Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 /* | 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| (...skipping 13 matching lines...) Expand all Loading... | |
| 24 namespace { | 24 namespace { |
| 25 | 25 |
| 26 const size_t kErbResolution = 2; | 26 const size_t kErbResolution = 2; |
| 27 const int kWindowSizeMs = 16; | 27 const int kWindowSizeMs = 16; |
| 28 const int kChunkSizeMs = 10; // Size provided by APM. | 28 const int kChunkSizeMs = 10; // Size provided by APM. |
| 29 const float kClipFreq = 200.0f; | 29 const float kClipFreq = 200.0f; |
| 30 const float kConfigRho = 0.02f; // Default production and interpretation SNR. | 30 const float kConfigRho = 0.02f; // Default production and interpretation SNR. |
| 31 const float kKbdAlpha = 1.5f; | 31 const float kKbdAlpha = 1.5f; |
| 32 const float kLambdaBot = -1.0f; // Extreme values in bisection | 32 const float kLambdaBot = -1.0f; // Extreme values in bisection |
| 33 const float kLambdaTop = -10e-18f; // search for lamda. | 33 const float kLambdaTop = -10e-18f; // search for lamda. |
| 34 const float kVoiceProbabilityThreshold = 0.02; | |
| 35 // Number of chunks after voice activity which is still considered speech. | |
| 36 const size_t kSpeechOffsetDelay = 80; | |
| 37 const float kDecayRate = 0.97f; // Power estimation decay rate. | |
|
hlundin-webrtc
2016/02/15 13:05:11
Two spaces before comment.
hlundin-webrtc
2016/02/15 13:05:11
You change this value from 0.9 to 0.97. Can you ex
aluebs-webrtc
2016/02/19 03:56:30
For this algorithm we care about the long-time psd
aluebs-webrtc
2016/02/19 03:56:31
Done.
| |
| 38 const float kGainChangeLimit = 0.1f; // Maximum change in gain. | |
|
turaj
2016/02/13 00:09:42
Is kGainChangeLimit relative to current value, or
hlundin-webrtc
2016/02/15 13:05:11
Two spaces before comment.
aluebs-webrtc
2016/02/19 03:56:30
It was an absolute limit, but I agree that a relat
aluebs-webrtc
2016/02/19 03:56:31
Done.
| |
| 39 const float kRho = 0.0004f; | |
|
hlundin-webrtc
2016/02/15 13:05:11
This value is also changed...
aluebs-webrtc
2016/02/19 03:56:30
It changed to be squared, which is the only way it
| |
| 40 | |
| 34 | 41 |
| 35 // Returns dot product of vectors |a| and |b| with size |length|. | 42 // Returns dot product of vectors |a| and |b| with size |length|. |
| 36 float DotProduct(const float* a, const float* b, size_t length) { | 43 float DotProduct(const float* a, const float* b, size_t length) { |
| 37 float ret = 0.f; | 44 float ret = 0.f; |
| 38 for (size_t i = 0; i < length; ++i) { | 45 for (size_t i = 0; i < length; ++i) { |
| 39 ret = fmaf(a[i], b[i], ret); | 46 ret = fmaf(a[i], b[i], ret); |
| 40 } | 47 } |
| 41 return ret; | 48 return ret; |
| 42 } | 49 } |
| 43 | 50 |
| (...skipping 20 matching lines...) Expand all Loading... | |
| 64 size_t in_channels, | 71 size_t in_channels, |
| 65 size_t frames, | 72 size_t frames, |
| 66 size_t /* out_channels */, | 73 size_t /* out_channels */, |
| 67 std::complex<float>* const* out_block) { | 74 std::complex<float>* const* out_block) { |
| 68 RTC_DCHECK_EQ(parent_->freqs_, frames); | 75 RTC_DCHECK_EQ(parent_->freqs_, frames); |
| 69 for (size_t i = 0; i < in_channels; ++i) { | 76 for (size_t i = 0; i < in_channels; ++i) { |
| 70 parent_->ProcessClearBlock(in_block[i], out_block[i]); | 77 parent_->ProcessClearBlock(in_block[i], out_block[i]); |
| 71 } | 78 } |
| 72 } | 79 } |
| 73 | 80 |
| 74 IntelligibilityEnhancer::IntelligibilityEnhancer() | 81 IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz, |
| 75 : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) { | 82 size_t num_render_channels) |
| 76 } | |
| 77 | |
| 78 IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config) | |
| 79 : freqs_(RealFourier::ComplexLength( | 83 : freqs_(RealFourier::ComplexLength( |
| 80 RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))), | 84 RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))), |
| 81 window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))), | 85 chunk_length_(static_cast<size_t>(sample_rate_hz * kChunkSizeMs / 1000)), |
| 82 chunk_length_( | 86 bank_size_(GetBankSize(sample_rate_hz, kErbResolution)), |
| 83 static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)), | 87 sample_rate_hz_(sample_rate_hz), |
| 84 bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)), | 88 num_render_channels_(num_render_channels), |
| 85 sample_rate_hz_(config.sample_rate_hz), | 89 clear_power_estimator_(freqs_, kDecayRate), |
| 86 erb_resolution_(kErbResolution), | |
| 87 num_capture_channels_(config.num_capture_channels), | |
| 88 num_render_channels_(config.num_render_channels), | |
| 89 analysis_rate_(config.analysis_rate), | |
| 90 active_(true), | |
| 91 clear_power_(freqs_, config.decay_rate), | |
| 92 noise_power_(freqs_, 0.f), | |
| 93 filtered_clear_pow_(new float[bank_size_]), | 90 filtered_clear_pow_(new float[bank_size_]), |
| 94 filtered_noise_pow_(new float[bank_size_]), | 91 filtered_noise_pow_(new float[bank_size_]), |
| 95 center_freqs_(new float[bank_size_]), | 92 center_freqs_(new float[bank_size_]), |
| 96 render_filter_bank_(CreateErbBank(freqs_)), | 93 render_filter_bank_(CreateErbBank(freqs_)), |
| 97 rho_(new float[bank_size_]), | |
| 98 gains_eq_(new float[bank_size_]), | 94 gains_eq_(new float[bank_size_]), |
| 99 gain_applier_(freqs_, config.gain_change_limit), | 95 gain_applier_(freqs_, kGainChangeLimit), |
| 100 temp_render_out_buffer_(chunk_length_, num_render_channels_), | 96 temp_render_out_buffer_(chunk_length_, num_render_channels_), |
| 101 kbd_window_(new float[window_size_]), | |
| 102 render_callback_(this), | 97 render_callback_(this), |
| 103 block_count_(0), | 98 audio_s16_(chunk_length_), |
| 104 analysis_step_(0) { | 99 chunks_since_voice_(kSpeechOffsetDelay), |
| 105 RTC_DCHECK_LE(config.rho, 1.0f); | 100 is_speech_(false) { |
| 101 RTC_DCHECK_LE(kRho, 1.f); | |
| 106 | 102 |
| 107 memset(filtered_clear_pow_.get(), | 103 memset(filtered_clear_pow_.get(), |
| 108 0, | 104 0, |
| 109 bank_size_ * sizeof(filtered_clear_pow_[0])); | 105 bank_size_ * sizeof(filtered_clear_pow_[0])); |
| 110 memset(filtered_noise_pow_.get(), | 106 memset(filtered_noise_pow_.get(), |
| 111 0, | 107 0, |
| 112 bank_size_ * sizeof(filtered_noise_pow_[0])); | 108 bank_size_ * sizeof(filtered_noise_pow_[0])); |
| 113 | 109 |
| 114 // Assumes all rho equal. | 110 float freqs_khz = kClipFreq / 1000.f; |
|
hlundin-webrtc
2016/02/15 13:05:11
This is const too. And it should probably be named
aluebs-webrtc
2016/02/19 03:56:30
I removed it and updated the constant directly.
| |
| 115 for (size_t i = 0; i < bank_size_; ++i) { | 111 size_t erb_index = static_cast<size_t>(ceilf( |
|
hlundin-webrtc
2016/02/15 13:05:11
const
aluebs-webrtc
2016/02/19 03:56:30
Done.
| |
| 116 rho_[i] = config.rho * config.rho; | 112 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.f)); |
| 117 } | 113 start_freq_ = std::max(static_cast<size_t>(1), erb_index * kErbResolution); |
| 118 | 114 |
| 119 float freqs_khz = kClipFreq / 1000.0f; | 115 size_t window_size = static_cast<size_t>(1 << RealFourier::FftOrder(freqs_)); |
| 120 size_t erb_index = static_cast<size_t>(ceilf( | 116 std::vector<float> kbd_window(window_size); |
| 121 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); | 117 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size, &kbd_window[0]); |
| 122 start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_); | |
| 123 | |
| 124 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, | |
| 125 kbd_window_.get()); | |
| 126 render_mangler_.reset(new LappedTransform( | 118 render_mangler_.reset(new LappedTransform( |
| 127 num_render_channels_, num_render_channels_, chunk_length_, | 119 num_render_channels_, num_render_channels_, chunk_length_, |
| 128 kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_)); | 120 &kbd_window[0], window_size, window_size / 2, &render_callback_)); |
| 129 } | 121 } |
| 130 | 122 |
| 131 void IntelligibilityEnhancer::SetCaptureNoiseEstimate( | 123 void IntelligibilityEnhancer::SetCaptureNoiseEstimate( |
| 132 std::vector<float> noise) { | 124 std::vector<float> noise) { |
| 133 if (capture_filter_bank_.size() != bank_size_ || | 125 if (capture_filter_bank_.size() != bank_size_ || |
| 134 capture_filter_bank_[0].size() != noise.size()) { | 126 capture_filter_bank_[0].size() != noise.size()) { |
| 135 capture_filter_bank_ = CreateErbBank(noise.size()); | 127 capture_filter_bank_ = CreateErbBank(noise.size()); |
| 128 noise_power_estimator_.reset(new PowerEstimator(noise.size(), kDecayRate)); | |
| 136 } | 129 } |
| 137 if (noise.size() != noise_power_.size()) { | 130 noise_power_estimator_->Step(&noise[0]); |
| 138 noise_power_.resize(noise.size()); | |
| 139 } | |
| 140 for (size_t i = 0; i < noise.size(); ++i) { | |
| 141 noise_power_[i] = noise[i] * noise[i]; | |
| 142 } | |
| 143 } | 131 } |
| 144 | 132 |
| 145 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, | 133 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, |
| 146 int sample_rate_hz, | 134 int sample_rate_hz, |
| 147 size_t num_channels) { | 135 size_t num_channels) { |
| 148 RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); | 136 RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); |
| 149 RTC_CHECK_EQ(num_render_channels_, num_channels); | 137 RTC_CHECK_EQ(num_render_channels_, num_channels); |
| 150 | 138 is_speech_ = IsSpeech(audio[0]); |
| 151 if (active_) { | 139 render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); |
| 152 render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); | 140 for (size_t i = 0; i < num_render_channels_; ++i) { |
| 153 } | 141 memcpy(audio[i], temp_render_out_buffer_.channels()[i], |
| 154 | 142 chunk_length_ * sizeof(**audio)); |
| 155 if (active_) { | |
| 156 for (size_t i = 0; i < num_render_channels_; ++i) { | |
| 157 memcpy(audio[i], temp_render_out_buffer_.channels()[i], | |
| 158 chunk_length_ * sizeof(**audio)); | |
| 159 } | |
| 160 } | 143 } |
| 161 } | 144 } |
| 162 | 145 |
| 163 void IntelligibilityEnhancer::ProcessClearBlock( | 146 void IntelligibilityEnhancer::ProcessClearBlock( |
| 164 const std::complex<float>* in_block, | 147 const std::complex<float>* in_block, |
| 165 std::complex<float>* out_block) { | 148 std::complex<float>* out_block) { |
| 166 if (block_count_ < 2) { | 149 if (is_speech_) { |
| 167 memset(out_block, 0, freqs_ * sizeof(*out_block)); | 150 clear_power_estimator_.Step(in_block); |
| 168 ++block_count_; | |
| 169 return; | |
| 170 } | 151 } |
| 171 | 152 MapToErbBands(clear_power_estimator_.power(), |
| 172 // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary. | |
| 173 if (true) { | |
| 174 clear_power_.Step(in_block); | |
| 175 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { | |
| 176 AnalyzeClearBlock(); | |
| 177 ++analysis_step_; | |
| 178 } | |
| 179 ++block_count_; | |
| 180 } | |
| 181 | |
| 182 if (active_) { | |
| 183 gain_applier_.Apply(in_block, out_block); | |
| 184 } | |
| 185 } | |
| 186 | |
| 187 void IntelligibilityEnhancer::AnalyzeClearBlock() { | |
| 188 const float* clear_power = clear_power_.Power(); | |
| 189 MapToErbBands(clear_power, | |
| 190 render_filter_bank_, | 153 render_filter_bank_, |
| 191 filtered_clear_pow_.get()); | 154 filtered_clear_pow_.get()); |
| 192 MapToErbBands(&noise_power_[0], | 155 MapToErbBands(noise_power_estimator_->power(), |
|
turaj
2016/02/13 00:09:42
I'm confused that why we are back to using PowerEs
aluebs-webrtc
2016/02/19 03:56:30
To be consistent with the PSD estimation from the
| |
| 193 capture_filter_bank_, | 156 capture_filter_bank_, |
| 194 filtered_noise_pow_.get()); | 157 filtered_noise_pow_.get()); |
| 195 SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); | 158 SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); |
| 196 const float power_target = std::accumulate( | 159 const float power_target = std::accumulate( |
| 197 clear_power, clear_power + freqs_, 0.f); | 160 clear_power_estimator_.power(), |
| 161 clear_power_estimator_.power() + freqs_, | |
| 162 0.f); | |
| 198 const float power_top = | 163 const float power_top = |
| 199 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); | 164 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
| 200 SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); | 165 SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); |
| 201 const float power_bot = | 166 const float power_bot = |
| 202 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); | 167 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
| 203 if (power_target >= power_bot && power_target <= power_top) { | 168 if (power_target >= power_bot && power_target <= power_top) { |
| 204 SolveForLambda(power_target, power_bot, power_top); | 169 SolveForLambda(power_target, power_bot, power_top); |
| 205 UpdateErbGains(); | 170 UpdateErbGains(); |
| 206 } // Else experiencing power underflow, so do nothing. | 171 } // Else experiencing power underflow, so do nothing. |
| 172 gain_applier_.Apply(in_block, out_block); | |
| 207 } | 173 } |
| 208 | 174 |
| 209 void IntelligibilityEnhancer::SolveForLambda(float power_target, | 175 void IntelligibilityEnhancer::SolveForLambda(float power_target, |
| 210 float power_bot, | 176 float power_bot, |
| 211 float power_top) { | 177 float power_top) { |
| 212 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values | 178 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values |
| 213 const int kMaxIters = 100; // for these, based on experiments. | 179 const int kMaxIters = 100; // for these, based on experiments. |
| 214 | 180 |
| 215 const float reciprocal_power_target = 1.f / power_target; | 181 const float reciprocal_power_target = 1.f / power_target; |
| 216 float lambda_bot = kLambdaBot; | 182 float lambda_bot = kLambdaBot; |
| 217 float lambda_top = kLambdaTop; | 183 float lambda_top = kLambdaTop; |
| 218 float power_ratio = 2.0f; // Ratio of achieved power to target power. | 184 float power_ratio = 2.f; // Ratio of achieved power to target power. |
| 219 int iters = 0; | 185 int iters = 0; |
| 220 while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && | 186 while (std::fabs(power_ratio - 1.f) > kConvergeThresh && |
| 221 iters <= kMaxIters) { | 187 iters <= kMaxIters) { |
| 222 const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; | 188 const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.f; |
| 223 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); | 189 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); |
| 224 const float power = | 190 const float power = |
| 225 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); | 191 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
| 226 if (power < power_target) { | 192 if (power < power_target) { |
| 227 lambda_bot = lambda; | 193 lambda_bot = lambda; |
| 228 } else { | 194 } else { |
| 229 lambda_top = lambda; | 195 lambda_top = lambda; |
| 230 } | 196 } |
| 231 power_ratio = std::fabs(power * reciprocal_power_target); | 197 power_ratio = std::fabs(power * reciprocal_power_target); |
| 232 ++iters; | 198 ++iters; |
| 233 } | 199 } |
| 234 } | 200 } |
| 235 | 201 |
| 236 void IntelligibilityEnhancer::UpdateErbGains() { | 202 void IntelligibilityEnhancer::UpdateErbGains() { |
| 237 // (ERB gain) = filterbank' * (freq gain) | 203 // (ERB gain) = filterbank' * (freq gain) |
| 238 float* gains = gain_applier_.target(); | 204 float* gains = gain_applier_.target(); |
| 239 for (size_t i = 0; i < freqs_; ++i) { | 205 for (size_t i = 0; i < freqs_; ++i) { |
| 240 gains[i] = 0.0f; | 206 gains[i] = 0.f; |
| 241 for (size_t j = 0; j < bank_size_; ++j) { | 207 for (size_t j = 0; j < bank_size_; ++j) { |
| 242 gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]); | 208 gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]); |
| 243 } | 209 } |
| 244 } | 210 } |
| 245 } | 211 } |
| 246 | 212 |
| 247 size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, | 213 size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, |
| 248 size_t erb_resolution) { | 214 size_t erb_resolution) { |
| 249 float freq_limit = sample_rate / 2000.0f; | 215 float freq_limit = sample_rate / 2000.f; |
| 250 size_t erb_scale = static_cast<size_t>(ceilf( | 216 size_t erb_scale = static_cast<size_t>(ceilf( |
| 251 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f)); | 217 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f)); |
| 252 return erb_scale * erb_resolution; | 218 return erb_scale * erb_resolution; |
| 253 } | 219 } |
| 254 | 220 |
| 255 std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank( | 221 std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank( |
| 256 size_t num_freqs) { | 222 size_t num_freqs) { |
| 257 std::vector<std::vector<float>> filter_bank(bank_size_); | 223 std::vector<std::vector<float>> filter_bank(bank_size_); |
| 258 size_t lf = 1, rf = 4; | 224 size_t lf = 1, rf = 4; |
| 259 | 225 |
| 260 for (size_t i = 0; i < bank_size_; ++i) { | 226 for (size_t i = 0; i < bank_size_; ++i) { |
| 261 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); | 227 float abs_temp = fabsf((i + 1.f) / static_cast<float>(kErbResolution)); |
| 262 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); | 228 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); |
| 263 center_freqs_[i] -= 14678.49f; | 229 center_freqs_[i] -= 14678.49f; |
| 264 } | 230 } |
| 265 float last_center_freq = center_freqs_[bank_size_ - 1]; | 231 float last_center_freq = center_freqs_[bank_size_ - 1]; |
| 266 for (size_t i = 0; i < bank_size_; ++i) { | 232 for (size_t i = 0; i < bank_size_; ++i) { |
| 267 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; | 233 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; |
| 268 } | 234 } |
| 269 | 235 |
| 270 for (size_t i = 0; i < bank_size_; ++i) { | 236 for (size_t i = 0; i < bank_size_; ++i) { |
| 271 filter_bank[i].resize(num_freqs); | 237 filter_bank[i].resize(num_freqs); |
| 272 } | 238 } |
| 273 | 239 |
| 274 for (size_t i = 1; i <= bank_size_; ++i) { | 240 for (size_t i = 1; i <= bank_size_; ++i) { |
| 275 size_t lll, ll, rr, rrr; | 241 size_t lll, ll, rr, rrr; |
| 276 static const size_t kOne = 1; // Avoids repeated static_cast<>s below. | |
| 277 lll = static_cast<size_t>(round( | 242 lll = static_cast<size_t>(round( |
| 278 center_freqs_[std::max(kOne, i - lf) - 1] * num_freqs / | 243 center_freqs_[std::max(1ul, i - lf) - 1] * num_freqs / |
| 279 (0.5f * sample_rate_hz_))); | 244 (0.5f * sample_rate_hz_))); |
| 280 ll = static_cast<size_t>(round( | 245 ll = static_cast<size_t>(round( |
| 281 center_freqs_[std::max(kOne, i) - 1] * num_freqs / | 246 center_freqs_[std::max(1ul, i) - 1] * num_freqs / |
| 282 (0.5f * sample_rate_hz_))); | 247 (0.5f * sample_rate_hz_))); |
| 283 lll = std::min(num_freqs, std::max(lll, kOne)) - 1; | 248 lll = std::min(num_freqs, std::max(lll, 1ul)) - 1; |
| 284 ll = std::min(num_freqs, std::max(ll, kOne)) - 1; | 249 ll = std::min(num_freqs, std::max(ll, 1ul)) - 1; |
| 285 | 250 |
| 286 rrr = static_cast<size_t>(round( | 251 rrr = static_cast<size_t>(round( |
| 287 center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / | 252 center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / |
| 288 (0.5f * sample_rate_hz_))); | 253 (0.5f * sample_rate_hz_))); |
| 289 rr = static_cast<size_t>(round( | 254 rr = static_cast<size_t>(round( |
| 290 center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / | 255 center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / |
| 291 (0.5f * sample_rate_hz_))); | 256 (0.5f * sample_rate_hz_))); |
| 292 rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1; | 257 rrr = std::min(num_freqs, std::max(rrr, 1ul)) - 1; |
| 293 rr = std::min(num_freqs, std::max(rr, kOne)) - 1; | 258 rr = std::min(num_freqs, std::max(rr, 1ul)) - 1; |
| 294 | 259 |
| 295 float step, element; | 260 float step, element; |
| 296 | 261 |
| 297 step = 1.0f / (ll - lll); | 262 step = 1.f / (ll - lll); |
| 298 element = 0.0f; | 263 element = 0.f; |
| 299 for (size_t j = lll; j <= ll; ++j) { | 264 for (size_t j = lll; j <= ll; ++j) { |
| 300 filter_bank[i - 1][j] = element; | 265 filter_bank[i - 1][j] = element; |
| 301 element += step; | 266 element += step; |
| 302 } | 267 } |
| 303 step = 1.0f / (rrr - rr); | 268 step = 1.f / (rrr - rr); |
| 304 element = 1.0f; | 269 element = 1.f; |
| 305 for (size_t j = rr; j <= rrr; ++j) { | 270 for (size_t j = rr; j <= rrr; ++j) { |
| 306 filter_bank[i - 1][j] = element; | 271 filter_bank[i - 1][j] = element; |
| 307 element -= step; | 272 element -= step; |
| 308 } | 273 } |
| 309 for (size_t j = ll; j <= rr; ++j) { | 274 for (size_t j = ll; j <= rr; ++j) { |
| 310 filter_bank[i - 1][j] = 1.0f; | 275 filter_bank[i - 1][j] = 1.f; |
| 311 } | 276 } |
| 312 } | 277 } |
| 313 | 278 |
| 314 float sum; | 279 float sum; |
| 315 for (size_t i = 0; i < num_freqs; ++i) { | 280 for (size_t i = 0; i < num_freqs; ++i) { |
| 316 sum = 0.0f; | 281 sum = 0.f; |
| 317 for (size_t j = 0; j < bank_size_; ++j) { | 282 for (size_t j = 0; j < bank_size_; ++j) { |
| 318 sum += filter_bank[j][i]; | 283 sum += filter_bank[j][i]; |
| 319 } | 284 } |
| 320 for (size_t j = 0; j < bank_size_; ++j) { | 285 for (size_t j = 0; j < bank_size_; ++j) { |
| 321 filter_bank[j][i] /= sum; | 286 filter_bank[j][i] /= sum; |
| 322 } | 287 } |
| 323 } | 288 } |
| 324 return filter_bank; | 289 return filter_bank; |
| 325 } | 290 } |
| 326 | 291 |
| 327 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, | 292 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, |
| 328 size_t start_freq, | 293 size_t start_freq, |
| 329 float* sols) { | 294 float* sols) { |
| 330 bool quadratic = (kConfigRho < 1.0f); | 295 bool quadratic = (kConfigRho < 1.f); |
| 331 const float* pow_x0 = filtered_clear_pow_.get(); | 296 const float* pow_x0 = filtered_clear_pow_.get(); |
| 332 const float* pow_n0 = filtered_noise_pow_.get(); | 297 const float* pow_n0 = filtered_noise_pow_.get(); |
| 333 | 298 |
| 334 for (size_t n = 0; n < start_freq; ++n) { | 299 for (size_t n = 0; n < start_freq; ++n) { |
| 335 sols[n] = 1.0f; | 300 sols[n] = 1.f; |
| 336 } | 301 } |
| 337 | 302 |
| 338 // Analytic solution for optimal gains. See paper for derivation. | 303 // Analytic solution for optimal gains. See paper for derivation. |
| 339 for (size_t n = start_freq - 1; n < bank_size_; ++n) { | 304 for (size_t n = start_freq - 1; n < bank_size_; ++n) { |
| 340 float alpha0, beta0, gamma0; | 305 float alpha0, beta0, gamma0; |
| 341 gamma0 = 0.5f * rho_[n] * pow_x0[n] * pow_n0[n] + | 306 gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] + |
| 342 lambda * pow_x0[n] * pow_n0[n] * pow_n0[n]; | 307 lambda * pow_x0[n] * pow_n0[n] * pow_n0[n]; |
| 343 beta0 = lambda * pow_x0[n] * (2 - rho_[n]) * pow_x0[n] * pow_n0[n]; | 308 beta0 = lambda * pow_x0[n] * (2 - kRho) * pow_x0[n] * pow_n0[n]; |
| 344 if (quadratic) { | 309 if (quadratic) { |
| 345 alpha0 = lambda * pow_x0[n] * (1 - rho_[n]) * pow_x0[n] * pow_x0[n]; | 310 alpha0 = lambda * pow_x0[n] * (1 - kRho) * pow_x0[n] * pow_x0[n]; |
| 346 sols[n] = | 311 sols[n] = |
| 347 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); | 312 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); |
| 348 } else { | 313 } else { |
| 349 sols[n] = -gamma0 / beta0; | 314 sols[n] = -gamma0 / beta0; |
| 350 } | 315 } |
| 351 sols[n] = fmax(0, sols[n]); | 316 sols[n] = fmax(0, sols[n]); |
| 352 } | 317 } |
| 353 } | 318 } |
| 354 | 319 |
| 355 bool IntelligibilityEnhancer::active() const { | 320 bool IntelligibilityEnhancer::IsSpeech(const float* audio) { |
| 356 return active_; | 321 FloatToS16(audio, chunk_length_, &audio_s16_[0]); |
| 322 vad_.ProcessChunk(&audio_s16_[0], chunk_length_, sample_rate_hz_); | |
| 323 if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) { | |
|
turaj
2016/02/13 00:09:42
I thought we gonna use the energy-based VAD with h
aluebs-webrtc
2016/02/19 03:56:30
As discussed offline, having the pitch-based VAD w
| |
| 324 chunks_since_voice_ = 0; | |
| 325 } else if (chunks_since_voice_ < kSpeechOffsetDelay) { | |
|
turaj
2016/02/13 00:09:42
If energy-based VAD is used, do we still need this
aluebs-webrtc
2016/02/19 03:56:30
No, but I think we should use the pitch-based VAD.
| |
| 326 ++chunks_since_voice_; | |
| 327 } | |
| 328 return chunks_since_voice_ < kSpeechOffsetDelay; | |
| 357 } | 329 } |
| 358 | 330 |
| 359 } // namespace webrtc | 331 } // namespace webrtc |
| OLD | NEW |