OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 // | |
12 // Implements core class for intelligibility enhancer. | |
13 // | |
14 // Details of the model and algorithm can be found in the original paper: | |
15 // http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788 | |
16 // | |
17 | |
18 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h" | 11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h" |
19 | 12 |
20 #include <math.h> | 13 #include <math.h> |
21 #include <stdlib.h> | 14 #include <stdlib.h> |
22 #include <algorithm> | 15 #include <algorithm> |
23 #include <numeric> | 16 #include <numeric> |
24 | 17 |
25 #include "webrtc/base/checks.h" | 18 #include "webrtc/base/checks.h" |
26 #include "webrtc/common_audio/include/audio_util.h" | 19 #include "webrtc/common_audio/include/audio_util.h" |
27 #include "webrtc/common_audio/window_generator.h" | 20 #include "webrtc/common_audio/window_generator.h" |
28 | 21 |
29 namespace webrtc { | 22 namespace webrtc { |
30 | 23 |
31 namespace { | 24 namespace { |
32 | 25 |
33 const size_t kErbResolution = 2; | 26 const size_t kErbResolution = 2; |
34 const int kWindowSizeMs = 2; | 27 const int kWindowSizeMs = 16; |
35 const int kChunkSizeMs = 10; // Size provided by APM. | 28 const int kChunkSizeMs = 10; // Size provided by APM. |
36 const float kClipFreq = 200.0f; | 29 const float kClipFreq = 200.0f; |
37 const float kConfigRho = 0.02f; // Default production and interpretation SNR. | 30 const float kConfigRho = 0.02f; // Default production and interpretation SNR. |
38 const float kKbdAlpha = 1.5f; | 31 const float kKbdAlpha = 1.5f; |
39 const float kLambdaBot = -1.0f; // Extreme values in bisection | 32 const float kLambdaBot = -1.0f; // Extreme values in bisection |
40 const float kLambdaTop = -10e-18f; // search for lamda. | 33 const float kLambdaTop = -10e-18f; // search for lamda. |
41 | 34 |
42 // Returns dot product of vectors |a| and |b| with size |length|. | 35 // Returns dot product of vectors |a| and |b| with size |length|. |
43 float DotProduct(const float* a, const float* b, size_t length) { | 36 float DotProduct(const float* a, const float* b, size_t length) { |
44 float ret = 0.f; | 37 float ret = 0.f; |
45 for (size_t i = 0; i < length; ++i) { | 38 for (size_t i = 0; i < length; ++i) { |
46 ret = fmaf(a[i], b[i], ret); | 39 ret = fmaf(a[i], b[i], ret); |
47 } | 40 } |
48 return ret; | 41 return ret; |
49 } | 42 } |
50 | 43 |
51 // Computes the power across ERB filters from the power spectral density |var|. | 44 // Computes the power across ERB bands from the power spectral density |pow|. |
52 // Stores it in |result|. | 45 // Stores it in |result|. |
53 void FilterVariance(const float* var, | 46 void MapToErbBands(const float* pow, |
54 const std::vector<std::vector<float>>& filter_bank, | 47 const std::vector<std::vector<float>>& filter_bank, |
55 float* result) { | 48 float* result) { |
56 for (size_t i = 0; i < filter_bank.size(); ++i) { | 49 for (size_t i = 0; i < filter_bank.size(); ++i) { |
57 RTC_DCHECK_GT(filter_bank[i].size(), 0u); | 50 RTC_DCHECK_GT(filter_bank[i].size(), 0u); |
58 result[i] = DotProduct(&filter_bank[i][0], var, filter_bank[i].size()); | 51 result[i] = DotProduct(&filter_bank[i][0], pow, filter_bank[i].size()); |
59 } | 52 } |
60 } | 53 } |
61 | 54 |
62 } // namespace | 55 } // namespace |
63 | 56 |
64 using std::complex; | |
65 using std::max; | |
66 using std::min; | |
67 using VarianceType = intelligibility::VarianceArray::StepType; | |
68 | |
69 IntelligibilityEnhancer::TransformCallback::TransformCallback( | 57 IntelligibilityEnhancer::TransformCallback::TransformCallback( |
70 IntelligibilityEnhancer* parent) | 58 IntelligibilityEnhancer* parent) |
71 : parent_(parent) { | 59 : parent_(parent) { |
72 } | 60 } |
73 | 61 |
74 void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( | 62 void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( |
75 const complex<float>* const* in_block, | 63 const std::complex<float>* const* in_block, |
76 size_t in_channels, | 64 size_t in_channels, |
77 size_t frames, | 65 size_t frames, |
78 size_t /* out_channels */, | 66 size_t /* out_channels */, |
79 complex<float>* const* out_block) { | 67 std::complex<float>* const* out_block) { |
80 RTC_DCHECK_EQ(parent_->freqs_, frames); | 68 RTC_DCHECK_EQ(parent_->freqs_, frames); |
81 for (size_t i = 0; i < in_channels; ++i) { | 69 for (size_t i = 0; i < in_channels; ++i) { |
82 parent_->ProcessClearBlock(in_block[i], out_block[i]); | 70 parent_->ProcessClearBlock(in_block[i], out_block[i]); |
83 } | 71 } |
84 } | 72 } |
85 | 73 |
86 IntelligibilityEnhancer::IntelligibilityEnhancer() | 74 IntelligibilityEnhancer::IntelligibilityEnhancer() |
87 : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) { | 75 : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) { |
88 } | 76 } |
89 | 77 |
90 IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config) | 78 IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config) |
91 : freqs_(RealFourier::ComplexLength( | 79 : freqs_(RealFourier::ComplexLength( |
92 RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))), | 80 RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))), |
93 window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))), | 81 window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))), |
94 chunk_length_( | 82 chunk_length_( |
95 static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)), | 83 static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)), |
96 bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)), | 84 bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)), |
97 sample_rate_hz_(config.sample_rate_hz), | 85 sample_rate_hz_(config.sample_rate_hz), |
98 erb_resolution_(kErbResolution), | 86 erb_resolution_(kErbResolution), |
99 num_capture_channels_(config.num_capture_channels), | 87 num_capture_channels_(config.num_capture_channels), |
100 num_render_channels_(config.num_render_channels), | 88 num_render_channels_(config.num_render_channels), |
101 analysis_rate_(config.analysis_rate), | 89 analysis_rate_(config.analysis_rate), |
102 active_(true), | 90 active_(true), |
103 clear_variance_(freqs_, | 91 clear_power_(freqs_, config.decay_rate), |
104 config.var_type, | |
105 config.var_window_size, | |
106 config.var_decay_rate), | |
107 noise_power_(freqs_, 0.f), | 92 noise_power_(freqs_, 0.f), |
108 filtered_clear_var_(new float[bank_size_]), | 93 filtered_clear_pow_(new float[bank_size_]), |
109 filtered_noise_var_(new float[bank_size_]), | 94 filtered_noise_pow_(new float[bank_size_]), |
110 center_freqs_(new float[bank_size_]), | 95 center_freqs_(new float[bank_size_]), |
111 render_filter_bank_(CreateErbBank(freqs_)), | 96 render_filter_bank_(CreateErbBank(freqs_)), |
112 rho_(new float[bank_size_]), | 97 rho_(new float[bank_size_]), |
113 gains_eq_(new float[bank_size_]), | 98 gains_eq_(new float[bank_size_]), |
114 gain_applier_(freqs_, config.gain_change_limit), | 99 gain_applier_(freqs_, config.gain_change_limit), |
115 temp_render_out_buffer_(chunk_length_, num_render_channels_), | 100 temp_render_out_buffer_(chunk_length_, num_render_channels_), |
116 kbd_window_(new float[window_size_]), | 101 kbd_window_(new float[window_size_]), |
117 render_callback_(this), | 102 render_callback_(this), |
118 block_count_(0), | 103 block_count_(0), |
119 analysis_step_(0) { | 104 analysis_step_(0) { |
120 RTC_DCHECK_LE(config.rho, 1.0f); | 105 RTC_DCHECK_LE(config.rho, 1.0f); |
121 | 106 |
122 memset(filtered_clear_var_.get(), | 107 memset(filtered_clear_pow_.get(), |
123 0, | 108 0, |
124 bank_size_ * sizeof(filtered_clear_var_[0])); | 109 bank_size_ * sizeof(filtered_clear_pow_[0])); |
125 memset(filtered_noise_var_.get(), | 110 memset(filtered_noise_pow_.get(), |
126 0, | 111 0, |
127 bank_size_ * sizeof(filtered_noise_var_[0])); | 112 bank_size_ * sizeof(filtered_noise_pow_[0])); |
128 | 113 |
129 // Assumes all rho equal. | 114 // Assumes all rho equal. |
130 for (size_t i = 0; i < bank_size_; ++i) { | 115 for (size_t i = 0; i < bank_size_; ++i) { |
131 rho_[i] = config.rho * config.rho; | 116 rho_[i] = config.rho * config.rho; |
132 } | 117 } |
133 | 118 |
134 float freqs_khz = kClipFreq / 1000.0f; | 119 float freqs_khz = kClipFreq / 1000.0f; |
135 size_t erb_index = static_cast<size_t>(ceilf( | 120 size_t erb_index = static_cast<size_t>(ceilf( |
136 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); | 121 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); |
137 start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_); | 122 start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_); |
(...skipping 30 matching lines...) Expand all Loading... | |
168 } | 153 } |
169 | 154 |
170 if (active_) { | 155 if (active_) { |
171 for (size_t i = 0; i < num_render_channels_; ++i) { | 156 for (size_t i = 0; i < num_render_channels_; ++i) { |
172 memcpy(audio[i], temp_render_out_buffer_.channels()[i], | 157 memcpy(audio[i], temp_render_out_buffer_.channels()[i], |
173 chunk_length_ * sizeof(**audio)); | 158 chunk_length_ * sizeof(**audio)); |
174 } | 159 } |
175 } | 160 } |
176 } | 161 } |
177 | 162 |
178 void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, | 163 void IntelligibilityEnhancer::ProcessClearBlock( |
179 complex<float>* out_block) { | 164 const std::complex<float>* in_block, |
165 std::complex<float>* out_block) { | |
180 if (block_count_ < 2) { | 166 if (block_count_ < 2) { |
181 memset(out_block, 0, freqs_ * sizeof(*out_block)); | 167 memset(out_block, 0, freqs_ * sizeof(*out_block)); |
182 ++block_count_; | 168 ++block_count_; |
183 return; | 169 return; |
184 } | 170 } |
185 | 171 |
186 // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary. | 172 // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary. |
187 if (true) { | 173 if (true) { |
turaj
2016/02/12 23:12:35
Can we get rid off this "if(true)"?
aluebs-webrtc
2016/02/13 01:47:49
I did that in the next CL: https://codereview.webr
| |
188 clear_variance_.Step(in_block, false); | 174 clear_power_.Step(in_block); |
189 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { | 175 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { |
190 const float power_target = std::accumulate( | 176 AnalyzeClearBlock(); |
191 clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.f); | |
192 AnalyzeClearBlock(power_target); | |
193 ++analysis_step_; | 177 ++analysis_step_; |
194 } | 178 } |
195 ++block_count_; | 179 ++block_count_; |
196 } | 180 } |
197 | 181 |
198 if (active_) { | 182 if (active_) { |
199 gain_applier_.Apply(in_block, out_block); | 183 gain_applier_.Apply(in_block, out_block); |
200 } | 184 } |
201 } | 185 } |
202 | 186 |
203 void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { | 187 void IntelligibilityEnhancer::AnalyzeClearBlock() { |
204 FilterVariance(clear_variance_.variance(), | 188 const float* clear_power = clear_power_.Power(); |
205 render_filter_bank_, | 189 MapToErbBands(clear_power, |
206 filtered_clear_var_.get()); | 190 render_filter_bank_, |
207 FilterVariance(&noise_power_[0], | 191 filtered_clear_pow_.get()); |
208 capture_filter_bank_, | 192 MapToErbBands(&noise_power_[0], |
209 filtered_noise_var_.get()); | 193 capture_filter_bank_, |
194 filtered_noise_pow_.get()); | |
210 SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); | 195 SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); |
196 const float power_target = std::accumulate( | |
197 clear_power, clear_power + freqs_, 0.f); | |
211 const float power_top = | 198 const float power_top = |
212 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 199 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
213 SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); | 200 SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); |
214 const float power_bot = | 201 const float power_bot = |
215 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 202 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
216 if (power_target >= power_bot && power_target <= power_top) { | 203 if (power_target >= power_bot && power_target <= power_top) { |
217 SolveForLambda(power_target, power_bot, power_top); | 204 SolveForLambda(power_target, power_bot, power_top); |
218 UpdateErbGains(); | 205 UpdateErbGains(); |
219 } // Else experiencing variance underflow, so do nothing. | 206 } // Else experiencing power underflow, so do nothing. |
220 } | 207 } |
221 | 208 |
222 void IntelligibilityEnhancer::SolveForLambda(float power_target, | 209 void IntelligibilityEnhancer::SolveForLambda(float power_target, |
223 float power_bot, | 210 float power_bot, |
224 float power_top) { | 211 float power_top) { |
225 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values | 212 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values |
226 const int kMaxIters = 100; // for these, based on experiments. | 213 const int kMaxIters = 100; // for these, based on experiments. |
227 | 214 |
228 const float reciprocal_power_target = 1.f / power_target; | 215 const float reciprocal_power_target = 1.f / power_target; |
229 float lambda_bot = kLambdaBot; | 216 float lambda_bot = kLambdaBot; |
230 float lambda_top = kLambdaTop; | 217 float lambda_top = kLambdaTop; |
231 float power_ratio = 2.0f; // Ratio of achieved power to target power. | 218 float power_ratio = 2.0f; // Ratio of achieved power to target power. |
232 int iters = 0; | 219 int iters = 0; |
233 while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && | 220 while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && |
234 iters <= kMaxIters) { | 221 iters <= kMaxIters) { |
235 const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; | 222 const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
236 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); | 223 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); |
237 const float power = | 224 const float power = |
238 DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 225 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
239 if (power < power_target) { | 226 if (power < power_target) { |
240 lambda_bot = lambda; | 227 lambda_bot = lambda; |
241 } else { | 228 } else { |
242 lambda_top = lambda; | 229 lambda_top = lambda; |
243 } | 230 } |
244 power_ratio = std::fabs(power * reciprocal_power_target); | 231 power_ratio = std::fabs(power * reciprocal_power_target); |
245 ++iters; | 232 ++iters; |
246 } | 233 } |
247 } | 234 } |
248 | 235 |
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
281 } | 268 } |
282 | 269 |
283 for (size_t i = 0; i < bank_size_; ++i) { | 270 for (size_t i = 0; i < bank_size_; ++i) { |
284 filter_bank[i].resize(num_freqs); | 271 filter_bank[i].resize(num_freqs); |
285 } | 272 } |
286 | 273 |
287 for (size_t i = 1; i <= bank_size_; ++i) { | 274 for (size_t i = 1; i <= bank_size_; ++i) { |
288 size_t lll, ll, rr, rrr; | 275 size_t lll, ll, rr, rrr; |
289 static const size_t kOne = 1; // Avoids repeated static_cast<>s below. | 276 static const size_t kOne = 1; // Avoids repeated static_cast<>s below. |
290 lll = static_cast<size_t>(round( | 277 lll = static_cast<size_t>(round( |
291 center_freqs_[max(kOne, i - lf) - 1] * num_freqs / | 278 center_freqs_[std::max(kOne, i - lf) - 1] * num_freqs / |
292 (0.5f * sample_rate_hz_))); | 279 (0.5f * sample_rate_hz_))); |
293 ll = static_cast<size_t>(round( | 280 ll = static_cast<size_t>(round( |
294 center_freqs_[max(kOne, i) - 1] * num_freqs / | 281 center_freqs_[std::max(kOne, i) - 1] * num_freqs / |
295 (0.5f * sample_rate_hz_))); | 282 (0.5f * sample_rate_hz_))); |
296 lll = min(num_freqs, max(lll, kOne)) - 1; | 283 lll = std::min(num_freqs, std::max(lll, kOne)) - 1; |
297 ll = min(num_freqs, max(ll, kOne)) - 1; | 284 ll = std::min(num_freqs, std::max(ll, kOne)) - 1; |
298 | 285 |
299 rrr = static_cast<size_t>(round( | 286 rrr = static_cast<size_t>(round( |
300 center_freqs_[min(bank_size_, i + rf) - 1] * num_freqs / | 287 center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / |
301 (0.5f * sample_rate_hz_))); | 288 (0.5f * sample_rate_hz_))); |
302 rr = static_cast<size_t>(round( | 289 rr = static_cast<size_t>(round( |
303 center_freqs_[min(bank_size_, i + 1) - 1] * num_freqs / | 290 center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / |
304 (0.5f * sample_rate_hz_))); | 291 (0.5f * sample_rate_hz_))); |
305 rrr = min(num_freqs, max(rrr, kOne)) - 1; | 292 rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1; |
306 rr = min(num_freqs, max(rr, kOne)) - 1; | 293 rr = std::min(num_freqs, std::max(rr, kOne)) - 1; |
307 | 294 |
308 float step, element; | 295 float step, element; |
309 | 296 |
310 step = 1.0f / (ll - lll); | 297 step = 1.0f / (ll - lll); |
311 element = 0.0f; | 298 element = 0.0f; |
312 for (size_t j = lll; j <= ll; ++j) { | 299 for (size_t j = lll; j <= ll; ++j) { |
313 filter_bank[i - 1][j] = element; | 300 filter_bank[i - 1][j] = element; |
314 element += step; | 301 element += step; |
315 } | 302 } |
316 step = 1.0f / (rrr - rr); | 303 step = 1.0f / (rrr - rr); |
(...skipping 17 matching lines...) Expand all Loading... | |
334 filter_bank[j][i] /= sum; | 321 filter_bank[j][i] /= sum; |
335 } | 322 } |
336 } | 323 } |
337 return filter_bank; | 324 return filter_bank; |
338 } | 325 } |
339 | 326 |
340 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, | 327 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, |
341 size_t start_freq, | 328 size_t start_freq, |
342 float* sols) { | 329 float* sols) { |
343 bool quadratic = (kConfigRho < 1.0f); | 330 bool quadratic = (kConfigRho < 1.0f); |
344 const float* var_x0 = filtered_clear_var_.get(); | 331 const float* pow_x0 = filtered_clear_pow_.get(); |
345 const float* var_n0 = filtered_noise_var_.get(); | 332 const float* pow_n0 = filtered_noise_pow_.get(); |
346 | 333 |
347 for (size_t n = 0; n < start_freq; ++n) { | 334 for (size_t n = 0; n < start_freq; ++n) { |
348 sols[n] = 1.0f; | 335 sols[n] = 1.0f; |
349 } | 336 } |
350 | 337 |
351 // Analytic solution for optimal gains. See paper for derivation. | 338 // Analytic solution for optimal gains. See paper for derivation. |
352 for (size_t n = start_freq - 1; n < bank_size_; ++n) { | 339 for (size_t n = start_freq - 1; n < bank_size_; ++n) { |
353 float alpha0, beta0, gamma0; | 340 float alpha0, beta0, gamma0; |
354 gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + | 341 gamma0 = 0.5f * rho_[n] * pow_x0[n] * pow_n0[n] + |
355 lambda * var_x0[n] * var_n0[n] * var_n0[n]; | 342 lambda * pow_x0[n] * pow_n0[n] * pow_n0[n]; |
356 beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; | 343 beta0 = lambda * pow_x0[n] * (2 - rho_[n]) * pow_x0[n] * pow_n0[n]; |
357 if (quadratic) { | 344 if (quadratic) { |
358 alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; | 345 alpha0 = lambda * pow_x0[n] * (1 - rho_[n]) * pow_x0[n] * pow_x0[n]; |
359 sols[n] = | 346 sols[n] = |
360 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); | 347 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); |
361 } else { | 348 } else { |
362 sols[n] = -gamma0 / beta0; | 349 sols[n] = -gamma0 / beta0; |
363 } | 350 } |
364 sols[n] = fmax(0, sols[n]); | 351 sols[n] = fmax(0, sols[n]); |
365 } | 352 } |
366 } | 353 } |
367 | 354 |
368 bool IntelligibilityEnhancer::active() const { | 355 bool IntelligibilityEnhancer::active() const { |
369 return active_; | 356 return active_; |
370 } | 357 } |
371 | 358 |
372 } // namespace webrtc | 359 } // namespace webrtc |
OLD | NEW |