(aec, farend_ptr, echo_subtractor_output, output, outputH_ptr);
-
- if (aec->metricsMode == 1) {
- UpdateMetrics(aec);
- }
-
- // Store the output block.
- WebRtc_WriteBuffer(aec->outFrBuf, output, PART_LEN);
- // For high bands
- for (i = 0; i < aec->num_bands - 1; ++i) {
- WebRtc_WriteBuffer(aec->outFrBufH[i], outputH[i], PART_LEN);
- }
-
- RTC_AEC_DEBUG_WAV_WRITE(aec->outFile, output, PART_LEN);
-}
-
-AecCore* WebRtcAec_CreateAec() {
- int i;
- AecCore* aec = malloc(sizeof(AecCore));
- if (!aec) {
- return NULL;
- }
-
- aec->nearFrBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(float));
- if (!aec->nearFrBuf) {
- WebRtcAec_FreeAec(aec);
- return NULL;
- }
-
- aec->outFrBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(float));
- if (!aec->outFrBuf) {
- WebRtcAec_FreeAec(aec);
- return NULL;
- }
-
- for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) {
- aec->nearFrBufH[i] =
- WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(float));
- if (!aec->nearFrBufH[i]) {
- WebRtcAec_FreeAec(aec);
- return NULL;
- }
- aec->outFrBufH[i] =
- WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(float));
- if (!aec->outFrBufH[i]) {
- WebRtcAec_FreeAec(aec);
- return NULL;
- }
- }
-
- // Create far-end buffers.
- // For bit exactness with legacy code, each element in |far_time_buf| is
- // supposed to contain |PART_LEN2| samples with an overlap of |PART_LEN|
- // samples from the last frame.
- // TODO(minyue): reduce |far_time_buf| to non-overlapped |PART_LEN| samples.
- aec->far_time_buf =
- WebRtc_CreateBuffer(kBufSizePartitions, sizeof(float) * PART_LEN2);
- if (!aec->far_time_buf) {
- WebRtcAec_FreeAec(aec);
- return NULL;
- }
-
-#ifdef WEBRTC_AEC_DEBUG_DUMP
- aec->instance_index = webrtc_aec_instance_count;
-
- aec->farFile = aec->nearFile = aec->outFile = aec->outLinearFile = NULL;
- aec->debug_dump_count = 0;
-#endif
- aec->delay_estimator_farend =
- WebRtc_CreateDelayEstimatorFarend(PART_LEN1, kHistorySizeBlocks);
- if (aec->delay_estimator_farend == NULL) {
- WebRtcAec_FreeAec(aec);
- return NULL;
- }
- // We create the delay_estimator with the same amount of maximum lookahead as
- // the delay history size (kHistorySizeBlocks) for symmetry reasons.
- aec->delay_estimator = WebRtc_CreateDelayEstimator(
- aec->delay_estimator_farend, kHistorySizeBlocks);
- if (aec->delay_estimator == NULL) {
- WebRtcAec_FreeAec(aec);
- return NULL;
- }
-#ifdef WEBRTC_ANDROID
- aec->delay_agnostic_enabled = 1; // DA-AEC enabled by default.
- // DA-AEC assumes the system is causal from the beginning and will self adjust
- // the lookahead when shifting is required.
- WebRtc_set_lookahead(aec->delay_estimator, 0);
-#else
- aec->delay_agnostic_enabled = 0;
- WebRtc_set_lookahead(aec->delay_estimator, kLookaheadBlocks);
-#endif
- aec->extended_filter_enabled = 0;
- aec->next_generation_aec_enabled = 0;
-
- // Assembly optimization
- WebRtcAec_FilterFar = FilterFar;
- WebRtcAec_ScaleErrorSignal = ScaleErrorSignal;
- WebRtcAec_FilterAdaptation = FilterAdaptation;
- WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppress;
- WebRtcAec_ComfortNoise = ComfortNoise;
- WebRtcAec_SubbandCoherence = SubbandCoherence;
- WebRtcAec_StoreAsComplex = StoreAsComplex;
- WebRtcAec_PartitionDelay = PartitionDelay;
- WebRtcAec_WindowData = WindowData;
-
-#if defined(WEBRTC_ARCH_X86_FAMILY)
- if (WebRtc_GetCPUInfo(kSSE2)) {
- WebRtcAec_InitAec_SSE2();
- }
-#endif
-
-#if defined(MIPS_FPU_LE)
- WebRtcAec_InitAec_mips();
-#endif
-
-#if defined(WEBRTC_HAS_NEON)
- WebRtcAec_InitAec_neon();
-#elif defined(WEBRTC_DETECT_NEON)
- if ((WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON) != 0) {
- WebRtcAec_InitAec_neon();
- }
-#endif
-
- aec_rdft_init();
-
- return aec;
-}
-
-void WebRtcAec_FreeAec(AecCore* aec) {
- int i;
- if (aec == NULL) {
- return;
- }
-
- WebRtc_FreeBuffer(aec->nearFrBuf);
- WebRtc_FreeBuffer(aec->outFrBuf);
-
- for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) {
- WebRtc_FreeBuffer(aec->nearFrBufH[i]);
- WebRtc_FreeBuffer(aec->outFrBufH[i]);
- }
-
- WebRtc_FreeBuffer(aec->far_time_buf);
-
- RTC_AEC_DEBUG_WAV_CLOSE(aec->farFile);
- RTC_AEC_DEBUG_WAV_CLOSE(aec->nearFile);
- RTC_AEC_DEBUG_WAV_CLOSE(aec->outFile);
- RTC_AEC_DEBUG_WAV_CLOSE(aec->outLinearFile);
- RTC_AEC_DEBUG_RAW_CLOSE(aec->e_fft_file);
-
- WebRtc_FreeDelayEstimator(aec->delay_estimator);
- WebRtc_FreeDelayEstimatorFarend(aec->delay_estimator_farend);
-
- free(aec);
-}
-
-int WebRtcAec_InitAec(AecCore* aec, int sampFreq) {
- int i;
-
- aec->sampFreq = sampFreq;
-
- if (sampFreq == 8000) {
- aec->normal_mu = 0.6f;
- aec->normal_error_threshold = 2e-6f;
- aec->num_bands = 1;
- } else {
- aec->normal_mu = 0.5f;
- aec->normal_error_threshold = 1.5e-6f;
- aec->num_bands = (size_t)(sampFreq / 16000);
- }
-
- WebRtc_InitBuffer(aec->nearFrBuf);
- WebRtc_InitBuffer(aec->outFrBuf);
- for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) {
- WebRtc_InitBuffer(aec->nearFrBufH[i]);
- WebRtc_InitBuffer(aec->outFrBufH[i]);
- }
-
- // Initialize far-end buffers.
- WebRtc_InitBuffer(aec->far_time_buf);
-
-#ifdef WEBRTC_AEC_DEBUG_DUMP
- {
- int process_rate = sampFreq > 16000 ? 16000 : sampFreq;
- RTC_AEC_DEBUG_WAV_REOPEN("aec_far", aec->instance_index,
- aec->debug_dump_count, process_rate,
- &aec->farFile);
- RTC_AEC_DEBUG_WAV_REOPEN("aec_near", aec->instance_index,
- aec->debug_dump_count, process_rate,
- &aec->nearFile);
- RTC_AEC_DEBUG_WAV_REOPEN("aec_out", aec->instance_index,
- aec->debug_dump_count, process_rate,
- &aec->outFile);
- RTC_AEC_DEBUG_WAV_REOPEN("aec_out_linear", aec->instance_index,
- aec->debug_dump_count, process_rate,
- &aec->outLinearFile);
- }
-
- RTC_AEC_DEBUG_RAW_OPEN("aec_e_fft", aec->debug_dump_count, &aec->e_fft_file);
-
- ++aec->debug_dump_count;
-#endif
- aec->system_delay = 0;
-
- if (WebRtc_InitDelayEstimatorFarend(aec->delay_estimator_farend) != 0) {
- return -1;
- }
- if (WebRtc_InitDelayEstimator(aec->delay_estimator) != 0) {
- return -1;
- }
- aec->delay_logging_enabled = 0;
- aec->delay_metrics_delivered = 0;
- memset(aec->delay_histogram, 0, sizeof(aec->delay_histogram));
- aec->num_delay_values = 0;
- aec->delay_median = -1;
- aec->delay_std = -1;
- aec->fraction_poor_delays = -1.0f;
-
- aec->signal_delay_correction = 0;
- aec->previous_delay = -2; // (-2): Uninitialized.
- aec->delay_correction_count = 0;
- aec->shift_offset = kInitialShiftOffset;
- aec->delay_quality_threshold = kDelayQualityThresholdMin;
-
- aec->num_partitions = kNormalNumPartitions;
-
- // Update the delay estimator with filter length. We use half the
- // |num_partitions| to take the echo path into account. In practice we say
- // that the echo has a duration of maximum half |num_partitions|, which is not
- // true, but serves as a crude measure.
- WebRtc_set_allowed_offset(aec->delay_estimator, aec->num_partitions / 2);
- // TODO(bjornv): I currently hard coded the enable. Once we've established
- // that AECM has no performance regression, robust_validation will be enabled
- // all the time and the APIs to turn it on/off will be removed. Hence, remove
- // this line then.
- WebRtc_enable_robust_validation(aec->delay_estimator, 1);
- aec->frame_count = 0;
-
- // Default target suppression mode.
- aec->nlp_mode = 1;
-
- // Sampling frequency multiplier w.r.t. 8 kHz.
- // In case of multiple bands we process the lower band in 16 kHz, hence the
- // multiplier is always 2.
- if (aec->num_bands > 1) {
- aec->mult = 2;
- } else {
- aec->mult = (short)aec->sampFreq / 8000;
- }
-
- aec->farBufWritePos = 0;
- aec->farBufReadPos = 0;
-
- aec->inSamples = 0;
- aec->outSamples = 0;
- aec->knownDelay = 0;
-
- // Initialize buffers
- memset(aec->dBuf, 0, sizeof(aec->dBuf));
- memset(aec->eBuf, 0, sizeof(aec->eBuf));
- // For H bands
- for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) {
- memset(aec->dBufH[i], 0, sizeof(aec->dBufH[i]));
- }
-
- memset(aec->xPow, 0, sizeof(aec->xPow));
- memset(aec->dPow, 0, sizeof(aec->dPow));
- memset(aec->dInitMinPow, 0, sizeof(aec->dInitMinPow));
- aec->noisePow = aec->dInitMinPow;
- aec->noiseEstCtr = 0;
-
- // Initial comfort noise power
- for (i = 0; i < PART_LEN1; i++) {
- aec->dMinPow[i] = 1.0e6f;
- }
-
- // Holds the last block written to
- aec->xfBufBlockPos = 0;
- // TODO: Investigate need for these initializations. Deleting them doesn't
- // change the output at all and yields 0.4% overall speedup.
- memset(aec->xfBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1);
- memset(aec->wfBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1);
- memset(aec->sde, 0, sizeof(complex_t) * PART_LEN1);
- memset(aec->sxd, 0, sizeof(complex_t) * PART_LEN1);
- memset(aec->xfwBuf, 0,
- sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1);
- memset(aec->se, 0, sizeof(float) * PART_LEN1);
-
- // To prevent numerical instability in the first block.
- for (i = 0; i < PART_LEN1; i++) {
- aec->sd[i] = 1;
- }
- for (i = 0; i < PART_LEN1; i++) {
- aec->sx[i] = 1;
- }
-
- memset(aec->hNs, 0, sizeof(aec->hNs));
- memset(aec->outBuf, 0, sizeof(float) * PART_LEN);
-
- aec->hNlFbMin = 1;
- aec->hNlFbLocalMin = 1;
- aec->hNlXdAvgMin = 1;
- aec->hNlNewMin = 0;
- aec->hNlMinCtr = 0;
- aec->overDrive = 2;
- aec->overDriveSm = 2;
- aec->delayIdx = 0;
- aec->stNearState = 0;
- aec->echoState = 0;
- aec->divergeState = 0;
-
- aec->seed = 777;
- aec->delayEstCtr = 0;
-
- aec->extreme_filter_divergence = 0;
-
- // Metrics disabled by default
- aec->metricsMode = 0;
- InitMetrics(aec);
-
- return 0;
-}
-
-// For bit exactness with a legacy code, |farend| is supposed to contain
-// |PART_LEN2| samples with an overlap of |PART_LEN| samples from the last
-// frame.
-// TODO(minyue): reduce |farend| to non-overlapped |PART_LEN| samples.
-void WebRtcAec_BufferFarendPartition(AecCore* aec, const float* farend) {
- // Check if the buffer is full, and in that case flush the oldest data.
- if (WebRtc_available_write(aec->far_time_buf) < 1) {
- WebRtcAec_MoveFarReadPtr(aec, 1);
- }
-
- WebRtc_WriteBuffer(aec->far_time_buf, farend, 1);
-}
-
-int WebRtcAec_MoveFarReadPtr(AecCore* aec, int elements) {
- int elements_moved = WebRtc_MoveReadPtr(aec->far_time_buf, elements);
- aec->system_delay -= elements_moved * PART_LEN;
- return elements_moved;
-}
-
-void WebRtcAec_ProcessFrames(AecCore* aec,
- const float* const* nearend,
- size_t num_bands,
- size_t num_samples,
- int knownDelay,
- float* const* out) {
- size_t i, j;
- int out_elements = 0;
-
- aec->frame_count++;
- // For each frame the process is as follows:
- // 1) If the system_delay indicates on being too small for processing a
- // frame we stuff the buffer with enough data for 10 ms.
- // 2 a) Adjust the buffer to the system delay, by moving the read pointer.
- // b) Apply signal based delay correction, if we have detected poor AEC
- // performance.
- // 3) TODO(bjornv): Investigate if we need to add this:
- // If we can't move read pointer due to buffer size limitations we
- // flush/stuff the buffer.
- // 4) Process as many partitions as possible.
- // 5) Update the |system_delay| with respect to a full frame of FRAME_LEN
- // samples. Even though we will have data left to process (we work with
- // partitions) we consider updating a whole frame, since that's the
- // amount of data we input and output in audio_processing.
- // 6) Update the outputs.
-
- // The AEC has two different delay estimation algorithms built in. The
- // first relies on delay input values from the user and the amount of
- // shifted buffer elements is controlled by |knownDelay|. This delay will
- // give a guess on how much we need to shift far-end buffers to align with
- // the near-end signal. The other delay estimation algorithm uses the
- // far- and near-end signals to find the offset between them. This one
- // (called "signal delay") is then used to fine tune the alignment, or
- // simply compensate for errors in the system based one.
- // Note that the two algorithms operate independently. Currently, we only
- // allow one algorithm to be turned on.
-
- assert(aec->num_bands == num_bands);
-
- for (j = 0; j < num_samples; j += FRAME_LEN) {
- // TODO(bjornv): Change the near-end buffer handling to be the same as for
- // far-end, that is, with a near_pre_buf.
- // Buffer the near-end frame.
- WebRtc_WriteBuffer(aec->nearFrBuf, &nearend[0][j], FRAME_LEN);
- // For H band
- for (i = 1; i < num_bands; ++i) {
- WebRtc_WriteBuffer(aec->nearFrBufH[i - 1], &nearend[i][j], FRAME_LEN);
- }
-
- // 1) At most we process |aec->mult|+1 partitions in 10 ms. Make sure we
- // have enough far-end data for that by stuffing the buffer if the
- // |system_delay| indicates others.
- if (aec->system_delay < FRAME_LEN) {
- // We don't have enough data so we rewind 10 ms.
- WebRtcAec_MoveFarReadPtr(aec, -(aec->mult + 1));
- }
-
- if (!aec->delay_agnostic_enabled) {
- // 2 a) Compensate for a possible change in the system delay.
-
- // TODO(bjornv): Investigate how we should round the delay difference;
- // right now we know that incoming |knownDelay| is underestimated when
- // it's less than |aec->knownDelay|. We therefore, round (-32) in that
- // direction. In the other direction, we don't have this situation, but
- // might flush one partition too little. This can cause non-causality,
- // which should be investigated. Maybe, allow for a non-symmetric
- // rounding, like -16.
- int move_elements = (aec->knownDelay - knownDelay - 32) / PART_LEN;
- int moved_elements = WebRtc_MoveReadPtr(aec->far_time_buf, move_elements);
- aec->knownDelay -= moved_elements * PART_LEN;
- } else {
- // 2 b) Apply signal based delay correction.
- int move_elements = SignalBasedDelayCorrection(aec);
- int moved_elements = WebRtc_MoveReadPtr(aec->far_time_buf, move_elements);
- int far_near_buffer_diff =
- WebRtc_available_read(aec->far_time_buf) -
- WebRtc_available_read(aec->nearFrBuf) / PART_LEN;
- WebRtc_SoftResetDelayEstimator(aec->delay_estimator, moved_elements);
- WebRtc_SoftResetDelayEstimatorFarend(aec->delay_estimator_farend,
- moved_elements);
- aec->signal_delay_correction += moved_elements;
- // If we rely on reported system delay values only, a buffer underrun here
- // can never occur since we've taken care of that in 1) above. Here, we
- // apply signal based delay correction and can therefore end up with
- // buffer underruns since the delay estimation can be wrong. We therefore
- // stuff the buffer with enough elements if needed.
- if (far_near_buffer_diff < 0) {
- WebRtcAec_MoveFarReadPtr(aec, far_near_buffer_diff);
- }
- }
-
- // 4) Process as many blocks as possible.
- while (WebRtc_available_read(aec->nearFrBuf) >= PART_LEN) {
- ProcessBlock(aec);
- }
-
- // 5) Update system delay with respect to the entire frame.
- aec->system_delay -= FRAME_LEN;
-
- // 6) Update output frame.
- // Stuff the out buffer if we have less than a frame to output.
- // This should only happen for the first frame.
- out_elements = (int)WebRtc_available_read(aec->outFrBuf);
- if (out_elements < FRAME_LEN) {
- WebRtc_MoveReadPtr(aec->outFrBuf, out_elements - FRAME_LEN);
- for (i = 0; i < num_bands - 1; ++i) {
- WebRtc_MoveReadPtr(aec->outFrBufH[i], out_elements - FRAME_LEN);
- }
- }
- // Obtain an output frame.
- WebRtc_ReadBuffer(aec->outFrBuf, NULL, &out[0][j], FRAME_LEN);
- // For H bands.
- for (i = 1; i < num_bands; ++i) {
- WebRtc_ReadBuffer(aec->outFrBufH[i - 1], NULL, &out[i][j], FRAME_LEN);
- }
- }
-}
-
-int WebRtcAec_GetDelayMetricsCore(AecCore* self,
- int* median,
- int* std,
- float* fraction_poor_delays) {
- assert(self != NULL);
- assert(median != NULL);
- assert(std != NULL);
-
- if (self->delay_logging_enabled == 0) {
- // Logging disabled.
- return -1;
- }
-
- if (self->delay_metrics_delivered == 0) {
- UpdateDelayMetrics(self);
- self->delay_metrics_delivered = 1;
- }
- *median = self->delay_median;
- *std = self->delay_std;
- *fraction_poor_delays = self->fraction_poor_delays;
-
- return 0;
-}
-
-int WebRtcAec_echo_state(AecCore* self) {
- return self->echoState;
-}
-
-void WebRtcAec_GetEchoStats(AecCore* self,
- Stats* erl,
- Stats* erle,
- Stats* a_nlp) {
- assert(erl != NULL);
- assert(erle != NULL);
- assert(a_nlp != NULL);
- *erl = self->erl;
- *erle = self->erle;
- *a_nlp = self->aNlp;
-}
-
-void WebRtcAec_SetConfigCore(AecCore* self,
- int nlp_mode,
- int metrics_mode,
- int delay_logging) {
- assert(nlp_mode >= 0 && nlp_mode < 3);
- self->nlp_mode = nlp_mode;
- self->metricsMode = metrics_mode;
- if (self->metricsMode) {
- InitMetrics(self);
- }
- // Turn on delay logging if it is either set explicitly or if delay agnostic
- // AEC is enabled (which requires delay estimates).
- self->delay_logging_enabled = delay_logging || self->delay_agnostic_enabled;
- if (self->delay_logging_enabled) {
- memset(self->delay_histogram, 0, sizeof(self->delay_histogram));
- }
-}
-
-void WebRtcAec_enable_delay_agnostic(AecCore* self, int enable) {
- self->delay_agnostic_enabled = enable;
-}
-
-int WebRtcAec_delay_agnostic_enabled(AecCore* self) {
- return self->delay_agnostic_enabled;
-}
-
-void WebRtcAec_enable_next_generation_aec(AecCore* self, int enable) {
- self->next_generation_aec_enabled = (enable != 0);
-}
-
-int WebRtcAec_next_generation_aec_enabled(AecCore* self) {
- assert(self->next_generation_aec_enabled == 0 ||
- self->next_generation_aec_enabled == 1);
- return self->next_generation_aec_enabled;
-}
-
-
-void WebRtcAec_enable_extended_filter(AecCore* self, int enable) {
- self->extended_filter_enabled = enable;
- self->num_partitions = enable ? kExtendedNumPartitions : kNormalNumPartitions;
- // Update the delay estimator with filter length. See InitAEC() for details.
- WebRtc_set_allowed_offset(self->delay_estimator, self->num_partitions / 2);
-}
-
-int WebRtcAec_extended_filter_enabled(AecCore* self) {
- return self->extended_filter_enabled;
-}
-
-int WebRtcAec_system_delay(AecCore* self) {
- return self->system_delay;
-}
-
-void WebRtcAec_SetSystemDelay(AecCore* self, int delay) {
- assert(delay >= 0);
- self->system_delay = delay;
-}
« no previous file with comments | « webrtc/modules/audio_processing/BUILD.gn ('k') | webrtc/modules/audio_processing/aec/aec_core.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698