| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h
|
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h
|
| index 4ac11671474dcde823379be25990532684a499ea..2bf0791d8544e7e0bf6786f10c9bf64186d0fdbb 100644
|
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h
|
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h
|
| @@ -8,10 +8,6 @@
|
| * be found in the AUTHORS file in the root of the source tree.
|
| */
|
|
|
| -//
|
| -// Specifies helper classes for intelligibility enhancement.
|
| -//
|
| -
|
| #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
|
| #define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
|
|
|
| @@ -23,115 +19,36 @@ namespace webrtc {
|
|
|
| namespace intelligibility {
|
|
|
| -// Return |current| changed towards |target|, with the change being at most
|
| -// |limit|.
|
| -float UpdateFactor(float target, float current, float limit);
|
| -
|
| -// Apply a small fudge to degenerate complex values. The numbers in the array
|
| -// were chosen randomly, so that even a series of all zeroes has some small
|
| -// variability.
|
| -std::complex<float> zerofudge(std::complex<float> c);
|
| -
|
| -// Incremental mean computation. Return the mean of the series with the
|
| -// mean |mean| with added |data|.
|
| -std::complex<float> NewMean(std::complex<float> mean,
|
| - std::complex<float> data,
|
| - size_t count);
|
| -
|
| -// Updates |mean| with added |data|;
|
| -void AddToMean(std::complex<float> data,
|
| - size_t count,
|
| - std::complex<float>* mean);
|
| -
|
| -// Internal helper for computing the variances of a stream of arrays.
|
| -// The result is an array of variances per position: the i-th variance
|
| -// is the variance of the stream of data on the i-th positions in the
|
| -// input arrays.
|
| -// There are four methods of computation:
|
| -// * kStepInfinite computes variances from the beginning onwards
|
| -// * kStepDecaying uses a recursive exponential decay formula with a
|
| -// settable forgetting factor
|
| -// * kStepWindowed computes variances within a moving window
|
| -// * kStepBlocked is similar to kStepWindowed, but history is kept
|
| -// as a rolling window of blocks: multiple input elements are used for
|
| -// one block and the history then consists of the variances of these blocks
|
| -// with the same effect as kStepWindowed, but less storage, so the window
|
| -// can be longer
|
| -class VarianceArray {
|
| +// Internal helper for computing the power of a stream of arrays.
|
| +// The result is an array of power per position: the i-th power is the power of
|
| +// the stream of data on the i-th positions in the input arrays.
|
| +class PowerEstimator {
|
| public:
|
| - enum StepType {
|
| - kStepInfinite = 0,
|
| - kStepDecaying,
|
| - kStepWindowed,
|
| - kStepBlocked,
|
| - kStepBlockBasedMovingAverage
|
| - };
|
| -
|
| - // Construct an instance for the given input array length (|freqs|) and
|
| - // computation algorithm (|type|), with the appropriate parameters.
|
| - // |window_size| is the number of samples for kStepWindowed and
|
| - // the number of blocks for kStepBlocked. |decay| is the forgetting factor
|
| - // for kStepDecaying.
|
| - VarianceArray(size_t freqs, StepType type, size_t window_size, float decay);
|
| -
|
| - // Add a new data point to the series and compute the new variances.
|
| - // TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying,
|
| - // whether they should skip adding some small dummy values to the input
|
| - // to prevent problems with all-zero inputs. Can probably be removed.
|
| - void Step(const std::complex<float>* data, bool skip_fudge = false) {
|
| - (this->*step_func_)(data, skip_fudge);
|
| - }
|
| - // Reset variances to zero and forget all history.
|
| - void Clear();
|
| - // Scale the input data by |scale|. Effectively multiply variances
|
| - // by |scale^2|.
|
| - void ApplyScale(float scale);
|
| -
|
| - // The current set of variances.
|
| - const float* variance() const { return variance_.get(); }
|
| -
|
| - // The mean value of the current set of variances.
|
| - float array_mean() const { return array_mean_; }
|
| + // Construct an instance for the given input array length (|freqs|), with the
|
| + // appropriate parameters. |decay| is the forgetting factor.
|
| + PowerEstimator(size_t freqs, float decay);
|
|
|
| - private:
|
| - void InfiniteStep(const std::complex<float>* data, bool dummy);
|
| - void DecayStep(const std::complex<float>* data, bool dummy);
|
| - void WindowedStep(const std::complex<float>* data, bool dummy);
|
| - void BlockedStep(const std::complex<float>* data, bool dummy);
|
| - void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy);
|
| + // Add a new data point to the series.
|
| + void Step(const std::complex<float>* data);
|
|
|
| + // The current power array.
|
| + const float* Power();
|
| +
|
| + private:
|
| // TODO(ekmeyerson): Switch the following running means
|
| // and histories from rtc::scoped_ptr to std::vector.
|
| -
|
| - // The current average X and X^2.
|
| - rtc::scoped_ptr<std::complex<float>[]> running_mean_;
|
| rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_;
|
|
|
| - // Average X and X^2 for the current block in kStepBlocked.
|
| - rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_;
|
| - rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_;
|
| -
|
| - // Sample history for the rolling window in kStepWindowed and block-wise
|
| - // histories for kStepBlocked.
|
| - rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_;
|
| - rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_;
|
| - rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_;
|
| -
|
| - // The current set of variances and sums for Welford's algorithm.
|
| - rtc::scoped_ptr<float[]> variance_;
|
| - rtc::scoped_ptr<float[]> conj_sum_;
|
| + // The current magnitude array.
|
| + rtc::scoped_ptr<float[]> magnitude_;
|
| + // The current power array.
|
| + rtc::scoped_ptr<float[]> power_;
|
|
|
| const size_t num_freqs_;
|
| - const size_t window_size_;
|
| const float decay_;
|
| - size_t history_cursor_;
|
| - size_t count_;
|
| - float array_mean_;
|
| - bool buffer_full_;
|
| - void (VarianceArray::*step_func_)(const std::complex<float>*, bool);
|
| };
|
|
|
| -// Helper class for smoothing gain changes. On each applicatiion step, the
|
| +// Helper class for smoothing gain changes. On each application step, the
|
| // currently used gains are changed towards a set of settable target gains,
|
| // constrained by a limit on the magnitude of the changes.
|
| class GainApplier {
|
|
|