OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. | 2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #ifndef WEBRTC_BASE_BUFFER_H_ | 11 #ifndef WEBRTC_BASE_BUFFER_H_ |
12 #define WEBRTC_BASE_BUFFER_H_ | 12 #define WEBRTC_BASE_BUFFER_H_ |
13 | 13 |
14 #include <algorithm> // std::swap (pre-C++11) | 14 #include <algorithm> // std::swap (pre-C++11) |
15 #include <cassert> | |
16 #include <cstring> | 15 #include <cstring> |
17 #include <memory> | 16 #include <memory> |
18 #include <utility> // std::swap (C++11 and later) | 17 #include <utility> // std::swap (C++11 and later) |
19 | 18 |
19 #include "webrtc/base/checks.h" | |
20 #include "webrtc/base/constructormagic.h" | 20 #include "webrtc/base/constructormagic.h" |
21 #include "webrtc/base/deprecation.h" | 21 #include "webrtc/base/deprecation.h" |
22 #include "webrtc/base/refcount.h" | |
23 #include "webrtc/base/scoped_ref_ptr.h" | |
22 | 24 |
23 namespace rtc { | 25 namespace rtc { |
24 | 26 |
27 class Buffer; | |
kwiberg-webrtc
2016/02/15 12:33:16
This forward declaration should no longer be neces
| |
28 | |
25 namespace internal { | 29 namespace internal { |
26 | 30 |
27 // (Internal; please don't use outside this file.) ByteType<T>::t is int if T | 31 // (Internal; please don't use outside this file.) ByteType<T>::t is int if T |
28 // is uint8_t, int8_t, or char; otherwise, it's a compilation error. Use like | 32 // is uint8_t, int8_t, or char; otherwise, it's a compilation error. Use like |
29 // this: | 33 // this: |
30 // | 34 // |
31 // template <typename T, typename ByteType<T>::t = 0> | 35 // template <typename T, typename ByteType<T>::t = 0> |
32 // void foo(T* x); | 36 // void foo(T* x); |
33 // | 37 // |
34 // to let foo<T> be defined only for byte-sized integers. | 38 // to let foo<T> be defined only for byte-sized integers. |
35 template <typename T> | 39 template <typename T> |
36 struct ByteType { | 40 struct ByteType { |
37 private: | 41 private: |
38 static int F(uint8_t*); | 42 static int F(uint8_t*); |
39 static int F(int8_t*); | 43 static int F(int8_t*); |
40 static int F(char*); | 44 static int F(char*); |
41 | 45 |
42 public: | 46 public: |
43 using t = decltype(F(static_cast<T*>(nullptr))); | 47 using t = decltype(F(static_cast<T*>(nullptr))); |
44 }; | 48 }; |
45 | 49 |
46 } // namespace internal | 50 } // namespace internal |
47 | 51 |
48 // Basic buffer class, can be grown and shrunk dynamically. | 52 // Basic buffer class, can be grown and shrunk dynamically. |
49 // Unlike std::string/vector, does not initialize data when expanding capacity. | 53 // Unlike std::string/vector, does not initialize data when expanding capacity. |
54 // The underlying memory is shared between copies of buffers and cloned if a | |
55 // shared buffer is being modified. | |
50 class Buffer { | 56 class Buffer { |
51 public: | 57 public: |
52 Buffer(); // An empty buffer. | 58 Buffer(); // An empty buffer. |
53 Buffer(const Buffer& buf); // Copy size and contents of an existing buffer. | 59 Buffer(const Buffer& buf); // Copy size and contents of an existing buffer. |
54 Buffer(Buffer&& buf); // Move contents from an existing buffer. | 60 Buffer(Buffer&& buf); // Move contents from an existing buffer. |
55 | 61 |
56 // Construct a buffer with the specified number of uninitialized bytes. | 62 // Construct a buffer with the specified number of uninitialized bytes. |
57 explicit Buffer(size_t size); | 63 explicit Buffer(size_t size); |
58 Buffer(size_t size, size_t capacity); | 64 Buffer(size_t size, size_t capacity); |
59 | 65 |
60 // Construct a buffer and copy the specified number of bytes into it. The | 66 // Construct a buffer and copy the specified number of bytes into it. The |
61 // source array may be (const) uint8_t*, int8_t*, or char*. | 67 // source array may be (const) uint8_t*, int8_t*, or char*. |
62 template <typename T, typename internal::ByteType<T>::t = 0> | 68 template <typename T, typename internal::ByteType<T>::t = 0> |
63 Buffer(const T* data, size_t size) | 69 Buffer(const T* data, size_t size) |
64 : Buffer(data, size, size) {} | 70 : Buffer(data, size, size) {} |
65 template <typename T, typename internal::ByteType<T>::t = 0> | 71 template <typename T, typename internal::ByteType<T>::t = 0> |
66 Buffer(const T* data, size_t size, size_t capacity) | 72 Buffer(const T* data, size_t size, size_t capacity) |
67 : Buffer(size, capacity) { | 73 : Buffer(size, capacity) { |
68 std::memcpy(data_.get(), data, size); | 74 std::memcpy(data_->data_.get(), data, size); |
69 } | 75 } |
70 | 76 |
71 // Construct a buffer from the contents of an array. | 77 // Construct a buffer from the contents of an array. |
72 template <typename T, size_t N, typename internal::ByteType<T>::t = 0> | 78 template <typename T, size_t N, typename internal::ByteType<T>::t = 0> |
73 Buffer(const T(&array)[N]) | 79 Buffer(const T(&array)[N]) // NOLINT: runtime/explicit |
74 : Buffer(array, N) {} | 80 : Buffer(array, N) {} |
75 | 81 |
76 ~Buffer(); | 82 ~Buffer(); |
77 | 83 |
78 // Get a pointer to the data. Just .data() will give you a (const) uint8_t*, | 84 // Get a pointer to the data. Just .data() will give you a (const) uint8_t*, |
79 // but you may also use .data<int8_t>() and .data<char>(). | 85 // but you may also use .data<int8_t>() and .data<char>(). |
80 template <typename T = uint8_t, typename internal::ByteType<T>::t = 0> | 86 template <typename T = uint8_t, typename internal::ByteType<T>::t = 0> |
81 const T* data() const { | 87 const T* data() const { |
82 assert(IsConsistent()); | 88 if (!data_) { |
83 return reinterpret_cast<T*>(data_.get()); | 89 return nullptr; |
90 } | |
91 RTC_DCHECK(IsConsistent()); | |
92 return reinterpret_cast<T*>(data_->data_.get()); | |
84 } | 93 } |
94 // Get writable pointer to the data. This will create a copy of the underlying | |
95 // data if it is shared with other buffers. | |
85 template <typename T = uint8_t, typename internal::ByteType<T>::t = 0> | 96 template <typename T = uint8_t, typename internal::ByteType<T>::t = 0> |
86 T* data() { | 97 T* data() { |
87 assert(IsConsistent()); | 98 if (!data_) { |
88 return reinterpret_cast<T*>(data_.get()); | 99 return nullptr; |
100 } | |
101 CloneDataIfReferenced(); | |
102 return reinterpret_cast<T*>(data_->data_.get()); | |
89 } | 103 } |
90 | 104 |
91 size_t size() const { | 105 size_t size() const { |
92 assert(IsConsistent()); | 106 RTC_DCHECK(IsConsistent()); |
93 return size_; | 107 return data_ ? data_->size_ : 0; |
94 } | 108 } |
95 size_t capacity() const { | 109 size_t capacity() const { |
96 assert(IsConsistent()); | 110 RTC_DCHECK(IsConsistent()); |
97 return capacity_; | 111 return data_ ? data_->capacity_ : 0; |
98 } | 112 } |
99 | 113 |
100 Buffer& operator=(const Buffer& buf) { | 114 Buffer& operator=(const Buffer& buf) { |
101 if (&buf != this) | 115 if (&buf != this) { |
102 SetData(buf.data(), buf.size()); | 116 SetData(buf); |
117 } | |
103 return *this; | 118 return *this; |
104 } | 119 } |
105 Buffer& operator=(Buffer&& buf) { | 120 Buffer& operator=(Buffer&& buf) { |
106 assert(IsConsistent()); | 121 if (&buf != this) { |
107 assert(buf.IsConsistent()); | 122 RTC_DCHECK(IsConsistent()); |
108 size_ = buf.size_; | 123 RTC_DCHECK(buf.IsConsistent()); |
109 capacity_ = buf.capacity_; | 124 data_ = std::move(buf.data_); |
110 data_ = std::move(buf.data_); | 125 buf.OnMovedFrom(); |
111 buf.OnMovedFrom(); | 126 } |
112 return *this; | 127 return *this; |
113 } | 128 } |
114 | 129 |
115 bool operator==(const Buffer& buf) const { | 130 bool operator==(const Buffer& buf) const { |
116 assert(IsConsistent()); | 131 return data_ == buf.data_ || |
117 return size_ == buf.size() && memcmp(data_.get(), buf.data(), size_) == 0; | 132 (size() == buf.size() && memcmp(data(), buf.data(), size()) == 0); |
118 } | 133 } |
119 | 134 |
120 bool operator!=(const Buffer& buf) const { return !(*this == buf); } | 135 bool operator!=(const Buffer& buf) const { return !(*this == buf); } |
121 | 136 |
122 // Replace the contents of the buffer. Accepts the same types as the | 137 // Replace the contents of the buffer. Accepts the same types as the |
123 // constructors. | 138 // constructors. |
124 template <typename T, typename internal::ByteType<T>::t = 0> | 139 template <typename T, typename internal::ByteType<T>::t = 0> |
125 void SetData(const T* data, size_t size) { | 140 void SetData(const T* data, size_t size) { |
126 assert(IsConsistent()); | 141 RTC_DCHECK(IsConsistent()); |
127 size_ = 0; | 142 if (!data_ || !data_->HasOneRef()) { |
128 AppendData(data, size); | 143 data_ = new BufferData(data, size, size); |
144 } else { | |
145 data_->SetData(data, size); | |
146 } | |
129 } | 147 } |
130 template <typename T, size_t N, typename internal::ByteType<T>::t = 0> | 148 template <typename T, size_t N, typename internal::ByteType<T>::t = 0> |
131 void SetData(const T(&array)[N]) { | 149 void SetData(const T(&array)[N]) { |
132 SetData(array, N); | 150 SetData(array, N); |
133 } | 151 } |
134 void SetData(const Buffer& buf) { SetData(buf.data(), buf.size()); } | 152 void SetData(const Buffer& buf) { |
153 if (&buf != this) { | |
154 RTC_DCHECK(IsConsistent()); | |
155 RTC_DCHECK(buf.IsConsistent()); | |
156 data_ = buf.data_; | |
157 } | |
158 } | |
135 | 159 |
136 // Append data to the buffer. Accepts the same types as the constructors. | 160 // Append data to the buffer. Accepts the same types as the constructors. |
137 template <typename T, typename internal::ByteType<T>::t = 0> | 161 template <typename T, typename internal::ByteType<T>::t = 0> |
138 void AppendData(const T* data, size_t size) { | 162 void AppendData(const T* data, size_t size) { |
139 assert(IsConsistent()); | 163 if (!data_) { |
140 const size_t new_size = size_ + size; | 164 data_ = new BufferData(data, size, size); |
141 EnsureCapacity(new_size); | 165 return; |
142 std::memcpy(data_.get() + size_, data, size); | 166 } |
143 size_ = new_size; | 167 |
144 assert(IsConsistent()); | 168 CloneDataIfReferenced(); |
169 data_->AppendData(data, size); | |
kwiberg-webrtc
2016/02/15 12:33:16
Here you'll potentially clone the data, then immed
| |
145 } | 170 } |
146 template <typename T, size_t N, typename internal::ByteType<T>::t = 0> | 171 template <typename T, size_t N, typename internal::ByteType<T>::t = 0> |
147 void AppendData(const T(&array)[N]) { | 172 void AppendData(const T(&array)[N]) { |
148 AppendData(array, N); | 173 AppendData(array, N); |
149 } | 174 } |
150 void AppendData(const Buffer& buf) { AppendData(buf.data(), buf.size()); } | 175 void AppendData(const Buffer& buf) { AppendData(buf.data(), buf.size()); } |
151 | 176 |
152 // Sets the size of the buffer. If the new size is smaller than the old, the | 177 // Sets the size of the buffer. If the new size is smaller than the old, the |
153 // buffer contents will be kept but truncated; if the new size is greater, | 178 // buffer contents will be kept but truncated; if the new size is greater, |
154 // the existing contents will be kept and the new space will be | 179 // the existing contents will be kept and the new space will be |
155 // uninitialized. | 180 // uninitialized. |
156 void SetSize(size_t size) { | 181 void SetSize(size_t size) { |
157 EnsureCapacity(size); | 182 if (!data_) { |
158 size_ = size; | 183 data_ = new BufferData(nullptr, size, size); |
184 return; | |
185 } | |
186 | |
187 CloneDataIfReferenced(); | |
188 data_->SetSize(size); | |
kwiberg-webrtc
2016/02/15 12:33:16
Here you'll potentially clone the data, then immed
| |
159 } | 189 } |
160 | 190 |
161 // Ensure that the buffer size can be increased to at least capacity without | 191 // Ensure that the buffer size can be increased to at least capacity without |
162 // further reallocation. (Of course, this operation might need to reallocate | 192 // further reallocation. (Of course, this operation might need to reallocate |
163 // the buffer.) | 193 // the buffer.) |
164 void EnsureCapacity(size_t capacity) { | 194 void EnsureCapacity(size_t capacity) { |
165 assert(IsConsistent()); | 195 RTC_DCHECK(IsConsistent()); |
166 if (capacity <= capacity_) | 196 if (!data_) { |
197 data_ = new BufferData(nullptr, 0, capacity); | |
167 return; | 198 return; |
168 std::unique_ptr<uint8_t[]> new_data(new uint8_t[capacity]); | 199 } else if (capacity <= data_->capacity_) { |
169 std::memcpy(new_data.get(), data_.get(), size_); | 200 return; |
170 data_ = std::move(new_data); | 201 } |
171 capacity_ = capacity; | 202 |
172 assert(IsConsistent()); | 203 CloneDataIfReferenced(); |
204 data_->EnsureCapacity(capacity); | |
kwiberg-webrtc
2016/02/15 12:33:16
Here you'll potentially clone the data, then immed
| |
173 } | 205 } |
174 | 206 |
175 // b.Pass() does the same thing as std::move(b). | 207 // b.Pass() does the same thing as std::move(b). |
176 // Deprecated; remove in March 2016 (bug 5373). | 208 // Deprecated; remove in March 2016 (bug 5373). |
177 RTC_DEPRECATED Buffer&& Pass() { return DEPRECATED_Pass(); } | 209 RTC_DEPRECATED Buffer&& Pass() { return DEPRECATED_Pass(); } |
178 Buffer&& DEPRECATED_Pass() { | 210 Buffer&& DEPRECATED_Pass() { |
179 assert(IsConsistent()); | 211 RTC_DCHECK(IsConsistent()); |
180 return std::move(*this); | 212 return std::move(*this); |
181 } | 213 } |
182 | 214 |
183 // Resets the buffer to zero size and capacity. Works even if the buffer has | 215 // Resets the buffer to zero size and capacity. |
184 // been moved from. | |
185 void Clear() { | 216 void Clear() { |
186 data_.reset(); | 217 if (!data_ || !data_->HasOneRef()) { |
187 size_ = 0; | 218 data_ = nullptr; |
188 capacity_ = 0; | 219 } else { |
189 assert(IsConsistent()); | 220 data_->Clear(); |
221 } | |
222 RTC_DCHECK(IsConsistent()); | |
190 } | 223 } |
191 | 224 |
192 // Swaps two buffers. Also works for buffers that have been moved from. | 225 // Swaps two buffers. |
193 friend void swap(Buffer& a, Buffer& b) { | 226 friend void swap(Buffer& a, Buffer& b) { |
194 using std::swap; | 227 std::swap(a.data_, b.data_); |
195 swap(a.size_, b.size_); | |
196 swap(a.capacity_, b.capacity_); | |
197 swap(a.data_, b.data_); | |
198 } | 228 } |
199 | 229 |
200 private: | 230 private: |
231 // Data stored in a buffer. RefCounted and will be shared between buffers that | |
232 // are cloned to avoid unnecessary allocations / copies. | |
233 class BufferData : public RefCountedObject<RefCountInterface> { | |
234 public: | |
235 // Construct data and copy the specified number of bytes into it. | |
236 BufferData(const void* data, size_t size, size_t capacity); | |
237 | |
238 void SetData(const void* data, size_t size) { | |
239 RTC_DCHECK(IsConsistent()); | |
240 size_ = 0; | |
241 AppendData(data, size); | |
242 } | |
243 | |
244 void AppendData(const void* data, size_t size) { | |
245 RTC_DCHECK(IsConsistent()); | |
246 const size_t new_size = size_ + size; | |
247 EnsureCapacity(new_size); | |
248 std::memcpy(data_.get() + size_, data, size); | |
249 size_ = new_size; | |
250 RTC_DCHECK(IsConsistent()); | |
251 } | |
252 | |
253 // Sets the size of the data. If the new size is smaller than the old, the | |
254 // data contents will be kept but truncated; if the new size is greater, | |
255 // the existing contents will be kept and the new space will be | |
256 // uninitialized. | |
257 void SetSize(size_t size) { | |
258 EnsureCapacity(size); | |
259 size_ = size; | |
260 } | |
261 | |
262 // Ensure that the data size can be increased to at least capacity without | |
263 // further reallocation. (Of course, this operation might need to reallocate | |
264 // the buffer.) | |
265 void EnsureCapacity(size_t capacity) { | |
266 RTC_DCHECK(IsConsistent()); | |
267 if (capacity <= capacity_) { | |
268 return; | |
269 } | |
270 | |
271 std::unique_ptr<uint8_t[]> new_data(new uint8_t[capacity]); | |
272 std::memcpy(new_data.get(), data_.get(), size_); | |
273 data_ = std::move(new_data); | |
274 capacity_ = capacity; | |
275 RTC_DCHECK(IsConsistent()); | |
276 } | |
277 | |
278 // Resets the data to zero size and capacity. | |
279 void Clear() { | |
280 data_.reset(); | |
281 size_ = 0; | |
282 capacity_ = 0; | |
283 RTC_DCHECK(IsConsistent()); | |
284 } | |
285 | |
286 // Precondition for all methods except Clear and the destructor. | |
287 // Postcondition for all methods except move construction and move | |
288 // assignment, which leave the moved-from object in a possibly inconsistent | |
289 // state. | |
290 bool IsConsistent() const { | |
291 return (data_ || capacity_ == 0) && capacity_ >= size_; | |
kwiberg-webrtc
2016/02/15 12:33:16
Perhaps better to make this
data_ && capacity_
| |
292 } | |
293 | |
294 #ifndef NDEBUG | |
295 // Called when *this has been moved from. Conceptually it's a no-op, but we | |
296 // can mutate the state slightly to help subsequent sanity checks catch | |
297 // bugs. | |
298 void OnMovedFrom() { | |
299 // Ensure that *this is always inconsistent, to provoke bugs. | |
300 size_ = 1; | |
301 capacity_ = 0; | |
302 } | |
303 #endif | |
304 | |
305 size_t size_; | |
306 size_t capacity_; | |
307 std::unique_ptr<uint8_t[]> data_; | |
308 }; | |
309 | |
201 // Precondition for all methods except Clear and the destructor. | 310 // Precondition for all methods except Clear and the destructor. |
202 // Postcondition for all methods except move construction and move | 311 // Postcondition for all methods except move construction and move |
203 // assignment, which leave the moved-from object in a possibly inconsistent | 312 // assignment, which leave the moved-from object in a possibly inconsistent |
204 // state. | 313 // state. |
205 bool IsConsistent() const { | 314 bool IsConsistent() const { |
206 return (data_ || capacity_ == 0) && capacity_ >= size_; | 315 return data_ == nullptr || data_->IsConsistent(); |
207 } | 316 } |
208 | 317 |
209 // Called when *this has been moved from. Conceptually it's a no-op, but we | 318 // Called when *this has been moved from. Conceptually it's a no-op, but we |
210 // can mutate the state slightly to help subsequent sanity checks catch bugs. | 319 // can mutate the state slightly to help subsequent sanity checks catch bugs. |
211 void OnMovedFrom() { | 320 void OnMovedFrom() { |
212 #ifdef NDEBUG | 321 #ifdef NDEBUG |
213 // Make *this consistent and empty. Shouldn't be necessary, but better safe | 322 data_ = nullptr; |
214 // than sorry. | |
215 size_ = 0; | |
216 capacity_ = 0; | |
217 #else | 323 #else |
218 // Ensure that *this is always inconsistent, to provoke bugs. | 324 // Ensure that *this is always inconsistent, to provoke bugs. |
219 size_ = 1; | 325 data_ = new BufferData(nullptr, 0, 0); |
220 capacity_ = 0; | 326 data_->OnMovedFrom(); |
221 #endif | 327 #endif |
222 } | 328 } |
223 | 329 |
224 size_t size_; | 330 // Create a copy of the underlying data if it is referenced from other Buffer |
225 size_t capacity_; | 331 // objects. |
226 std::unique_ptr<uint8_t[]> data_; | 332 void CloneDataIfReferenced() { |
333 RTC_DCHECK(data_ != nullptr); | |
334 RTC_DCHECK(IsConsistent()); | |
335 if (data_->HasOneRef()) { | |
336 return; | |
337 } | |
338 | |
339 data_ = new BufferData(data_->data_.get(), data_->size_, | |
340 data_->capacity_); | |
341 } | |
342 | |
343 scoped_refptr<BufferData> data_; | |
227 }; | 344 }; |
228 | 345 |
229 } // namespace rtc | 346 } // namespace rtc |
230 | 347 |
231 #endif // WEBRTC_BASE_BUFFER_H_ | 348 #endif // WEBRTC_BASE_BUFFER_H_ |
OLD | NEW |