OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 // | |
12 // Implements helper functions and classes for intelligibility enhancement. | |
13 // | |
14 | |
15 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h" | 11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h" |
16 | 12 |
17 #include <math.h> | 13 #include <math.h> |
18 #include <stdlib.h> | 14 #include <stdlib.h> |
19 #include <string.h> | 15 #include <string.h> |
20 #include <algorithm> | 16 #include <algorithm> |
21 | 17 #include <limits> |
22 using std::complex; | |
23 using std::min; | |
24 | 18 |
25 namespace webrtc { | 19 namespace webrtc { |
26 | 20 |
27 namespace intelligibility { | 21 namespace intelligibility { |
28 | 22 |
23 namespace { | |
24 | |
25 // Return |current| changed towards |target|, with the relative change being at | |
26 // most |limit|. | |
29 float UpdateFactor(float target, float current, float limit) { | 27 float UpdateFactor(float target, float current, float limit) { |
30 float delta = fabsf(target - current); | 28 float gain = target / (current + std::numeric_limits<float>::epsilon()); |
31 float sign = copysign(1.0f, target - current); | 29 if (gain < 1.f - limit) { |
32 return current + sign * fminf(delta, limit); | 30 gain = 1.f - limit; |
31 } else if (gain > 1.f + limit) { | |
32 gain = 1.f + limit; | |
33 } | |
34 return current * gain; | |
turaj
2016/02/19 16:48:47
I'm not sure if |current| could ever be zero, but
aluebs-webrtc
2016/02/19 19:30:48
|current| should never be zero, since it starts in
| |
33 } | 35 } |
34 | 36 |
35 float AddDitherIfZero(float value) { | 37 } // namespace |
36 return value == 0.f ? std::rand() * 0.01f / RAND_MAX : value; | |
37 } | |
38 | 38 |
39 complex<float> zerofudge(complex<float> c) { | 39 PowerEstimator::PowerEstimator(size_t num_freqs, float decay) |
40 return complex<float>(AddDitherIfZero(c.real()), AddDitherIfZero(c.imag())); | 40 : power_(num_freqs, 0.f), decay_(decay) {} |
41 } | |
42 | 41 |
43 complex<float> NewMean(complex<float> mean, complex<float> data, size_t count) { | 42 GainApplier::GainApplier(size_t freqs, float relative_change_limit) |
44 return mean + (data - mean) / static_cast<float>(count); | 43 : num_freqs_(freqs), |
45 } | 44 relative_change_limit_(relative_change_limit), |
46 | 45 target_(new float[freqs]()), |
47 void AddToMean(complex<float> data, size_t count, complex<float>* mean) { | 46 current_(new float[freqs]()) { |
48 (*mean) = NewMean(*mean, data, count); | 47 for (size_t i = 0; i < freqs; ++i) { |
49 } | 48 target_[i] = 1.f; |
50 | 49 current_[i] = 1.f; |
51 | |
52 static const size_t kWindowBlockSize = 10; | |
53 | |
54 VarianceArray::VarianceArray(size_t num_freqs, | |
55 StepType type, | |
56 size_t window_size, | |
57 float decay) | |
58 : running_mean_(new complex<float>[num_freqs]()), | |
59 running_mean_sq_(new complex<float>[num_freqs]()), | |
60 sub_running_mean_(new complex<float>[num_freqs]()), | |
61 sub_running_mean_sq_(new complex<float>[num_freqs]()), | |
62 variance_(new float[num_freqs]()), | |
63 conj_sum_(new float[num_freqs]()), | |
64 num_freqs_(num_freqs), | |
65 window_size_(window_size), | |
66 decay_(decay), | |
67 history_cursor_(0), | |
68 count_(0), | |
69 array_mean_(0.0f), | |
70 buffer_full_(false) { | |
71 history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | |
72 for (size_t i = 0; i < num_freqs_; ++i) { | |
73 history_[i].reset(new complex<float>[window_size_]()); | |
74 } | |
75 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | |
76 for (size_t i = 0; i < num_freqs_; ++i) { | |
77 subhistory_[i].reset(new complex<float>[window_size_]()); | |
78 } | |
79 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); | |
80 for (size_t i = 0; i < num_freqs_; ++i) { | |
81 subhistory_sq_[i].reset(new complex<float>[window_size_]()); | |
82 } | |
83 switch (type) { | |
84 case kStepInfinite: | |
85 step_func_ = &VarianceArray::InfiniteStep; | |
86 break; | |
87 case kStepDecaying: | |
88 step_func_ = &VarianceArray::DecayStep; | |
89 break; | |
90 case kStepWindowed: | |
91 step_func_ = &VarianceArray::WindowedStep; | |
92 break; | |
93 case kStepBlocked: | |
94 step_func_ = &VarianceArray::BlockedStep; | |
95 break; | |
96 case kStepBlockBasedMovingAverage: | |
97 step_func_ = &VarianceArray::BlockBasedMovingAverage; | |
98 break; | |
99 } | 50 } |
100 } | 51 } |
101 | 52 |
102 // Compute the variance with Welford's algorithm, adding some fudge to | 53 void GainApplier::Apply(const std::complex<float>* in_block, |
103 // the input in case of all-zeroes. | 54 std::complex<float>* out_block) { |
104 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { | |
105 array_mean_ = 0.0f; | |
106 ++count_; | |
107 for (size_t i = 0; i < num_freqs_; ++i) { | 55 for (size_t i = 0; i < num_freqs_; ++i) { |
108 complex<float> sample = data[i]; | 56 current_[i] = UpdateFactor(target_[i], current_[i], relative_change_limit_); |
109 if (!skip_fudge) { | 57 out_block[i] = sqrtf(fabsf(current_[i])) * in_block[i]; |
110 sample = zerofudge(sample); | |
111 } | |
112 if (count_ == 1) { | |
113 running_mean_[i] = sample; | |
114 variance_[i] = 0.0f; | |
115 } else { | |
116 float old_sum = conj_sum_[i]; | |
117 complex<float> old_mean = running_mean_[i]; | |
118 running_mean_[i] = | |
119 old_mean + (sample - old_mean) / static_cast<float>(count_); | |
120 conj_sum_[i] = | |
121 (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) | |
122 .real(); | |
123 variance_[i] = | |
124 conj_sum_[i] / (count_ - 1); | |
125 } | |
126 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | |
127 } | 58 } |
128 } | 59 } |
129 | 60 |
130 // Compute the variance from the beginning, with exponential decaying of the | |
131 // series data. | |
132 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { | |
133 array_mean_ = 0.0f; | |
134 ++count_; | |
135 for (size_t i = 0; i < num_freqs_; ++i) { | |
136 complex<float> sample = data[i]; | |
137 sample = zerofudge(sample); | |
138 | |
139 if (count_ == 1) { | |
140 running_mean_[i] = sample; | |
141 running_mean_sq_[i] = sample * std::conj(sample); | |
142 variance_[i] = 0.0f; | |
143 } else { | |
144 complex<float> prev = running_mean_[i]; | |
145 complex<float> prev2 = running_mean_sq_[i]; | |
146 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; | |
147 running_mean_sq_[i] = | |
148 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); | |
149 variance_[i] = (running_mean_sq_[i] - | |
150 running_mean_[i] * std::conj(running_mean_[i])).real(); | |
151 } | |
152 | |
153 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | |
154 } | |
155 } | |
156 | |
157 // Windowed variance computation. On each step, the variances for the | |
158 // window are recomputed from scratch, using Welford's algorithm. | |
159 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | |
160 size_t num = min(count_ + 1, window_size_); | |
161 array_mean_ = 0.0f; | |
162 for (size_t i = 0; i < num_freqs_; ++i) { | |
163 complex<float> mean; | |
164 float conj_sum = 0.0f; | |
165 | |
166 history_[i][history_cursor_] = data[i]; | |
167 | |
168 mean = history_[i][history_cursor_]; | |
169 variance_[i] = 0.0f; | |
170 for (size_t j = 1; j < num; ++j) { | |
171 complex<float> sample = | |
172 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); | |
173 sample = history_[i][(history_cursor_ + j) % window_size_]; | |
174 float old_sum = conj_sum; | |
175 complex<float> old_mean = mean; | |
176 | |
177 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); | |
178 conj_sum = | |
179 (old_sum + std::conj(sample - old_mean) * (sample - mean)).real(); | |
180 variance_[i] = conj_sum / (j); | |
181 } | |
182 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | |
183 } | |
184 history_cursor_ = (history_cursor_ + 1) % window_size_; | |
185 ++count_; | |
186 } | |
187 | |
188 // Variance with a window of blocks. Within each block, the variances are | |
189 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. | |
190 // Once a block is filled with kWindowBlockSize samples, it is added to the | |
191 // history window and a new block is started. The variances for the window | |
192 // are recomputed from scratch at each of these transitions. | |
193 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | |
194 size_t blocks = min(window_size_, history_cursor_ + 1); | |
195 for (size_t i = 0; i < num_freqs_; ++i) { | |
196 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | |
197 AddToMean(data[i] * std::conj(data[i]), count_ + 1, | |
198 &sub_running_mean_sq_[i]); | |
199 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; | |
200 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; | |
201 | |
202 variance_[i] = | |
203 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - | |
204 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * | |
205 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) | |
206 .real(); | |
207 if (count_ == kWindowBlockSize - 1) { | |
208 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); | |
209 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | |
210 running_mean_[i] = complex<float>(0.0f, 0.0f); | |
211 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | |
212 for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) { | |
213 AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]); | |
214 AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]); | |
215 } | |
216 ++history_cursor_; | |
217 } | |
218 } | |
219 ++count_; | |
220 if (count_ == kWindowBlockSize) { | |
221 count_ = 0; | |
222 } | |
223 } | |
224 | |
225 // Recomputes variances for each window from scratch based on previous window. | |
226 void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, | |
227 bool /*dummy*/) { | |
228 // TODO(ekmeyerson) To mitigate potential divergence, add counter so that | |
229 // after every so often sums are computed scratch by summing over all | |
230 // elements instead of subtracting oldest and adding newest. | |
231 for (size_t i = 0; i < num_freqs_; ++i) { | |
232 sub_running_mean_[i] += data[i]; | |
233 sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); | |
234 } | |
235 ++count_; | |
236 | |
237 // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow | |
238 // experimentation with different block size,window size pairs. | |
239 if (count_ >= kWindowBlockSize) { | |
240 count_ = 0; | |
241 | |
242 for (size_t i = 0; i < num_freqs_; ++i) { | |
243 running_mean_[i] -= subhistory_[i][history_cursor_]; | |
244 running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; | |
245 | |
246 float scale = 1.f / kWindowBlockSize; | |
247 subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; | |
248 subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; | |
249 | |
250 sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); | |
251 sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); | |
252 | |
253 running_mean_[i] += subhistory_[i][history_cursor_]; | |
254 running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; | |
255 | |
256 scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); | |
257 variance_[i] = std::real(running_mean_sq_[i] * scale - | |
258 running_mean_[i] * scale * | |
259 std::conj(running_mean_[i]) * scale); | |
260 } | |
261 | |
262 ++history_cursor_; | |
263 if (history_cursor_ >= window_size_) { | |
264 buffer_full_ = true; | |
265 history_cursor_ = 0; | |
266 } | |
267 } | |
268 } | |
269 | |
270 void VarianceArray::Clear() { | |
271 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * num_freqs_); | |
272 memset(running_mean_sq_.get(), 0, | |
273 sizeof(*running_mean_sq_.get()) * num_freqs_); | |
274 memset(variance_.get(), 0, sizeof(*variance_.get()) * num_freqs_); | |
275 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * num_freqs_); | |
276 history_cursor_ = 0; | |
277 count_ = 0; | |
278 array_mean_ = 0.0f; | |
279 } | |
280 | |
281 void VarianceArray::ApplyScale(float scale) { | |
282 array_mean_ = 0.0f; | |
283 for (size_t i = 0; i < num_freqs_; ++i) { | |
284 variance_[i] *= scale * scale; | |
285 array_mean_ += (variance_[i] - array_mean_) / (i + 1); | |
286 } | |
287 } | |
288 | |
289 GainApplier::GainApplier(size_t freqs, float change_limit) | |
290 : num_freqs_(freqs), | |
291 change_limit_(change_limit), | |
292 target_(new float[freqs]()), | |
293 current_(new float[freqs]()) { | |
294 for (size_t i = 0; i < freqs; ++i) { | |
295 target_[i] = 1.0f; | |
296 current_[i] = 1.0f; | |
297 } | |
298 } | |
299 | |
300 void GainApplier::Apply(const complex<float>* in_block, | |
301 complex<float>* out_block) { | |
302 for (size_t i = 0; i < num_freqs_; ++i) { | |
303 float factor = sqrtf(fabsf(current_[i])); | |
304 if (!std::isnormal(factor)) { | |
305 factor = 1.0f; | |
306 } | |
307 out_block[i] = factor * in_block[i]; | |
308 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); | |
309 } | |
310 } | |
311 | |
312 } // namespace intelligibility | 61 } // namespace intelligibility |
313 | 62 |
314 } // namespace webrtc | 63 } // namespace webrtc |
OLD | NEW |