| Index: webrtc/modules/audio_coding/codecs/opus/opus/src/silk/float/solve_LS_FLP.c
|
| diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/float/solve_LS_FLP.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/float/solve_LS_FLP.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..7c90d665a0f0d18b573b632a9328560511bf2a81
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/silk/float/solve_LS_FLP.c
|
| @@ -0,0 +1,207 @@
|
| +/***********************************************************************
|
| +Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
| +Redistribution and use in source and binary forms, with or without
|
| +modification, are permitted provided that the following conditions
|
| +are met:
|
| +- Redistributions of source code must retain the above copyright notice,
|
| +this list of conditions and the following disclaimer.
|
| +- Redistributions in binary form must reproduce the above copyright
|
| +notice, this list of conditions and the following disclaimer in the
|
| +documentation and/or other materials provided with the distribution.
|
| +- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
| +names of specific contributors, may be used to endorse or promote
|
| +products derived from this software without specific prior written
|
| +permission.
|
| +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
| +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
| +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
| +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
| +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
| +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
| +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
| +POSSIBILITY OF SUCH DAMAGE.
|
| +***********************************************************************/
|
| +
|
| +#ifdef HAVE_CONFIG_H
|
| +#include "config.h"
|
| +#endif
|
| +
|
| +#include "main_FLP.h"
|
| +#include "tuning_parameters.h"
|
| +
|
| +/**********************************************************************
|
| + * LDL Factorisation. Finds the upper triangular matrix L and the diagonal
|
| + * Matrix D (only the diagonal elements returned in a vector)such that
|
| + * the symmetric matric A is given by A = L*D*L'.
|
| + **********************************************************************/
|
| +static OPUS_INLINE void silk_LDL_FLP(
|
| + silk_float *A, /* I/O Pointer to Symetric Square Matrix */
|
| + opus_int M, /* I Size of Matrix */
|
| + silk_float *L, /* I/O Pointer to Square Upper triangular Matrix */
|
| + silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */
|
| +);
|
| +
|
| +/**********************************************************************
|
| + * Function to solve linear equation Ax = b, when A is a MxM lower
|
| + * triangular matrix, with ones on the diagonal.
|
| + **********************************************************************/
|
| +static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP(
|
| + const silk_float *L, /* I Pointer to Lower Triangular Matrix */
|
| + opus_int M, /* I Dim of Matrix equation */
|
| + const silk_float *b, /* I b Vector */
|
| + silk_float *x /* O x Vector */
|
| +);
|
| +
|
| +/**********************************************************************
|
| + * Function to solve linear equation (A^T)x = b, when A is a MxM lower
|
| + * triangular, with ones on the diagonal. (ie then A^T is upper triangular)
|
| + **********************************************************************/
|
| +static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
|
| + const silk_float *L, /* I Pointer to Lower Triangular Matrix */
|
| + opus_int M, /* I Dim of Matrix equation */
|
| + const silk_float *b, /* I b Vector */
|
| + silk_float *x /* O x Vector */
|
| +);
|
| +
|
| +/**********************************************************************
|
| + * Function to solve linear equation Ax = b, when A is a MxM
|
| + * symmetric square matrix - using LDL factorisation
|
| + **********************************************************************/
|
| +void silk_solve_LDL_FLP(
|
| + silk_float *A, /* I/O Symmetric square matrix, out: reg. */
|
| + const opus_int M, /* I Size of matrix */
|
| + const silk_float *b, /* I Pointer to b vector */
|
| + silk_float *x /* O Pointer to x solution vector */
|
| +)
|
| +{
|
| + opus_int i;
|
| + silk_float L[ MAX_MATRIX_SIZE ][ MAX_MATRIX_SIZE ];
|
| + silk_float T[ MAX_MATRIX_SIZE ];
|
| + silk_float Dinv[ MAX_MATRIX_SIZE ]; /* inverse diagonal elements of D*/
|
| +
|
| + silk_assert( M <= MAX_MATRIX_SIZE );
|
| +
|
| + /***************************************************
|
| + Factorize A by LDL such that A = L*D*(L^T),
|
| + where L is lower triangular with ones on diagonal
|
| + ****************************************************/
|
| + silk_LDL_FLP( A, M, &L[ 0 ][ 0 ], Dinv );
|
| +
|
| + /****************************************************
|
| + * substitute D*(L^T) = T. ie:
|
| + L*D*(L^T)*x = b => L*T = b <=> T = inv(L)*b
|
| + ******************************************************/
|
| + silk_SolveWithLowerTriangularWdiagOnes_FLP( &L[ 0 ][ 0 ], M, b, T );
|
| +
|
| + /****************************************************
|
| + D*(L^T)*x = T <=> (L^T)*x = inv(D)*T, because D is
|
| + diagonal just multiply with 1/d_i
|
| + ****************************************************/
|
| + for( i = 0; i < M; i++ ) {
|
| + T[ i ] = T[ i ] * Dinv[ i ];
|
| + }
|
| + /****************************************************
|
| + x = inv(L') * inv(D) * T
|
| + *****************************************************/
|
| + silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( &L[ 0 ][ 0 ], M, T, x );
|
| +}
|
| +
|
| +static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
|
| + const silk_float *L, /* I Pointer to Lower Triangular Matrix */
|
| + opus_int M, /* I Dim of Matrix equation */
|
| + const silk_float *b, /* I b Vector */
|
| + silk_float *x /* O x Vector */
|
| +)
|
| +{
|
| + opus_int i, j;
|
| + silk_float temp;
|
| + const silk_float *ptr1;
|
| +
|
| + for( i = M - 1; i >= 0; i-- ) {
|
| + ptr1 = matrix_adr( L, 0, i, M );
|
| + temp = 0;
|
| + for( j = M - 1; j > i ; j-- ) {
|
| + temp += ptr1[ j * M ] * x[ j ];
|
| + }
|
| + temp = b[ i ] - temp;
|
| + x[ i ] = temp;
|
| + }
|
| +}
|
| +
|
| +static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP(
|
| + const silk_float *L, /* I Pointer to Lower Triangular Matrix */
|
| + opus_int M, /* I Dim of Matrix equation */
|
| + const silk_float *b, /* I b Vector */
|
| + silk_float *x /* O x Vector */
|
| +)
|
| +{
|
| + opus_int i, j;
|
| + silk_float temp;
|
| + const silk_float *ptr1;
|
| +
|
| + for( i = 0; i < M; i++ ) {
|
| + ptr1 = matrix_adr( L, i, 0, M );
|
| + temp = 0;
|
| + for( j = 0; j < i; j++ ) {
|
| + temp += ptr1[ j ] * x[ j ];
|
| + }
|
| + temp = b[ i ] - temp;
|
| + x[ i ] = temp;
|
| + }
|
| +}
|
| +
|
| +static OPUS_INLINE void silk_LDL_FLP(
|
| + silk_float *A, /* I/O Pointer to Symetric Square Matrix */
|
| + opus_int M, /* I Size of Matrix */
|
| + silk_float *L, /* I/O Pointer to Square Upper triangular Matrix */
|
| + silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */
|
| +)
|
| +{
|
| + opus_int i, j, k, loop_count, err = 1;
|
| + silk_float *ptr1, *ptr2;
|
| + double temp, diag_min_value;
|
| + silk_float v[ MAX_MATRIX_SIZE ], D[ MAX_MATRIX_SIZE ]; /* temp arrays*/
|
| +
|
| + silk_assert( M <= MAX_MATRIX_SIZE );
|
| +
|
| + diag_min_value = FIND_LTP_COND_FAC * 0.5f * ( A[ 0 ] + A[ M * M - 1 ] );
|
| + for( loop_count = 0; loop_count < M && err == 1; loop_count++ ) {
|
| + err = 0;
|
| + for( j = 0; j < M; j++ ) {
|
| + ptr1 = matrix_adr( L, j, 0, M );
|
| + temp = matrix_ptr( A, j, j, M ); /* element in row j column j*/
|
| + for( i = 0; i < j; i++ ) {
|
| + v[ i ] = ptr1[ i ] * D[ i ];
|
| + temp -= ptr1[ i ] * v[ i ];
|
| + }
|
| + if( temp < diag_min_value ) {
|
| + /* Badly conditioned matrix: add white noise and run again */
|
| + temp = ( loop_count + 1 ) * diag_min_value - temp;
|
| + for( i = 0; i < M; i++ ) {
|
| + matrix_ptr( A, i, i, M ) += ( silk_float )temp;
|
| + }
|
| + err = 1;
|
| + break;
|
| + }
|
| + D[ j ] = ( silk_float )temp;
|
| + Dinv[ j ] = ( silk_float )( 1.0f / temp );
|
| + matrix_ptr( L, j, j, M ) = 1.0f;
|
| +
|
| + ptr1 = matrix_adr( A, j, 0, M );
|
| + ptr2 = matrix_adr( L, j + 1, 0, M);
|
| + for( i = j + 1; i < M; i++ ) {
|
| + temp = 0.0;
|
| + for( k = 0; k < j; k++ ) {
|
| + temp += ptr2[ k ] * v[ k ];
|
| + }
|
| + matrix_ptr( L, i, j, M ) = ( silk_float )( ( ptr1[ i ] - temp ) * Dinv[ j ] );
|
| + ptr2 += M; /* go to next column*/
|
| + }
|
| + }
|
| + }
|
| + silk_assert( err == 0 );
|
| +}
|
| +
|
|
|