| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
|
| index 9caa2eb0a158b6c0c54cdb00864bf5a3344df3c3..43ad9a7b1a2b55af324740487057e95e484ade02 100644
|
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
|
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
|
| @@ -8,169 +8,69 @@
|
| * be found in the AUTHORS file in the root of the source tree.
|
| */
|
|
|
| -//
|
| -// Unit tests for intelligibility utils.
|
| -//
|
| -
|
| -#include <math.h>
|
| +#include <cmath>
|
| #include <complex>
|
| -#include <iostream>
|
| #include <vector>
|
|
|
| #include "testing/gtest/include/gtest/gtest.h"
|
| #include "webrtc/base/arraysize.h"
|
| #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h"
|
|
|
| -using std::complex;
|
| -using std::vector;
|
| -
|
| namespace webrtc {
|
|
|
| namespace intelligibility {
|
|
|
| -vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) {
|
| - vector<vector<complex<float>>> data(samples);
|
| - for (int i = 0; i < samples; i++) {
|
| - for (int j = 0; j < freqs; j++) {
|
| +std::vector<std::vector<std::complex<float>>> GenerateTestData(size_t freqs,
|
| + size_t samples) {
|
| + std::vector<std::vector<std::complex<float>>> data(samples);
|
| + for (size_t i = 0; i < samples; ++i) {
|
| + for (size_t j = 0; j < freqs; ++j) {
|
| const float val = 0.99f / ((i + 1) * (j + 1));
|
| - data[i].push_back(complex<float>(val, val));
|
| + data[i].push_back(std::complex<float>(val, val));
|
| }
|
| }
|
| return data;
|
| }
|
|
|
| -// Tests UpdateFactor.
|
| -TEST(IntelligibilityUtilsTest, TestUpdateFactor) {
|
| - EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0));
|
| - EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3));
|
| - EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1));
|
| - EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3));
|
| - EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1));
|
| -}
|
| -
|
| -// Tests zerofudge.
|
| -TEST(IntelligibilityUtilsTest, TestCplx) {
|
| - complex<float> t0(1.f, 0.f);
|
| - t0 = intelligibility::zerofudge(t0);
|
| - EXPECT_NE(t0.imag(), 0.f);
|
| - EXPECT_NE(t0.real(), 0.f);
|
| -}
|
| -
|
| -// Tests NewMean and AddToMean.
|
| -TEST(IntelligibilityUtilsTest, TestMeanUpdate) {
|
| - const complex<float> data[] = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}};
|
| - const complex<float> means[] = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}};
|
| - complex<float> mean(3, 8);
|
| - for (size_t i = 0; i < arraysize(data); i++) {
|
| - EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1));
|
| - AddToMean(data[i], i + 1, &mean);
|
| - EXPECT_EQ(means[i], mean);
|
| - }
|
| -}
|
| -
|
| -// Tests VarianceArray, for all variance step types.
|
| -TEST(IntelligibilityUtilsTest, TestVarianceArray) {
|
| - const int kFreqs = 10;
|
| - const int kSamples = 100;
|
| - const int kWindowSize = 10; // Should pass for all kWindowSize > 1.
|
| +// Tests PowerEstimator, for all power step types.
|
| +TEST(IntelligibilityUtilsTest, TestPowerEstimator) {
|
| + const size_t kFreqs = 10;
|
| + const size_t kSamples = 100;
|
| const float kDecay = 0.5f;
|
| - vector<VarianceArray::StepType> step_types;
|
| - step_types.push_back(VarianceArray::kStepInfinite);
|
| - step_types.push_back(VarianceArray::kStepDecaying);
|
| - step_types.push_back(VarianceArray::kStepWindowed);
|
| - step_types.push_back(VarianceArray::kStepBlocked);
|
| - step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage);
|
| - const vector<vector<complex<float>>> test_data(
|
| + const std::vector<std::vector<std::complex<float>>> test_data(
|
| GenerateTestData(kFreqs, kSamples));
|
| - for (auto step_type : step_types) {
|
| - VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay);
|
| - EXPECT_EQ(0, variance_array.variance()[0]);
|
| - EXPECT_EQ(0, variance_array.array_mean());
|
| - variance_array.ApplyScale(2.0f);
|
| - EXPECT_EQ(0, variance_array.variance()[0]);
|
| - EXPECT_EQ(0, variance_array.array_mean());
|
| -
|
| - // Makes sure Step is doing something.
|
| - variance_array.Step(&test_data[0][0]);
|
| - for (int i = 1; i < kSamples; i++) {
|
| - variance_array.Step(&test_data[i][0]);
|
| - EXPECT_GE(variance_array.array_mean(), 0.0f);
|
| - EXPECT_LE(variance_array.array_mean(), 1.0f);
|
| - for (int j = 0; j < kFreqs; j++) {
|
| - EXPECT_GE(variance_array.variance()[j], 0.0f);
|
| - EXPECT_LE(variance_array.variance()[j], 1.0f);
|
| - }
|
| - }
|
| - variance_array.Clear();
|
| - EXPECT_EQ(0, variance_array.variance()[0]);
|
| - EXPECT_EQ(0, variance_array.array_mean());
|
| - }
|
| -}
|
| -
|
| -// Tests exact computation on synthetic data.
|
| -TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) {
|
| - // Exact, not unbiased estimates.
|
| - const float kTestVarianceBufferNotFull = 16.5f;
|
| - const float kTestVarianceBufferFull1 = 66.5f;
|
| - const float kTestVarianceBufferFull2 = 333.375f;
|
| - const int kFreqs = 2;
|
| - const int kSamples = 50;
|
| - const int kWindowSize = 2;
|
| - const float kDecay = 0.5f;
|
| - const float kMaxError = 0.0001f;
|
| -
|
| - VarianceArray variance_array(
|
| - kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay);
|
| -
|
| - vector<vector<complex<float>>> test_data(kSamples);
|
| - for (int i = 0; i < kSamples; i++) {
|
| - for (int j = 0; j < kFreqs; j++) {
|
| - if (i < 30) {
|
| - test_data[i].push_back(complex<float>(static_cast<float>(kSamples - i),
|
| - static_cast<float>(i + 1)));
|
| - } else {
|
| - test_data[i].push_back(complex<float>(0.f, 0.f));
|
| - }
|
| - }
|
| - }
|
| -
|
| - for (int i = 0; i < kSamples; i++) {
|
| - variance_array.Step(&test_data[i][0]);
|
| - for (int j = 0; j < kFreqs; j++) {
|
| - if (i < 9) { // In utils, kWindowBlockSize = 10.
|
| - EXPECT_EQ(0, variance_array.variance()[j]);
|
| - } else if (i < 19) {
|
| - EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j],
|
| - kMaxError);
|
| - } else if (i < 39) {
|
| - EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j],
|
| - kMaxError);
|
| - } else if (i < 49) {
|
| - EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j],
|
| - kMaxError);
|
| - } else {
|
| - EXPECT_EQ(0, variance_array.variance()[j]);
|
| - }
|
| + PowerEstimator power_estimator(kFreqs, kDecay);
|
| + EXPECT_EQ(0, power_estimator.Power()[0]);
|
| +
|
| + // Makes sure Step is doing something.
|
| + power_estimator.Step(&test_data[0][0]);
|
| + for (size_t i = 1; i < kSamples; ++i) {
|
| + power_estimator.Step(&test_data[i][0]);
|
| + for (size_t j = 0; j < kFreqs; ++j) {
|
| + const float* power = power_estimator.Power();
|
| + EXPECT_GE(power[j], 0.f);
|
| + EXPECT_LE(power[j], 1.f);
|
| }
|
| }
|
| }
|
|
|
| // Tests gain applier.
|
| TEST(IntelligibilityUtilsTest, TestGainApplier) {
|
| - const int kFreqs = 10;
|
| - const int kSamples = 100;
|
| + const size_t kFreqs = 10;
|
| + const size_t kSamples = 100;
|
| const float kChangeLimit = 0.1f;
|
| GainApplier gain_applier(kFreqs, kChangeLimit);
|
| - const vector<vector<complex<float>>> in_data(
|
| + const std::vector<std::vector<std::complex<float>>> in_data(
|
| GenerateTestData(kFreqs, kSamples));
|
| - vector<vector<complex<float>>> out_data(GenerateTestData(kFreqs, kSamples));
|
| - for (int i = 0; i < kSamples; i++) {
|
| + std::vector<std::vector<std::complex<float>>> out_data(GenerateTestData(
|
| + kFreqs, kSamples));
|
| + for (size_t i = 0; i < kSamples; ++i) {
|
| gain_applier.Apply(&in_data[i][0], &out_data[i][0]);
|
| - for (int j = 0; j < kFreqs; j++) {
|
| - EXPECT_GT(out_data[i][j].real(), 0.0f);
|
| - EXPECT_LT(out_data[i][j].real(), 1.0f);
|
| - EXPECT_GT(out_data[i][j].imag(), 0.0f);
|
| - EXPECT_LT(out_data[i][j].imag(), 1.0f);
|
| + for (size_t j = 0; j < kFreqs; ++j) {
|
| + EXPECT_GT(out_data[i][j].real(), 0.f);
|
| + EXPECT_LT(out_data[i][j].real(), 1.f);
|
| + EXPECT_GT(out_data[i][j].imag(), 0.f);
|
| + EXPECT_LT(out_data[i][j].imag(), 1.f);
|
| }
|
| }
|
| }
|
|
|