Index: webrtc/modules/audio_coding/codecs/opus/opus/src/silk/float/burg_modified_FLP.c |
diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/float/burg_modified_FLP.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/float/burg_modified_FLP.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ea5dc25a93a7e2bcded3129beb73faeb1278b01a |
--- /dev/null |
+++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/float/burg_modified_FLP.c |
@@ -0,0 +1,186 @@ |
+/*********************************************************************** |
+Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
+Redistribution and use in source and binary forms, with or without |
+modification, are permitted provided that the following conditions |
+are met: |
+- Redistributions of source code must retain the above copyright notice, |
+this list of conditions and the following disclaimer. |
+- Redistributions in binary form must reproduce the above copyright |
+notice, this list of conditions and the following disclaimer in the |
+documentation and/or other materials provided with the distribution. |
+- Neither the name of Internet Society, IETF or IETF Trust, nor the |
+names of specific contributors, may be used to endorse or promote |
+products derived from this software without specific prior written |
+permission. |
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
+POSSIBILITY OF SUCH DAMAGE. |
+***********************************************************************/ |
+ |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+ |
+#include "SigProc_FLP.h" |
+#include "tuning_parameters.h" |
+#include "define.h" |
+ |
+#define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/ |
+ |
+/* Compute reflection coefficients from input signal */ |
+silk_float silk_burg_modified_FLP( /* O returns residual energy */ |
+ silk_float A[], /* O prediction coefficients (length order) */ |
+ const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ |
+ const silk_float minInvGain, /* I minimum inverse prediction gain */ |
+ const opus_int subfr_length, /* I input signal subframe length (incl. D preceding samples) */ |
+ const opus_int nb_subfr, /* I number of subframes stacked in x */ |
+ const opus_int D /* I order */ |
+) |
+{ |
+ opus_int k, n, s, reached_max_gain; |
+ double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2; |
+ const silk_float *x_ptr; |
+ double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ]; |
+ double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ]; |
+ double Af[ SILK_MAX_ORDER_LPC ]; |
+ |
+ silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); |
+ |
+ /* Compute autocorrelations, added over subframes */ |
+ C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); |
+ silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) ); |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ x_ptr = x + s * subfr_length; |
+ for( n = 1; n < D + 1; n++ ) { |
+ C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n ); |
+ } |
+ } |
+ silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) ); |
+ |
+ /* Initialize */ |
+ CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f; |
+ invGain = 1.0f; |
+ reached_max_gain = 0; |
+ for( n = 0; n < D; n++ ) { |
+ /* Update first row of correlation matrix (without first element) */ |
+ /* Update last row of correlation matrix (without last element, stored in reversed order) */ |
+ /* Update C * Af */ |
+ /* Update C * flipud(Af) (stored in reversed order) */ |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ x_ptr = x + s * subfr_length; |
+ tmp1 = x_ptr[ n ]; |
+ tmp2 = x_ptr[ subfr_length - n - 1 ]; |
+ for( k = 0; k < n; k++ ) { |
+ C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ]; |
+ C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ]; |
+ Atmp = Af[ k ]; |
+ tmp1 += x_ptr[ n - k - 1 ] * Atmp; |
+ tmp2 += x_ptr[ subfr_length - n + k ] * Atmp; |
+ } |
+ for( k = 0; k <= n; k++ ) { |
+ CAf[ k ] -= tmp1 * x_ptr[ n - k ]; |
+ CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ]; |
+ } |
+ } |
+ tmp1 = C_first_row[ n ]; |
+ tmp2 = C_last_row[ n ]; |
+ for( k = 0; k < n; k++ ) { |
+ Atmp = Af[ k ]; |
+ tmp1 += C_last_row[ n - k - 1 ] * Atmp; |
+ tmp2 += C_first_row[ n - k - 1 ] * Atmp; |
+ } |
+ CAf[ n + 1 ] = tmp1; |
+ CAb[ n + 1 ] = tmp2; |
+ |
+ /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ |
+ num = CAb[ n + 1 ]; |
+ nrg_b = CAb[ 0 ]; |
+ nrg_f = CAf[ 0 ]; |
+ for( k = 0; k < n; k++ ) { |
+ Atmp = Af[ k ]; |
+ num += CAb[ n - k ] * Atmp; |
+ nrg_b += CAb[ k + 1 ] * Atmp; |
+ nrg_f += CAf[ k + 1 ] * Atmp; |
+ } |
+ silk_assert( nrg_f > 0.0 ); |
+ silk_assert( nrg_b > 0.0 ); |
+ |
+ /* Calculate the next order reflection (parcor) coefficient */ |
+ rc = -2.0 * num / ( nrg_f + nrg_b ); |
+ silk_assert( rc > -1.0 && rc < 1.0 ); |
+ |
+ /* Update inverse prediction gain */ |
+ tmp1 = invGain * ( 1.0 - rc * rc ); |
+ if( tmp1 <= minInvGain ) { |
+ /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ |
+ rc = sqrt( 1.0 - minInvGain / invGain ); |
+ if( num > 0 ) { |
+ /* Ensure adjusted reflection coefficients has the original sign */ |
+ rc = -rc; |
+ } |
+ invGain = minInvGain; |
+ reached_max_gain = 1; |
+ } else { |
+ invGain = tmp1; |
+ } |
+ |
+ /* Update the AR coefficients */ |
+ for( k = 0; k < (n + 1) >> 1; k++ ) { |
+ tmp1 = Af[ k ]; |
+ tmp2 = Af[ n - k - 1 ]; |
+ Af[ k ] = tmp1 + rc * tmp2; |
+ Af[ n - k - 1 ] = tmp2 + rc * tmp1; |
+ } |
+ Af[ n ] = rc; |
+ |
+ if( reached_max_gain ) { |
+ /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ |
+ for( k = n + 1; k < D; k++ ) { |
+ Af[ k ] = 0.0; |
+ } |
+ break; |
+ } |
+ |
+ /* Update C * Af and C * Ab */ |
+ for( k = 0; k <= n + 1; k++ ) { |
+ tmp1 = CAf[ k ]; |
+ CAf[ k ] += rc * CAb[ n - k + 1 ]; |
+ CAb[ n - k + 1 ] += rc * tmp1; |
+ } |
+ } |
+ |
+ if( reached_max_gain ) { |
+ /* Convert to silk_float */ |
+ for( k = 0; k < D; k++ ) { |
+ A[ k ] = (silk_float)( -Af[ k ] ); |
+ } |
+ /* Subtract energy of preceding samples from C0 */ |
+ for( s = 0; s < nb_subfr; s++ ) { |
+ C0 -= silk_energy_FLP( x + s * subfr_length, D ); |
+ } |
+ /* Approximate residual energy */ |
+ nrg_f = C0 * invGain; |
+ } else { |
+ /* Compute residual energy and store coefficients as silk_float */ |
+ nrg_f = CAf[ 0 ]; |
+ tmp1 = 1.0; |
+ for( k = 0; k < D; k++ ) { |
+ Atmp = Af[ k ]; |
+ nrg_f += CAf[ k + 1 ] * Atmp; |
+ tmp1 += Atmp * Atmp; |
+ A[ k ] = (silk_float)(-Atmp); |
+ } |
+ nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1; |
+ } |
+ |
+ /* Return residual energy */ |
+ return (silk_float)nrg_f; |
+} |