Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(378)

Unified Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc

Issue 1693823004: Use VAD to get a better speech power estimation in the IntelligibilityEnhancer (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@pow
Patch Set: Make gain change limit relative Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
index 877e437fe7a298cb1cb0242af239b1b12691df17..d3feedce5a332f9c4ede71afa16a69d78c759958 100644
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
@@ -8,13 +8,6 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-//
-// Implements core class for intelligibility enhancer.
-//
-// Details of the model and algorithm can be found in the original paper:
-// http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788
-//
-
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
#include <math.h>
@@ -32,13 +25,18 @@ namespace webrtc {
namespace {
const size_t kErbResolution = 2;
-const int kWindowSizeMs = 2;
+const int kWindowSizeMs = 16;
const int kChunkSizeMs = 10; // Size provided by APM.
-const float kClipFreq = 200.0f;
-const float kConfigRho = 0.02f; // Default production and interpretation SNR.
+const float kClipFreqKhz = 0.2f;
const float kKbdAlpha = 1.5f;
const float kLambdaBot = -1.0f; // Extreme values in bisection
const float kLambdaTop = -10e-18f; // search for lamda.
+const float kVoiceProbabilityThreshold = 0.02;
+// Number of chunks after voice activity which is still considered speech.
+const size_t kSpeechOffsetDelay = 80;
+const float kDecayRate = 0.98f; // Power estimation decay rate.
+const float kMaxRelativeGainChange = 0.04f; // Maximum relative change in gain.
+const float kRho = 0.0004f; // Default production and interpretation SNR.
// Returns dot product of vectors |a| and |b| with size |length|.
float DotProduct(const float* a, const float* b, size_t length) {
@@ -49,99 +47,76 @@ float DotProduct(const float* a, const float* b, size_t length) {
return ret;
}
-// Computes the power across ERB filters from the power spectral density |var|.
+// Computes the power across ERB bands from the power spectral density |pow|.
// Stores it in |result|.
-void FilterVariance(const float* var,
- const std::vector<std::vector<float>>& filter_bank,
- float* result) {
+void MapToErbBands(const float* pow,
+ const std::vector<std::vector<float>>& filter_bank,
+ float* result) {
for (size_t i = 0; i < filter_bank.size(); ++i) {
RTC_DCHECK_GT(filter_bank[i].size(), 0u);
- result[i] = DotProduct(&filter_bank[i][0], var, filter_bank[i].size());
+ result[i] = DotProduct(&filter_bank[i][0], pow, filter_bank[i].size());
}
}
} // namespace
-using std::complex;
-using std::max;
-using std::min;
-using VarianceType = intelligibility::VarianceArray::StepType;
-
IntelligibilityEnhancer::TransformCallback::TransformCallback(
IntelligibilityEnhancer* parent)
: parent_(parent) {
}
void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock(
- const complex<float>* const* in_block,
+ const std::complex<float>* const* in_block,
size_t in_channels,
size_t frames,
size_t /* out_channels */,
- complex<float>* const* out_block) {
+ std::complex<float>* const* out_block) {
RTC_DCHECK_EQ(parent_->freqs_, frames);
for (size_t i = 0; i < in_channels; ++i) {
parent_->ProcessClearBlock(in_block[i], out_block[i]);
}
}
-IntelligibilityEnhancer::IntelligibilityEnhancer()
- : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) {
-}
-
-IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config)
+IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz,
+ size_t num_render_channels)
: freqs_(RealFourier::ComplexLength(
- RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))),
- window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))),
- chunk_length_(
- static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)),
- bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)),
- sample_rate_hz_(config.sample_rate_hz),
- erb_resolution_(kErbResolution),
- num_capture_channels_(config.num_capture_channels),
- num_render_channels_(config.num_render_channels),
- analysis_rate_(config.analysis_rate),
- active_(true),
- clear_variance_(freqs_,
- config.var_type,
- config.var_window_size,
- config.var_decay_rate),
- noise_power_(freqs_, 0.f),
- filtered_clear_var_(new float[bank_size_]),
- filtered_noise_var_(new float[bank_size_]),
+ RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))),
+ chunk_length_(static_cast<size_t>(sample_rate_hz * kChunkSizeMs / 1000)),
+ bank_size_(GetBankSize(sample_rate_hz, kErbResolution)),
+ sample_rate_hz_(sample_rate_hz),
+ num_render_channels_(num_render_channels),
+ clear_power_estimator_(freqs_, kDecayRate),
+ noise_power_estimator_(
+ new intelligibility::PowerEstimator(freqs_, kDecayRate)),
+ filtered_clear_pow_(new float[bank_size_]),
+ filtered_noise_pow_(new float[bank_size_]),
center_freqs_(new float[bank_size_]),
render_filter_bank_(CreateErbBank(freqs_)),
- rho_(new float[bank_size_]),
gains_eq_(new float[bank_size_]),
- gain_applier_(freqs_, config.gain_change_limit),
+ gain_applier_(freqs_, kMaxRelativeGainChange),
temp_render_out_buffer_(chunk_length_, num_render_channels_),
- kbd_window_(new float[window_size_]),
render_callback_(this),
- block_count_(0),
- analysis_step_(0) {
- RTC_DCHECK_LE(config.rho, 1.0f);
-
- memset(filtered_clear_var_.get(),
- 0,
- bank_size_ * sizeof(filtered_clear_var_[0]));
- memset(filtered_noise_var_.get(),
- 0,
- bank_size_ * sizeof(filtered_noise_var_[0]));
-
- // Assumes all rho equal.
- for (size_t i = 0; i < bank_size_; ++i) {
- rho_[i] = config.rho * config.rho;
- }
-
- float freqs_khz = kClipFreq / 1000.0f;
- size_t erb_index = static_cast<size_t>(ceilf(
- 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f));
- start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_);
-
- WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_,
- kbd_window_.get());
+ audio_s16_(chunk_length_),
+ chunks_since_voice_(kSpeechOffsetDelay),
+ is_speech_(false) {
+ RTC_DCHECK_LE(kRho, 1.f);
+
+ memset(filtered_clear_pow_.get(), 0,
+ bank_size_ * sizeof(filtered_clear_pow_[0]));
+ memset(filtered_noise_pow_.get(), 0,
+ bank_size_ * sizeof(filtered_noise_pow_[0]));
+
+ const size_t erb_index = static_cast<size_t>(
+ ceilf(11.17f * logf((kClipFreqKhz + 0.312f) / (kClipFreqKhz + 14.6575f)) +
+ 43.f));
+ start_freq_ = std::max(static_cast<size_t>(1), erb_index * kErbResolution);
+
+ size_t window_size = static_cast<size_t>(1 << RealFourier::FftOrder(freqs_));
+ std::vector<float> kbd_window(window_size);
+ WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size, &kbd_window[0]);
render_mangler_.reset(new LappedTransform(
- num_render_channels_, num_render_channels_, chunk_length_,
- kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_));
+ num_render_channels_, num_render_channels_, chunk_length_, &kbd_window[0],
+ window_size, window_size / 2, &render_callback_));
}
void IntelligibilityEnhancer::SetCaptureNoiseEstimate(
@@ -149,13 +124,10 @@ void IntelligibilityEnhancer::SetCaptureNoiseEstimate(
if (capture_filter_bank_.size() != bank_size_ ||
capture_filter_bank_[0].size() != noise.size()) {
capture_filter_bank_ = CreateErbBank(noise.size());
+ noise_power_estimator_.reset(
+ new intelligibility::PowerEstimator(noise.size(), kDecayRate));
}
- if (noise.size() != noise_power_.size()) {
- noise_power_.resize(noise.size());
- }
- for (size_t i = 0; i < noise.size(); ++i) {
- noise_power_[i] = noise[i] * noise[i];
- }
+ noise_power_estimator_->Step(&noise[0]);
}
void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio,
@@ -163,61 +135,39 @@ void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio,
size_t num_channels) {
RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz);
RTC_CHECK_EQ(num_render_channels_, num_channels);
-
- if (active_) {
- render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels());
- }
-
- if (active_) {
- for (size_t i = 0; i < num_render_channels_; ++i) {
- memcpy(audio[i], temp_render_out_buffer_.channels()[i],
- chunk_length_ * sizeof(**audio));
- }
+ is_speech_ = IsSpeech(audio[0]);
+ render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels());
+ for (size_t i = 0; i < num_render_channels_; ++i) {
+ memcpy(audio[i], temp_render_out_buffer_.channels()[i],
+ chunk_length_ * sizeof(**audio));
}
}
-void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block,
- complex<float>* out_block) {
- if (block_count_ < 2) {
- memset(out_block, 0, freqs_ * sizeof(*out_block));
- ++block_count_;
- return;
- }
-
- // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary.
- if (true) {
- clear_variance_.Step(in_block, false);
- if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
- const float power_target = std::accumulate(
- clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.f);
- AnalyzeClearBlock(power_target);
- ++analysis_step_;
- }
- ++block_count_;
+void IntelligibilityEnhancer::ProcessClearBlock(
+ const std::complex<float>* in_block,
+ std::complex<float>* out_block) {
+ if (is_speech_) {
+ clear_power_estimator_.Step(in_block);
}
-
- if (active_) {
- gain_applier_.Apply(in_block, out_block);
- }
-}
-
-void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) {
- FilterVariance(clear_variance_.variance(),
- render_filter_bank_,
- filtered_clear_var_.get());
- FilterVariance(&noise_power_[0],
- capture_filter_bank_,
- filtered_noise_var_.get());
+ const std::vector<float>& clear_power = clear_power_estimator_.power();
+ const std::vector<float>& noise_power = noise_power_estimator_->power();
+ MapToErbBands(&clear_power[0], render_filter_bank_,
+ filtered_clear_pow_.get());
+ MapToErbBands(&noise_power[0], capture_filter_bank_,
+ filtered_noise_pow_.get());
SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get());
+ const float power_target =
+ std::accumulate(&clear_power[0], &clear_power[0] + freqs_, 0.f);
const float power_top =
- DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
+ DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get());
const float power_bot =
- DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
+ DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
if (power_target >= power_bot && power_target <= power_top) {
SolveForLambda(power_target, power_bot, power_top);
UpdateErbGains();
- } // Else experiencing variance underflow, so do nothing.
+ } // Else experiencing power underflow, so do nothing.
+ gain_applier_.Apply(in_block, out_block);
}
void IntelligibilityEnhancer::SolveForLambda(float power_target,
@@ -230,14 +180,13 @@ void IntelligibilityEnhancer::SolveForLambda(float power_target,
1.f / (power_target + std::numeric_limits<float>::epsilon());
float lambda_bot = kLambdaBot;
float lambda_top = kLambdaTop;
- float power_ratio = 2.0f; // Ratio of achieved power to target power.
+ float power_ratio = 2.f; // Ratio of achieved power to target power.
int iters = 0;
- while (std::fabs(power_ratio - 1.0f) > kConvergeThresh &&
- iters <= kMaxIters) {
- const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
+ while (std::fabs(power_ratio - 1.f) > kConvergeThresh && iters <= kMaxIters) {
+ const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.f;
SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get());
const float power =
- DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
+ DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
if (power < power_target) {
lambda_bot = lambda;
} else {
@@ -252,7 +201,7 @@ void IntelligibilityEnhancer::UpdateErbGains() {
// (ERB gain) = filterbank' * (freq gain)
float* gains = gain_applier_.target();
for (size_t i = 0; i < freqs_; ++i) {
- gains[i] = 0.0f;
+ gains[i] = 0.f;
for (size_t j = 0; j < bank_size_; ++j) {
gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]);
}
@@ -261,9 +210,9 @@ void IntelligibilityEnhancer::UpdateErbGains() {
size_t IntelligibilityEnhancer::GetBankSize(int sample_rate,
size_t erb_resolution) {
- float freq_limit = sample_rate / 2000.0f;
+ float freq_limit = sample_rate / 2000.f;
size_t erb_scale = static_cast<size_t>(ceilf(
- 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f));
+ 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f));
return erb_scale * erb_resolution;
}
@@ -273,7 +222,7 @@ std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank(
size_t lf = 1, rf = 4;
for (size_t i = 0; i < bank_size_; ++i) {
- float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_));
+ float abs_temp = fabsf((i + 1.f) / static_cast<float>(kErbResolution));
center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
center_freqs_[i] -= 14678.49f;
}
@@ -288,47 +237,44 @@ std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank(
for (size_t i = 1; i <= bank_size_; ++i) {
size_t lll, ll, rr, rrr;
- static const size_t kOne = 1; // Avoids repeated static_cast<>s below.
- lll = static_cast<size_t>(round(
- center_freqs_[max(kOne, i - lf) - 1] * num_freqs /
- (0.5f * sample_rate_hz_)));
- ll = static_cast<size_t>(round(
- center_freqs_[max(kOne, i) - 1] * num_freqs /
- (0.5f * sample_rate_hz_)));
- lll = min(num_freqs, max(lll, kOne)) - 1;
- ll = min(num_freqs, max(ll, kOne)) - 1;
-
- rrr = static_cast<size_t>(round(
- center_freqs_[min(bank_size_, i + rf) - 1] * num_freqs /
- (0.5f * sample_rate_hz_)));
- rr = static_cast<size_t>(round(
- center_freqs_[min(bank_size_, i + 1) - 1] * num_freqs /
- (0.5f * sample_rate_hz_)));
- rrr = min(num_freqs, max(rrr, kOne)) - 1;
- rr = min(num_freqs, max(rr, kOne)) - 1;
+ lll = static_cast<size_t>(round(center_freqs_[std::max(1ul, i - lf) - 1] *
+ num_freqs / (0.5f * sample_rate_hz_)));
+ ll = static_cast<size_t>(round(center_freqs_[std::max(1ul, i) - 1] *
+ num_freqs / (0.5f * sample_rate_hz_)));
+ lll = std::min(num_freqs, std::max(lll, 1ul)) - 1;
+ ll = std::min(num_freqs, std::max(ll, 1ul)) - 1;
+
+ rrr = static_cast<size_t>(
+ round(center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs /
+ (0.5f * sample_rate_hz_)));
+ rr = static_cast<size_t>(
+ round(center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs /
+ (0.5f * sample_rate_hz_)));
+ rrr = std::min(num_freqs, std::max(rrr, 1ul)) - 1;
+ rr = std::min(num_freqs, std::max(rr, 1ul)) - 1;
float step, element;
step = ll == lll ? 0.f : 1.f / (ll - lll);
- element = 0.0f;
+ element = 0.f;
for (size_t j = lll; j <= ll; ++j) {
filter_bank[i - 1][j] = element;
element += step;
}
step = rr == rrr ? 0.f : 1.f / (rrr - rr);
- element = 1.0f;
+ element = 1.f;
for (size_t j = rr; j <= rrr; ++j) {
filter_bank[i - 1][j] = element;
element -= step;
}
for (size_t j = ll; j <= rr; ++j) {
- filter_bank[i - 1][j] = 1.0f;
+ filter_bank[i - 1][j] = 1.f;
}
}
float sum;
for (size_t i = 0; i < num_freqs; ++i) {
- sum = 0.0f;
+ sum = 0.f;
for (size_t j = 0; j < bank_size_; ++j) {
sum += filter_bank[j][i];
}
@@ -342,22 +288,22 @@ std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank(
void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
size_t start_freq,
float* sols) {
- bool quadratic = (kConfigRho < 1.0f);
- const float* var_x0 = filtered_clear_var_.get();
- const float* var_n0 = filtered_noise_var_.get();
+ bool quadratic = (kRho < 1.f);
+ const float* pow_x0 = filtered_clear_pow_.get();
+ const float* pow_n0 = filtered_noise_pow_.get();
for (size_t n = 0; n < start_freq; ++n) {
- sols[n] = 1.0f;
+ sols[n] = 1.f;
}
// Analytic solution for optimal gains. See paper for derivation.
for (size_t n = start_freq - 1; n < bank_size_; ++n) {
float alpha0, beta0, gamma0;
- gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] +
- lambda * var_x0[n] * var_n0[n] * var_n0[n];
- beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n];
+ gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] +
+ lambda * pow_x0[n] * pow_n0[n] * pow_n0[n];
+ beta0 = lambda * pow_x0[n] * (2 - kRho) * pow_x0[n] * pow_n0[n];
if (quadratic) {
- alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n];
+ alpha0 = lambda * pow_x0[n] * (1 - kRho) * pow_x0[n] * pow_x0[n];
sols[n] =
(-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) /
(2 * alpha0 + std::numeric_limits<float>::epsilon());
@@ -368,8 +314,15 @@ void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
}
}
-bool IntelligibilityEnhancer::active() const {
- return active_;
+bool IntelligibilityEnhancer::IsSpeech(const float* audio) {
+ FloatToS16(audio, chunk_length_, &audio_s16_[0]);
+ vad_.ProcessChunk(&audio_s16_[0], chunk_length_, sample_rate_hz_);
+ if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) {
+ chunks_since_voice_ = 0;
+ } else if (chunks_since_voice_ < kSpeechOffsetDelay) {
+ ++chunks_since_voice_;
+ }
+ return chunks_since_voice_ < kSpeechOffsetDelay;
}
} // namespace webrtc

Powered by Google App Engine
This is Rietveld 408576698