Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h |
index 4ac11671474dcde823379be25990532684a499ea..2bf0791d8544e7e0bf6786f10c9bf64186d0fdbb 100644 |
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h |
@@ -8,10 +8,6 @@ |
* be found in the AUTHORS file in the root of the source tree. |
*/ |
-// |
-// Specifies helper classes for intelligibility enhancement. |
-// |
- |
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ |
#define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ |
@@ -23,115 +19,36 @@ namespace webrtc { |
namespace intelligibility { |
-// Return |current| changed towards |target|, with the change being at most |
-// |limit|. |
-float UpdateFactor(float target, float current, float limit); |
- |
-// Apply a small fudge to degenerate complex values. The numbers in the array |
-// were chosen randomly, so that even a series of all zeroes has some small |
-// variability. |
-std::complex<float> zerofudge(std::complex<float> c); |
- |
-// Incremental mean computation. Return the mean of the series with the |
-// mean |mean| with added |data|. |
-std::complex<float> NewMean(std::complex<float> mean, |
- std::complex<float> data, |
- size_t count); |
- |
-// Updates |mean| with added |data|; |
-void AddToMean(std::complex<float> data, |
- size_t count, |
- std::complex<float>* mean); |
- |
-// Internal helper for computing the variances of a stream of arrays. |
-// The result is an array of variances per position: the i-th variance |
-// is the variance of the stream of data on the i-th positions in the |
-// input arrays. |
-// There are four methods of computation: |
-// * kStepInfinite computes variances from the beginning onwards |
-// * kStepDecaying uses a recursive exponential decay formula with a |
-// settable forgetting factor |
-// * kStepWindowed computes variances within a moving window |
-// * kStepBlocked is similar to kStepWindowed, but history is kept |
-// as a rolling window of blocks: multiple input elements are used for |
-// one block and the history then consists of the variances of these blocks |
-// with the same effect as kStepWindowed, but less storage, so the window |
-// can be longer |
-class VarianceArray { |
+// Internal helper for computing the power of a stream of arrays. |
+// The result is an array of power per position: the i-th power is the power of |
+// the stream of data on the i-th positions in the input arrays. |
+class PowerEstimator { |
public: |
- enum StepType { |
- kStepInfinite = 0, |
- kStepDecaying, |
- kStepWindowed, |
- kStepBlocked, |
- kStepBlockBasedMovingAverage |
- }; |
- |
- // Construct an instance for the given input array length (|freqs|) and |
- // computation algorithm (|type|), with the appropriate parameters. |
- // |window_size| is the number of samples for kStepWindowed and |
- // the number of blocks for kStepBlocked. |decay| is the forgetting factor |
- // for kStepDecaying. |
- VarianceArray(size_t freqs, StepType type, size_t window_size, float decay); |
- |
- // Add a new data point to the series and compute the new variances. |
- // TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying, |
- // whether they should skip adding some small dummy values to the input |
- // to prevent problems with all-zero inputs. Can probably be removed. |
- void Step(const std::complex<float>* data, bool skip_fudge = false) { |
- (this->*step_func_)(data, skip_fudge); |
- } |
- // Reset variances to zero and forget all history. |
- void Clear(); |
- // Scale the input data by |scale|. Effectively multiply variances |
- // by |scale^2|. |
- void ApplyScale(float scale); |
- |
- // The current set of variances. |
- const float* variance() const { return variance_.get(); } |
- |
- // The mean value of the current set of variances. |
- float array_mean() const { return array_mean_; } |
+ // Construct an instance for the given input array length (|freqs|), with the |
+ // appropriate parameters. |decay| is the forgetting factor. |
+ PowerEstimator(size_t freqs, float decay); |
- private: |
- void InfiniteStep(const std::complex<float>* data, bool dummy); |
- void DecayStep(const std::complex<float>* data, bool dummy); |
- void WindowedStep(const std::complex<float>* data, bool dummy); |
- void BlockedStep(const std::complex<float>* data, bool dummy); |
- void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy); |
+ // Add a new data point to the series. |
+ void Step(const std::complex<float>* data); |
+ // The current power array. |
+ const float* Power(); |
+ |
+ private: |
// TODO(ekmeyerson): Switch the following running means |
// and histories from rtc::scoped_ptr to std::vector. |
- |
- // The current average X and X^2. |
- rtc::scoped_ptr<std::complex<float>[]> running_mean_; |
rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_; |
- // Average X and X^2 for the current block in kStepBlocked. |
- rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_; |
- rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_; |
- |
- // Sample history for the rolling window in kStepWindowed and block-wise |
- // histories for kStepBlocked. |
- rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_; |
- rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_; |
- rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_; |
- |
- // The current set of variances and sums for Welford's algorithm. |
- rtc::scoped_ptr<float[]> variance_; |
- rtc::scoped_ptr<float[]> conj_sum_; |
+ // The current magnitude array. |
+ rtc::scoped_ptr<float[]> magnitude_; |
+ // The current power array. |
+ rtc::scoped_ptr<float[]> power_; |
const size_t num_freqs_; |
- const size_t window_size_; |
const float decay_; |
- size_t history_cursor_; |
- size_t count_; |
- float array_mean_; |
- bool buffer_full_; |
- void (VarianceArray::*step_func_)(const std::complex<float>*, bool); |
}; |
-// Helper class for smoothing gain changes. On each applicatiion step, the |
+// Helper class for smoothing gain changes. On each application step, the |
// currently used gains are changed towards a set of settable target gains, |
// constrained by a limit on the magnitude of the changes. |
class GainApplier { |