Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(698)

Side by Side Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h

Issue 1685703004: Fix and simplify the power estimation in the IntelligibilityEnhancer (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@ie
Patch Set: Address turajs comments Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 //
12 // Specifies helper classes for intelligibility enhancement.
13 //
14
15 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ 11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
16 #define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ 12 #define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
17 13
18 #include <complex> 14 #include <complex>
19 15
20 #include "webrtc/base/scoped_ptr.h" 16 #include "webrtc/base/scoped_ptr.h"
21 17
22 namespace webrtc { 18 namespace webrtc {
23 19
24 namespace intelligibility { 20 // Internal helper for computing the power of a stream of arrays.
21 // The result is an array of power per position: the i-th power is the power of
22 // the stream of data on the i-th positions in the input arrays.
23 class PowerEstimator {
24 public:
25 // Construct an instance for the given input array length (|freqs|), with the
26 // appropriate parameters. |decay| is the forgetting factor.
27 PowerEstimator(size_t freqs, float decay);
25 28
26 // Return |current| changed towards |target|, with the change being at most 29 // Add a new data point to the series.
27 // |limit|. 30 void Step(const std::complex<float>* data);
28 float UpdateFactor(float target, float current, float limit);
29 31
30 // Apply a small fudge to degenerate complex values. The numbers in the array 32 // The current power array.
31 // were chosen randomly, so that even a series of all zeroes has some small 33 const float* Power();
32 // variability.
33 std::complex<float> zerofudge(std::complex<float> c);
34
35 // Incremental mean computation. Return the mean of the series with the
36 // mean |mean| with added |data|.
37 std::complex<float> NewMean(std::complex<float> mean,
38 std::complex<float> data,
39 size_t count);
40
41 // Updates |mean| with added |data|;
42 void AddToMean(std::complex<float> data,
43 size_t count,
44 std::complex<float>* mean);
45
46 // Internal helper for computing the variances of a stream of arrays.
47 // The result is an array of variances per position: the i-th variance
48 // is the variance of the stream of data on the i-th positions in the
49 // input arrays.
50 // There are four methods of computation:
51 // * kStepInfinite computes variances from the beginning onwards
52 // * kStepDecaying uses a recursive exponential decay formula with a
53 // settable forgetting factor
54 // * kStepWindowed computes variances within a moving window
55 // * kStepBlocked is similar to kStepWindowed, but history is kept
56 // as a rolling window of blocks: multiple input elements are used for
57 // one block and the history then consists of the variances of these blocks
58 // with the same effect as kStepWindowed, but less storage, so the window
59 // can be longer
60 class VarianceArray {
61 public:
62 enum StepType {
63 kStepInfinite = 0,
64 kStepDecaying,
65 kStepWindowed,
66 kStepBlocked,
67 kStepBlockBasedMovingAverage
68 };
69
70 // Construct an instance for the given input array length (|freqs|) and
71 // computation algorithm (|type|), with the appropriate parameters.
72 // |window_size| is the number of samples for kStepWindowed and
73 // the number of blocks for kStepBlocked. |decay| is the forgetting factor
74 // for kStepDecaying.
75 VarianceArray(size_t freqs, StepType type, size_t window_size, float decay);
76
77 // Add a new data point to the series and compute the new variances.
78 // TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying,
79 // whether they should skip adding some small dummy values to the input
80 // to prevent problems with all-zero inputs. Can probably be removed.
81 void Step(const std::complex<float>* data, bool skip_fudge = false) {
82 (this->*step_func_)(data, skip_fudge);
83 }
84 // Reset variances to zero and forget all history.
85 void Clear();
86 // Scale the input data by |scale|. Effectively multiply variances
87 // by |scale^2|.
88 void ApplyScale(float scale);
89
90 // The current set of variances.
91 const float* variance() const { return variance_.get(); }
92
93 // The mean value of the current set of variances.
94 float array_mean() const { return array_mean_; }
95 34
96 private: 35 private:
97 void InfiniteStep(const std::complex<float>* data, bool dummy);
98 void DecayStep(const std::complex<float>* data, bool dummy);
99 void WindowedStep(const std::complex<float>* data, bool dummy);
100 void BlockedStep(const std::complex<float>* data, bool dummy);
101 void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy);
102
103 // TODO(ekmeyerson): Switch the following running means 36 // TODO(ekmeyerson): Switch the following running means
104 // and histories from rtc::scoped_ptr to std::vector. 37 // and histories from rtc::scoped_ptr to std::vector.
105
106 // The current average X and X^2.
107 rtc::scoped_ptr<std::complex<float>[]> running_mean_;
108 rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_; 38 rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_;
109 39
110 // Average X and X^2 for the current block in kStepBlocked. 40 // The current magnitude array.
111 rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_; 41 rtc::scoped_ptr<float[]> magnitude_;
112 rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_; 42 // The current power array.
113 43 rtc::scoped_ptr<float[]> power_;
114 // Sample history for the rolling window in kStepWindowed and block-wise
115 // histories for kStepBlocked.
116 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_;
117 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_;
118 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_;
119
120 // The current set of variances and sums for Welford's algorithm.
121 rtc::scoped_ptr<float[]> variance_;
122 rtc::scoped_ptr<float[]> conj_sum_;
123 44
124 const size_t num_freqs_; 45 const size_t num_freqs_;
125 const size_t window_size_;
126 const float decay_; 46 const float decay_;
127 size_t history_cursor_;
128 size_t count_;
129 float array_mean_;
130 bool buffer_full_;
131 void (VarianceArray::*step_func_)(const std::complex<float>*, bool);
132 }; 47 };
133 48
134 // Helper class for smoothing gain changes. On each applicatiion step, the 49 // Helper class for smoothing gain changes. On each application step, the
135 // currently used gains are changed towards a set of settable target gains, 50 // currently used gains are changed towards a set of settable target gains,
136 // constrained by a limit on the magnitude of the changes. 51 // constrained by a limit on the magnitude of the changes.
137 class GainApplier { 52 class GainApplier {
138 public: 53 public:
139 GainApplier(size_t freqs, float change_limit); 54 GainApplier(size_t freqs, float change_limit);
140 55
141 // Copy |in_block| to |out_block|, multiplied by the current set of gains, 56 // Copy |in_block| to |out_block|, multiplied by the current set of gains,
142 // and step the current set of gains towards the target set. 57 // and step the current set of gains towards the target set.
143 void Apply(const std::complex<float>* in_block, 58 void Apply(const std::complex<float>* in_block,
144 std::complex<float>* out_block); 59 std::complex<float>* out_block);
145 60
146 // Return the current target gain set. Modify this array to set the targets. 61 // Return the current target gain set. Modify this array to set the targets.
147 float* target() const { return target_.get(); } 62 float* target() const { return target_.get(); }
148 63
149 private: 64 private:
150 const size_t num_freqs_; 65 const size_t num_freqs_;
151 const float change_limit_; 66 const float change_limit_;
152 rtc::scoped_ptr<float[]> target_; 67 rtc::scoped_ptr<float[]> target_;
153 rtc::scoped_ptr<float[]> current_; 68 rtc::scoped_ptr<float[]> current_;
154 }; 69 };
155 70
156 } // namespace intelligibility
157
158 } // namespace webrtc 71 } // namespace webrtc
159 72
160 #endif // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS _H_ 73 #endif // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS _H_
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698