Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 /* | 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 // | |
| 12 // Implements helper functions and classes for intelligibility enhancement. | |
| 13 // | |
| 14 | |
| 15 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h" | 11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h" |
| 16 | 12 |
| 17 #include <math.h> | 13 #include <math.h> |
| 18 #include <stdlib.h> | 14 #include <stdlib.h> |
| 19 #include <string.h> | 15 #include <string.h> |
| 20 #include <algorithm> | 16 #include <algorithm> |
| 21 | 17 #include <limits> |
| 22 using std::complex; | |
| 23 using std::min; | |
| 24 | 18 |
| 25 namespace webrtc { | 19 namespace webrtc { |
| 26 | 20 |
| 27 namespace intelligibility { | 21 namespace intelligibility { |
| 28 | 22 |
| 23 namespace { | |
| 24 | |
| 25 // Return |current| changed towards |target|, with the relative change being at | |
| 26 // most |limit|. | |
| 29 float UpdateFactor(float target, float current, float limit) { | 27 float UpdateFactor(float target, float current, float limit) { |
| 30 float delta = fabsf(target - current); | 28 float gain = target / (current + std::numeric_limits<float>::epsilon()); |
| 31 float sign = copysign(1.0f, target - current); | 29 if (gain < 1.f - limit) { |
| 32 return current + sign * fminf(delta, limit); | 30 gain = 1.f - limit; |
| 31 } else if (gain > 1.f + limit) { | |
| 32 gain = 1.f + limit; | |
| 33 } | |
| 34 return current * gain; | |
|
turaj
2016/02/19 16:48:47
I'm not sure if |current| could ever be zero, but
aluebs-webrtc
2016/02/19 19:30:48
|current| should never be zero, since it starts in
| |
| 33 } | 35 } |
| 34 | 36 |
| 35 float AddDitherIfZero(float value) { | 37 } // namespace |
| 36 return value == 0.f ? std::rand() * 0.01f / RAND_MAX : value; | |
| 37 } | |
| 38 | 38 |
| 39 complex<float> zerofudge(complex<float> c) { | 39 PowerEstimator::PowerEstimator(size_t num_freqs, float decay) |
| 40 return complex<float>(AddDitherIfZero(c.real()), AddDitherIfZero(c.imag())); | 40 : power_(num_freqs, 0.f), decay_(decay) {} |
| 41 } | |
| 42 | 41 |
| 43 complex<float> NewMean(complex<float> mean, complex<float> data, size_t count) { | 42 GainApplier::GainApplier(size_t freqs, float relative_change_limit) |
| 44 return mean + (data - mean) / static_cast<float>(count); | 43 : num_freqs_(freqs), |
| 45 } | 44 relative_change_limit_(relative_change_limit), |
| 46 | 45 target_(new float[freqs]()), |
| 47 void AddToMean(complex<float> data, size_t count, complex<float>* mean) { | 46 current_(new float[freqs]()) { |
| 48 (*mean) = NewMean(*mean, data, count); | 47 for (size_t i = 0; i < freqs; ++i) { |
| 49 } | 48 target_[i] = 1.f; |
| 50 | 49 current_[i] = 1.f; |
| 51 | |
| 52 static const size_t kWindowBlockSize = 10; | |
| 53 | |
| 54 VarianceArray::VarianceArray(size_t num_freqs, | |
| 55 StepType type, | |
| 56 size_t window_size, | |
| 57 float decay) | |
| 58 : running_mean_(new complex<float>[num_freqs]()), | |
| 59 running_mean_sq_(new complex<float>[num_freqs]()), | |
| 60 sub_running_mean_(new complex<float>[num_freqs]()), | |
| 61 sub_running_mean_sq_(new complex<float>[num_freqs]()), | |
| 62 variance_(new float[num_freqs]()), | |
| 63 conj_sum_(new float[num_freqs]()), | |
| 64 num_freqs_(num_freqs), | |
| 65 window_size_(window_size), | |
| 66 decay_(decay), | |
| 67 history_cursor_(0), | |
| 68 count_(0), | |
| 69 array_mean_(0.0f), | |
| 70 buffer_full_(false) { | |
| 71 history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | |
| 72 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 73 history_[i].reset(new complex<float>[window_size_]()); | |
| 74 } | |
| 75 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | |
| 76 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 77 subhistory_[i].reset(new complex<float>[window_size_]()); | |
| 78 } | |
| 79 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | |
| 80 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 81 subhistory_sq_[i].reset(new complex<float>[window_size_]()); | |
| 82 } | |
| 83 switch (type) { | |
| 84 case kStepInfinite: | |
| 85 step_func_ = &VarianceArray::InfiniteStep; | |
| 86 break; | |
| 87 case kStepDecaying: | |
| 88 step_func_ = &VarianceArray::DecayStep; | |
| 89 break; | |
| 90 case kStepWindowed: | |
| 91 step_func_ = &VarianceArray::WindowedStep; | |
| 92 break; | |
| 93 case kStepBlocked: | |
| 94 step_func_ = &VarianceArray::BlockedStep; | |
| 95 break; | |
| 96 case kStepBlockBasedMovingAverage: | |
| 97 step_func_ = &VarianceArray::BlockBasedMovingAverage; | |
| 98 break; | |
| 99 } | 50 } |
| 100 } | 51 } |
| 101 | 52 |
| 102 // Compute the variance with Welford's algorithm, adding some fudge to | 53 void GainApplier::Apply(const std::complex<float>* in_block, |
| 103 // the input in case of all-zeroes. | 54 std::complex<float>* out_block) { |
| 104 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { | |
| 105 array_mean_ = 0.0f; | |
| 106 ++count_; | |
| 107 for (size_t i = 0; i < num_freqs_; ++i) { | 55 for (size_t i = 0; i < num_freqs_; ++i) { |
| 108 complex<float> sample = data[i]; | 56 current_[i] = UpdateFactor(target_[i], current_[i], relative_change_limit_); |
| 109 if (!skip_fudge) { | 57 out_block[i] = sqrtf(fabsf(current_[i])) * in_block[i]; |
| 110 sample = zerofudge(sample); | |
| 111 } | |
| 112 if (count_ == 1) { | |
| 113 running_mean_[i] = sample; | |
| 114 variance_[i] = 0.0f; | |
| 115 } else { | |
| 116 float old_sum = conj_sum_[i]; | |
| 117 complex<float> old_mean = running_mean_[i]; | |
| 118 running_mean_[i] = | |
| 119 old_mean + (sample - old_mean) / static_cast<float>(count_); | |
| 120 conj_sum_[i] = | |
| 121 (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) | |
| 122 .real(); | |
| 123 variance_[i] = | |
| 124 conj_sum_[i] / (count_ - 1); | |
| 125 } | |
| 126 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | |
| 127 } | 58 } |
| 128 } | 59 } |
| 129 | 60 |
| 130 // Compute the variance from the beginning, with exponential decaying of the | |
| 131 // series data. | |
| 132 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { | |
| 133 array_mean_ = 0.0f; | |
| 134 ++count_; | |
| 135 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 136 complex<float> sample = data[i]; | |
| 137 sample = zerofudge(sample); | |
| 138 | |
| 139 if (count_ == 1) { | |
| 140 running_mean_[i] = sample; | |
| 141 running_mean_sq_[i] = sample * std::conj(sample); | |
| 142 variance_[i] = 0.0f; | |
| 143 } else { | |
| 144 complex<float> prev = running_mean_[i]; | |
| 145 complex<float> prev2 = running_mean_sq_[i]; | |
| 146 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; | |
| 147 running_mean_sq_[i] = | |
| 148 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); | |
| 149 variance_[i] = (running_mean_sq_[i] - | |
| 150 running_mean_[i] * std::conj(running_mean_[i])).real(); | |
| 151 } | |
| 152 | |
| 153 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | |
| 154 } | |
| 155 } | |
| 156 | |
| 157 // Windowed variance computation. On each step, the variances for the | |
| 158 // window are recomputed from scratch, using Welford's algorithm. | |
| 159 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | |
| 160 size_t num = min(count_ + 1, window_size_); | |
| 161 array_mean_ = 0.0f; | |
| 162 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 163 complex<float> mean; | |
| 164 float conj_sum = 0.0f; | |
| 165 | |
| 166 history_[i][history_cursor_] = data[i]; | |
| 167 | |
| 168 mean = history_[i][history_cursor_]; | |
| 169 variance_[i] = 0.0f; | |
| 170 for (size_t j = 1; j < num; ++j) { | |
| 171 complex<float> sample = | |
| 172 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); | |
| 173 sample = history_[i][(history_cursor_ + j) % window_size_]; | |
| 174 float old_sum = conj_sum; | |
| 175 complex<float> old_mean = mean; | |
| 176 | |
| 177 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); | |
| 178 conj_sum = | |
| 179 (old_sum + std::conj(sample - old_mean) * (sample - mean)).real(); | |
| 180 variance_[i] = conj_sum / (j); | |
| 181 } | |
| 182 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | |
| 183 } | |
| 184 history_cursor_ = (history_cursor_ + 1) % window_size_; | |
| 185 ++count_; | |
| 186 } | |
| 187 | |
| 188 // Variance with a window of blocks. Within each block, the variances are | |
| 189 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. | |
| 190 // Once a block is filled with kWindowBlockSize samples, it is added to the | |
| 191 // history window and a new block is started. The variances for the window | |
| 192 // are recomputed from scratch at each of these transitions. | |
| 193 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | |
| 194 size_t blocks = min(window_size_, history_cursor_ + 1); | |
| 195 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 196 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | |
| 197 AddToMean(data[i] * std::conj(data[i]), count_ + 1, | |
| 198 &sub_running_mean_sq_[i]); | |
| 199 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; | |
| 200 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; | |
| 201 | |
| 202 variance_[i] = | |
| 203 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - | |
| 204 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * | |
| 205 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) | |
| 206 .real(); | |
| 207 if (count_ == kWindowBlockSize - 1) { | |
| 208 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); | |
| 209 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | |
| 210 running_mean_[i] = complex<float>(0.0f, 0.0f); | |
| 211 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | |
| 212 for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) { | |
| 213 AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]); | |
| 214 AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]); | |
| 215 } | |
| 216 ++history_cursor_; | |
| 217 } | |
| 218 } | |
| 219 ++count_; | |
| 220 if (count_ == kWindowBlockSize) { | |
| 221 count_ = 0; | |
| 222 } | |
| 223 } | |
| 224 | |
| 225 // Recomputes variances for each window from scratch based on previous window. | |
| 226 void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, | |
| 227 bool /*dummy*/) { | |
| 228 // TODO(ekmeyerson) To mitigate potential divergence, add counter so that | |
| 229 // after every so often sums are computed scratch by summing over all | |
| 230 // elements instead of subtracting oldest and adding newest. | |
| 231 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 232 sub_running_mean_[i] += data[i]; | |
| 233 sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); | |
| 234 } | |
| 235 ++count_; | |
| 236 | |
| 237 // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow | |
| 238 // experimentation with different block size,window size pairs. | |
| 239 if (count_ >= kWindowBlockSize) { | |
| 240 count_ = 0; | |
| 241 | |
| 242 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 243 running_mean_[i] -= subhistory_[i][history_cursor_]; | |
| 244 running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; | |
| 245 | |
| 246 float scale = 1.f / kWindowBlockSize; | |
| 247 subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; | |
| 248 subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; | |
| 249 | |
| 250 sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); | |
| 251 sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); | |
| 252 | |
| 253 running_mean_[i] += subhistory_[i][history_cursor_]; | |
| 254 running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; | |
| 255 | |
| 256 scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); | |
| 257 variance_[i] = std::real(running_mean_sq_[i] * scale - | |
| 258 running_mean_[i] * scale * | |
| 259 std::conj(running_mean_[i]) * scale); | |
| 260 } | |
| 261 | |
| 262 ++history_cursor_; | |
| 263 if (history_cursor_ >= window_size_) { | |
| 264 buffer_full_ = true; | |
| 265 history_cursor_ = 0; | |
| 266 } | |
| 267 } | |
| 268 } | |
| 269 | |
| 270 void VarianceArray::Clear() { | |
| 271 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * num_freqs_); | |
| 272 memset(running_mean_sq_.get(), 0, | |
| 273 sizeof(*running_mean_sq_.get()) * num_freqs_); | |
| 274 memset(variance_.get(), 0, sizeof(*variance_.get()) * num_freqs_); | |
| 275 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * num_freqs_); | |
| 276 history_cursor_ = 0; | |
| 277 count_ = 0; | |
| 278 array_mean_ = 0.0f; | |
| 279 } | |
| 280 | |
| 281 void VarianceArray::ApplyScale(float scale) { | |
| 282 array_mean_ = 0.0f; | |
| 283 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 284 variance_[i] *= scale * scale; | |
| 285 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | |
| 286 } | |
| 287 } | |
| 288 | |
| 289 GainApplier::GainApplier(size_t freqs, float change_limit) | |
| 290 : num_freqs_(freqs), | |
| 291 change_limit_(change_limit), | |
| 292 target_(new float[freqs]()), | |
| 293 current_(new float[freqs]()) { | |
| 294 for (size_t i = 0; i < freqs; ++i) { | |
| 295 target_[i] = 1.0f; | |
| 296 current_[i] = 1.0f; | |
| 297 } | |
| 298 } | |
| 299 | |
| 300 void GainApplier::Apply(const complex<float>* in_block, | |
| 301 complex<float>* out_block) { | |
| 302 for (size_t i = 0; i < num_freqs_; ++i) { | |
| 303 float factor = sqrtf(fabsf(current_[i])); | |
| 304 if (!std::isnormal(factor)) { | |
| 305 factor = 1.0f; | |
| 306 } | |
| 307 out_block[i] = factor * in_block[i]; | |
| 308 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); | |
| 309 } | |
| 310 } | |
| 311 | |
| 312 } // namespace intelligibility | 61 } // namespace intelligibility |
| 313 | 62 |
| 314 } // namespace webrtc | 63 } // namespace webrtc |
| OLD | NEW |